1
|
Bee-safe peptidomimetic acaricides achieved by comparative genomics. Sci Rep 2022; 12:17263. [PMID: 36241660 PMCID: PMC9568543 DOI: 10.1038/s41598-022-20110-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/08/2022] [Indexed: 01/06/2023] Open
Abstract
The devastating Varroa mite (Varroa destructor Anderson and Trueman) is an obligatory ectoparasite of the honey bee, contributing to significant colony losses in North America and throughout the world. The limited number of conventional acaricides to reduce Varroa mites and prevent disease in honey bee colonies is challenged with wide-spread resistance and low target-site selectivity. Here, we propose a biorational approach using comparative genomics for the development of honey bee-safe and selective acaricides targeting the Varroa mite-specific neuropeptidergic system regulated by proctolin, which is lacking in the honey bee. Proctolin is a highly conserved pentapeptide RYLPT (Arg-Tyr-Leu-Pro-Thr) known to act through a G protein-coupled receptor to elicit myotropic activity in arthropod species. A total of 33 different peptidomimetic and peptide variants were tested on the Varroa mite proctolin receptor. Ligand docking model and mutagenesis studies revealed the importance of the core aromatic residue Tyr2 in the proctolin ligand. Peptidomimetics were observed to have significant oral toxicity leading to the paralysis and death of Varroa mites, while there were no negative effects observed for honey bees. We have demonstrated that a taxon-specific physiological target identified by advanced genomics information offers an opportunity to develop Varroa mite-selective acaricides, hence, expedited translational processes.
Collapse
|
2
|
Llopis-Giménez A, Parenti S, Han Y, Ros VID, Herrero S. A proctolin-like peptide is regulated after baculovirus infection and mediates in caterpillar locomotion and digestion. INSECT SCIENCE 2022; 29:230-244. [PMID: 33783135 DOI: 10.1111/1744-7917.12913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Baculoviruses constitute a large group of invertebrate DNA viruses, predominantly infecting larvae of the insect order Lepidoptera. During a baculovirus infection, the virus spreads throughout the insect body producing a systemic infection in multiple larval tissues, included the central nervous system (CNS). As a main component of the CNS, neuropeptides are small protein-like molecules functioning as neurohormones, neurotransmitters, or neuromodulators. These peptides are involved in regulating animal physiology and behavior and could be altered after baculovirus infection. In this study, we have investigated the effect of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) infection on expression of Spodoptera exigua neuropeptides and neuropeptide-like genes. Expression of the gene encoding a polypeptide that resembles the well-known insect neuropeptide proctolin and named as proctolin-like peptide (PLP), was downregulated in the larval brain following infection and was chosen for further analysis. A recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) overexpressing the C-terminal part of the PLP was generated and used in bioassays using S. exigua larvae to study its influence on the viral infection and insect behavior. AcMNPV-PLP-infected larvae showed less locomotion activity and a reduction in growth compared to larvae infected with wild type AcMNPV or mock-infected larvae. These results are indicative of this new peptide as a neuromodulator that regulates visceral and skeletal muscle contractions and offers a novel effector involved in the behavioral changes during baculovirus infection.
Collapse
Affiliation(s)
- Angel Llopis-Giménez
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Stefano Parenti
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Yue Han
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
- Current address. Department of Pathology, University of Cambridge, Cambridge, UK
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Salvador Herrero
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
3
|
Brenneis G. The visual pathway in sea spiders (Pycnogonida) displays a simple serial layout with similarities to the median eye pathway in horseshoe crabs. BMC Biol 2022; 20:27. [PMID: 35086529 PMCID: PMC8796508 DOI: 10.1186/s12915-021-01212-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Phylogenomic studies over the past two decades have consolidated the major branches of the arthropod tree of life. However, especially within the Chelicerata (spiders, scorpions, and kin), interrelationships of the constituent taxa remain controversial. While sea spiders (Pycnogonida) are firmly established as sister group of all other extant representatives (Euchelicerata), euchelicerate phylogeny itself is still contested. One key issue concerns the marine horseshoe crabs (Xiphosura), which recent studies recover either as sister group of terrestrial Arachnida or nested within the latter, with significant impact on postulated terrestrialization scenarios and long-standing paradigms of ancestral chelicerate traits. In potential support of a nested placement, previous neuroanatomical studies highlighted similarities in the visual pathway of xiphosurans and some arachnopulmonates (scorpions, whip scorpions, whip spiders). However, contradictory descriptions of the pycnogonid visual system hamper outgroup comparison and thus character polarization. RESULTS To advance the understanding of the pycnogonid brain and its sense organs with the aim of elucidating chelicerate visual system evolution, a wide range of families were studied using a combination of micro-computed X-ray tomography, histology, dye tracing, and immunolabeling of tubulin, the neuropil marker synapsin, and several neuroactive substances (including histamine, serotonin, tyrosine hydroxylase, and orcokinin). Contrary to previous descriptions, the visual system displays a serial layout with only one first-order visual neuropil connected to a bilayered arcuate body by catecholaminergic interneurons. Fluorescent dye tracing reveals a previously reported second visual neuropil as the target of axons from the lateral sense organ instead of the eyes. CONCLUSIONS Ground pattern reconstruction reveals remarkable neuroanatomical stasis in the pycnogonid visual system since the Ordovician or even earlier. Its conserved layout exhibits similarities to the median eye pathway in euchelicerates, especially in xiphosurans, with which pycnogonids share two median eye pairs that differentiate consecutively during development and target one visual neuropil upstream of the arcuate body. Given multiple losses of median and/or lateral eyes in chelicerates, and the tightly linked reduction of visual processing centers, interconnections between median and lateral visual neuropils in xiphosurans and arachnopulmonates are critically discussed, representing a plausible ancestral condition of taxa that have retained both eye types.
Collapse
Affiliation(s)
- Georg Brenneis
- Universität Greifswald, Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Soldmannstraße 23, 17489, Greifswald, Germany.
| |
Collapse
|
4
|
Abou El Asrar R, Cools D, Vanden Broeck J. Role of peptide hormones in insect gut physiology. CURRENT OPINION IN INSECT SCIENCE 2020; 41:71-78. [PMID: 32814267 DOI: 10.1016/j.cois.2020.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/09/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Nutrient uptake and digestion are essential for optimal growth and development. In insects, these processes are regulated by the gut-brain axis, which is a neurohumoral communication system for maintaining gut homeostasis. The insect gut is a complex organ consisting of three distinct structures, denominated foregut, midgut and hindgut, each with their specific specializations. These specializations are tightly regulated by the interplay of several neuropeptides: a versatile group of signalling molecules involved in a multitude of processes including gut physiology. Neuropeptides take part in the regulation of gut processes ranging from digestive enzyme release to muscle activity and satiety. Some neuropeptide mimetics are a promising strategy for ecological pest management. This review focuses on a selection of neuropeptides that are well-known for their role in gut physiology, and neuropeptides for which the mode of action is yet to be unravelled.
Collapse
Affiliation(s)
- Rania Abou El Asrar
- KU Leuven, Department of Biology, Research Group of Molecular Developmental Physiology and Signal Transduction, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Dorien Cools
- KU Leuven, Department of Biology, Research Group of Molecular Developmental Physiology and Signal Transduction, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- KU Leuven, Department of Biology, Research Group of Molecular Developmental Physiology and Signal Transduction, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Urbański A, Lubawy J, Marciniak P, Rosiński G. Myotropic activity and immunolocalization of selected neuropeptides of the burying beetle Nicrophorus vespilloides (Coleoptera: Silphidae). INSECT SCIENCE 2019; 26:656-670. [PMID: 29333681 DOI: 10.1111/1744-7917.12569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Burying beetles (Nicrophorus sp.) are necrophagous insects with developed parental care. Genome of Nicrophorus vespilloides has been recently sequenced, which makes them interesting model organism in behavioral ecology. However, we know very little about their physiology, including the functioning of their neuroendocrine system. In this study, one of the physiological activities of proctolin, myosuppressin (Nicve-MS), myoinhibitory peptide (Trica-MIP-5) and the short neuropeptide F (Nicve-sNPF) in N. vespilloides have been investigated. The tested neuropeptides were myoactive on N. vespilloides hindgut. After application of the proctolin increased hindgut contraction frequency was observed (EC50 value was 5.47 × 10-8 mol/L). The other tested neuropeptides led to inhibition of N. vespilloides hindgut contractions (Nicve-MS: IC50 = 5.20 × 10-5 mol/L; Trica-MIP-5: IC50 = 5.95 × 10-6 mol/L; Nicve-sNPF: IC50 = 4.08 × 10-5 mol/L). Moreover, the tested neuropeptides were immunolocalized in the nervous system of N. vespilloides. Neurons containing sNPF and MIP in brain and ventral nerve cord (VNC) were identified. Proctolin-immunolabeled neurons only in VNC were observed. Moreover, MIP-immunolabeled varicosities and fibers in retrocerebral complex were observed. In addition, our results have been supplemented with alignments of amino acid sequences of these neuropeptides in beetle species. This alignment analysis clearly showed amino acid sequence similarities between neuropeptides. Moreover, this allowed to deduce amino acid sequence of N. vespilloides proctolin (RYLPTa), Nicve-MS (QDVDHVFLRFa) and six isoforms of Nicve-MIP (Nicve-MIP-1-DWNRNLHSWa; Nicve-MIP-2-AWQNLQGGWa; Nicve-MIP-3-AWQNLQGGWa; Nicve-MIP-4-AWKNLNNAGWa; Nicve-MIP-5-SEWGNFRGSWa; Nicve-MIP-6- DPAWTNLKGIWa; and Nicve-sNPF-SGRSPSLRLRFa).
Collapse
Affiliation(s)
- Arkadiusz Urbański
- Faculty of Biology, Department of Animal Physiology and Development, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Jan Lubawy
- Faculty of Biology, Department of Animal Physiology and Development, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Paweł Marciniak
- Faculty of Biology, Department of Animal Physiology and Development, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Grzegorz Rosiński
- Faculty of Biology, Department of Animal Physiology and Development, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
6
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Identification and localisation of selected myotropic neuropeptides in the ventral nerve cord of tenebrionid beetles. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:44-51. [DOI: 10.1016/j.cbpa.2013.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/10/2013] [Accepted: 05/12/2013] [Indexed: 12/31/2022]
|
8
|
Spit J, Badisco L, Verlinden H, Van Wielendaele P, Zels S, Dillen S, Vanden Broeck J. Peptidergic control of food intake and digestion in insects 1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Like all heterotrophic organisms, insects require a strict control of food intake and efficient digestion of food into nutrients to maintain homeostasis and to fulfill physiological tasks. Feeding and digestion are steered by both external and internal signals that are transduced by a multitude of regulatory factors, delivered either by neurons innervating the gut or mouthparts, or by midgut endocrine cells. The present review gives an overview of peptide regulators known to control feeding and digestion in insects. We describe the discovery and functional role in these processes for insect allatoregulatory peptides, diuretic hormones, FMRFamide-related peptides, (short) neuropeptide F, proctolin, saliva production stimulating peptides, kinins, and tachykinins. These peptides control either gut myoactivity, food intake, and (or) release of digestive enzymes. Some peptides exert their action at multiple levels, possibly having a biological function that depends on their site of delivery. Many regulatory peptides have been physically extracted from different insect species. However, multiple peptidomics, proteomics, transcriptomics, and genome sequencing projects have led to increased discovery and prediction of peptide (precursor) and receptor sequences. In combination with physiological experiments, these large-scale projects have already led to important steps forward in unraveling the physiology of feeding and digestion in insects.
Collapse
Affiliation(s)
- J. Spit
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - L. Badisco
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - H. Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - P. Van Wielendaele
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - S. Zels
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - S. Dillen
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - J. Vanden Broeck
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| |
Collapse
|
9
|
Robertson L, Rodriguez EP, Lange AB. The neural and peptidergic control of gut contraction in Locusta migratoria: the effect of an FGLa/AST. J Exp Biol 2012; 215:3394-402. [DOI: 10.1242/jeb.073189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The regulation of insect gut physiology is complex and involves the interactions of a number of mechanisms, including the neural regulation of gut contraction by altering neural input and the modulation of gut contractions by neuropeptides directly affecting the muscle. The FGLa-type allatostatins (FGLa/ASTs) are known brain/gut peptides with numerous physiological roles, including modulation of gut contraction and neural input. To further investigate the pleiotropic roles of FGLa/AST peptides in Locusta migratoria, we have examined the role of a locust FGLa/AST (Scg-AST-6) in the gut. Proctolin and Scg-AST-6 have opposing effects on gut contraction, where proctolin dose-dependently increases gut muscle tension, while Scg-AST-6 inhibits both muscle tension and spontaneous and neurogenic contractions in a dose-dependent manner. Results from neurophysiological recordings indicate that there may be a central pattern generator (CPG) within the ventricular ganglia regulated by descending inhibition, and the addition of Scg-AST-6 dose-dependently modulates this ventricular ganglion CPG. This work provides a comprehensive picture of how FGLa/ASTs may modulate and coordinate each region of the locust gut, and shows that FGLa/ASTs have both central effects, on the ventricular ganglion CPG, and peripheral effects on the gut muscle. Overall, this work shows how FGLa/ASTs contribute to the complex regulation and fine tuning of gut contraction.
Collapse
|
10
|
Loesel R, Seyfarth EA, Bräunig P, Agricola HJ. Neuroarchitecture of the arcuate body in the brain of the spider Cupiennius salei (Araneae, Chelicerata) revealed by allatostatin-, proctolin-, and CCAP-immunocytochemistry and its evolutionary implications. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:210-220. [PMID: 21256976 DOI: 10.1016/j.asd.2011.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
Here we describe the neuronal organization of the arcuate body in the brain of the wandering spider Cupiennius salei. The internal anatomy of this major brain center is analyzed in detail based on allatostatin-, proctolin-, and crustacean cardioactive peptide (CCAP)-immunohistochemistry. Prominent neuronal features are demonstrated in graphic reconstructions. The stainings revealed that the neuroarchitecture of the arcuate body is characterized by several distinct layers some of which comprise nerve terminals that are organized in columnar, palisade-like arrays. The anatomy of the spider's arcuate body exhibits similarities as well as differences when compared to the central complex in the protocerebrum of the Tetraconata. Arguments for and against a possible homology of the arcuate body of the Chelicerata and the central complex of the Tetraconata and their consequences for the understanding of arthropod brain evolution are discussed.
Collapse
Affiliation(s)
- Rudi Loesel
- Institut für Biologie II (Zoologie) der Rheinisch-Westfaelischen Technischen Hochschule, D-52074 Aachen, Germany.
| | | | | | | |
Collapse
|
11
|
Abstract
In a search for more environmentally benign alternatives to chemical pesticides, insect neuropeptides have been suggested as ideal candidates. Neuropeptides are neuromodulators and/or neurohormones that regulate most major physiological and behavioral processes in insects. The major neuropeptide structures have been identified through peptide purification in insects (peptidomics) and insect genome projects. Neuropeptide receptors have been identified and characterized in Drosophila and similar receptors are being targeted in other insects considered to be economically detrimental pests in agriculture and forestry. Defining neuropeptide action in different insect systems has been more challenging and as a consequence, identifying unique targets for potential pest control is also a challenge. In this chapter, neuropeptide biosynthesis as well as select physiological processes are examined with a view to pest control targets. The application of molecular techniques to transform insects with neuropeptide or neuropeptide receptor genes, or knockout genes to identify potential pest control targets, is a relatively new area that offers promise to insect control. Insect immune systems may also be manipulated through neuropeptides which may aid in compromising the insects ability to defend against foreign invasion.
Collapse
|
12
|
Audsley N, Weaver RJ. Neuropeptides associated with the regulation of feeding in insects. Gen Comp Endocrinol 2009; 162:93-104. [PMID: 18775723 DOI: 10.1016/j.ygcen.2008.08.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/01/2008] [Accepted: 08/03/2008] [Indexed: 11/18/2022]
Abstract
The stomatogastric nervous system plays a pivotal role in feeding behaviour. Central to this system is the frontal ganglion, which is responsible for foregut motor activity, and hence the passage of food through the gut. Many insect peptides, which exhibit myoactivity on the visceral muscles of the gut in vitro, have been detected in the stomatogastric nervous system by immunochemical or mass spectrometric techniques. This localisation of myoactive peptides, particularly in the frontal ganglion, implies roles for these peptides in the neural control and modulation of feeding in insects. Insect sulfakinins, tachykinins, allatotropin and proctolin have all been shown to stimulate the foregut muscles, whereas myosuppressins, myoinhibitory peptides and allatostatins all inhibited spontaneous contractions of the foregut in a variety of insects. Some of these peptides, when injected, inhibited feeding in vivo. Both the A-type and B-type allatostatins suppressed feeding activity when injected into the cockroach, Blattella germanica and the Manduca sexta C-type allatostatin and allatotropin inhibited feeding when injected into the larvae of two noctuid moths, Lacanobia oleracea and Spodoptera frugiperda, respectively. Injection of sulfakinins into the fly Phormia regina, the locust Schistocera gregaria and the cockroach B. germanica also suppressed feeding, whereas silencing the sulfakinin gene through the injection of double stranded RNA resulted in an increase in food consumption in the cricket Gryllus bimaculatus. The regulation of feeding in insects is clearly very complex, and involves the interaction of a number of mechanisms, one of which is the release, either centrally or locally, of neuropeptides. However, the role of neuropeptides, their mechanisms of action, interactions with each other, and their release are still poorly understood. It is also unclear why insects possess such a number of different peptides, some with multiples copies or homologues, which stimulate or inhibit gut motility, and how their release, sometimes from the same neurone, is regulated. These neuropeptides may also act at sites other than visceral muscles, such as centrally through the brain or on gut stretch receptors.
Collapse
Affiliation(s)
- N Audsley
- Environmental Biology Group, Central Science Laboratory, Sand Hutton, York YO41 1LZ, UK.
| | | |
Collapse
|
13
|
Rankin SM, TeBrugge VA, Murray JA, Schuler AM, Tobe SS. Effects of selected neuropeptides, mating status and castration on male reproductive tract movements and immunolocalization of neuropeptides in earwigs. Comp Biochem Physiol A Mol Integr Physiol 2008; 152:83-90. [PMID: 18824120 DOI: 10.1016/j.cbpa.2008.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/02/2008] [Accepted: 09/02/2008] [Indexed: 11/16/2022]
Abstract
In earwigs, the male reproductive system is complex, comprising accessory glands and long dual intromittent organs for transfer of materials to the female and for removal of rival sperm. We investigated potential factors altering contractions of the male reproductive tracts in vitro. Tracts from 0-day (newly emerged) males displayed relatively little motility in vitro; however, those from 5-day (intermediate stage of sexual maturity) and 8-day (fully mature) males pulsed vigorously. Both 1 and 100 nM proctolin (RYLPT-OH) stimulated the rate of contraction of reproductive tracts from both 5-day and 8-day males. In contrast, 1 nM and 100 nM FGLa AST (cockroach allatostatin) did not affect pulsations. However, 10 microM FGLa AST decreased activity of reproductive tracts. Mating decreased motility of tracts from 5-day old males, but did not alter motility of tracts from 8-day old males. Castration of larvae significantly suppressed reproductive tract motility in subsequent 8-day old adults compared with those of intact or sham-operated adults. Castration also suppressed seminal vesicle size. Lastly, we assessed the presence and distribution of proctolin-like and allatostatin-like immunoreactivity in tissues. Immunoreactivity to FGLa AST and proctolin was widespread, occurring in the brain and ventral ganglia. Surprisingly, we did not detect immunoreactivity to either FGLa AST or proctolin within the reproductive system; however, proctolin immunoreactivity was evident in nerves extending from the terminal ganglion of 8-day, but not 0-day, males. Collectively, these experiments demonstrate that the male earwig reproductive system is an appropriate model for use in addressing sexual maturation and activities in male insects.
Collapse
Affiliation(s)
- Susan M Rankin
- Department of Biology, Allegheny College, Meadville, PA 16335, USA.
| | | | | | | | | |
Collapse
|
14
|
Clark L, Lange AB, Zhang JR, Tobe SS. The roles of Dippu-allatostatin in the modulation of hormone release in Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:949-958. [PMID: 18479700 DOI: 10.1016/j.jinsphys.2008.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 03/07/2008] [Accepted: 03/12/2008] [Indexed: 05/26/2023]
Abstract
Dippu-allatostatins (ASTs) have pleiotropic effects in Locusta migratoria. Dippu-ASTs act as releasing factors for adipokinetic hormone I (AKH I) from the corpus cardiacum (CC) and also alter juvenile hormone (JH) biosynthesis and release from the corpus allatum (CA). Dippu-AST-like immunoreactivity is found within lateral neurosecretory cells (LNCs) of the brain and axons within the paired nervi corporis cardiaci II (NCC II) to the CC and the CA, where there are extensive processes and nerve endings over both of these neuroendocrine organs. There was co-localization of Dippu-AST-like and proctolin-like immunoreactivity within these regions. Dippu-ASTs increase the release of AKH I in a dose-dependent manner, with thresholds below 10(-11)M (Dippu-AST 7) and between 10(-13) and 10(-12)M (Dippu-AST 2). Both proctolin and Dippu-AST 2 caused an increase in the cAMP content of the glandular lobe of the CC. Dippu-AST 2 also altered the release of JH from the locust CA, but this effect depended on the concentration of peptide and the basal release rates of the CA. These physiological effects for Dippu-ASTs in Locusta have not been shown previously.
Collapse
Affiliation(s)
- L Clark
- Department of Biology, University of Toronto Mississauga, Mississauga, Ont., Canada L5L 1C6.
| | | | | | | |
Collapse
|
15
|
Neuronal connections between central and enteric nervous system in the locust, Locusta migratoria. Cell Tissue Res 2008; 333:159-68. [PMID: 18427838 DOI: 10.1007/s00441-007-0569-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
Abstract
The number and location of neurons, in the central nervous system, that project into the frontal connective was studied in the locust by using retrograde neurobiotin staining. Staining one frontal connective revealed some 70 neurons in the brain. Most of these were located within both tritocerebral lobes. Additional groups of neurons were located within the deutocerebrum and protocerebrum. Some 60 neurons were labelled in the suboesophageal ganglion. These formed nine discernable populations. In addition, two neurons were located in the prothoracic ganglion and two neurons in the first abdominal neuromere of the metathoracic ganglion. Thus, some 250 neurons located within the head ganglia, and even neurons in thoracic ganglia, project into the ganglia of the enteric nervous system. This indicates that the coordination between the central and enteric ganglia is much more complex than previously thought. With the exception of some previously described dorsal unpaired median neurons and a few motor neurons in the head ganglia, the identity and function of most of these neurons is as yet unknown. Possible functions of the neurons in the thoracic ganglia are discussed.
Collapse
|
16
|
Stern M, Knipp S, Bicker G. Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria). J Comp Neurol 2007; 501:38-51. [PMID: 17206618 DOI: 10.1002/cne.21235] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The enteric nervous system (ENS) of the locust consists of four ganglia (frontal and hypocerebral ganglion, and the paired ingluvial ganglia) located on the foregut, and nerve plexus innervating fore- and midgut. One of the major neurotransmitters of the ENS, serotonin, is known to play a vital role in gut motility and feeding. We followed the anatomy of the serotonergic system throughout embryonic development. Serotonergic neurons are generated in the anterior neurogenic zones of the foregut and migrate rostrally along the developing recurrent nerve to contribute to the frontal ganglion. They grow descending neurites, which arborize in all enteric ganglia and both nerve plexus. On the midgut, the neurites closely follow the leading migrating midgut neurons. The onset of serotonin synthesis occurs around halfway through development-the time of the beginning of midgut closure. Cells developing to serotonergic phenotype express the serotonin uptake transporter (SERT) significantly earlier, beginning at 40% of development. The neurons begin SERT expression during migration along the recurrent nerve, indicating that they are committed to a serotonergic phenotype before reaching their final destination. After completion of the layout of the enteric ganglia (at 60%) a maturational phase follows, during which serotonin-immunoreactive cell bodies increase in size and the fine arborizations in the nerve plexus develop varicosities, putative sites of serotonin release (at 80%). This study provides the initial step for future investigation of potential morphoregulatory functions of serotonin during ENS development.
Collapse
Affiliation(s)
- Michael Stern
- Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany.
| | | | | |
Collapse
|