1
|
Wamaitha SE, Nie X, Pandolfi EC, Wang X, Yang Y, Stukenborg JB, Cairns BR, Guo J, Clark AT. Single-cell analysis of the developing human ovary defines distinct insights into ovarian somatic and germline progenitors. Dev Cell 2023; 58:2097-2111.e3. [PMID: 37582368 PMCID: PMC10615783 DOI: 10.1016/j.devcel.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 04/03/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Formation of either an ovary or a testis during human embryonic life is one of the most important sex-specific events leading to the emergence of secondary sexual characteristics and sex assignment of babies at birth. Our study focused on the sex-specific and sex-indifferent characteristics of the prenatal ovarian stromal cells, cortical cords, and germline, with the discovery that the ovarian mesenchymal cells of the stroma are transcriptionally indistinguishable from the mesenchymal cells of the testicular interstitium. We found that first-wave pre-granulosa cells emerge at week 7 from early supporting gonadal cells with stromal identity and are spatially defined by KRT19 levels. We also identified rare transient state f0 spermatogonia cells within the ovarian cords between weeks 10 and 16. Taken together, our work illustrates a unique plasticity of the embryonic ovary during human development.
Collapse
Affiliation(s)
- Sissy E Wamaitha
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90033, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xichen Nie
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Erica C Pandolfi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90033, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Yang
- NORDFERTIL Research Laboratory Stockholm, Childhood Cancer Research Unit, Bioclinicum J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna 17164, Sweden
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Laboratory Stockholm, Childhood Cancer Research Unit, Bioclinicum J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna 17164, Sweden
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jingtao Guo
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Amander T Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90033, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Kouhetsani S, Khazali H, Rajabi-Maham H. Orexin antagonism and substance-P: Effects and interactions on polycystic ovary syndrome in the wistar rats. J Ovarian Res 2023; 16:89. [PMID: 37147728 PMCID: PMC10161431 DOI: 10.1186/s13048-023-01168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder without definitive treatments. Orexin and Substance-P (SP) neuropeptides can affect the ovarian steroidogenesis. Moreover, there are limited studies about the role of these neuropeptides in PCOS. We aimed here to clarify the effects of orexins and SP in PCOS as well as any possible interactions between them. METHODS For this purpose, the animals (n = five rats per group) received intraperitoneally a single dose of SB-334,867-A (orexin-1 receptor antagonist; OX1Ra), JNJ-10,397,049 (orexin-2 receptor antagonist; OX2Ra), and CP-96,345 (neurokinin-1 receptor antagonist; NK1Ra), alone or in combination with each other after two months of PCOS induction. The blocking of orexin and SP receptors was studied in terms of ovarian histology, hormonal changes, and gene expression of ovarian steroidogenic enzymes. RESULTS The antagonists' treatment did not significantly affect the formation of ovarian cysts. In the PCOS groups, the co-administration of OX1Ra and OX2Ra as well as their simultaneous injections with NK1Ra significantly reversed testosterone levels and Cyp19a1 gene expression when compared to the PCOS control group. There were no significant interactions between the PCOS groups that received NK1Ra together with one or both OX1R- and OX2R-antagonists. CONCLUSION The blocking of the orexin receptors modulates abnormal ovarian steroidogenesis in the PCOS model of rats. This suggests that the binding of orexin-A and -B to their receptors reduces Cyp19a1 gene expression while increasing testosterone levels.
Collapse
Affiliation(s)
- Somayeh Kouhetsani
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Homayoun Khazali
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Blasco V, Pinto FM, Fernández-Atucha A, Dodd NP, Fernández-Sánchez M, Candenas L. Female Infertility Is Associated with an Altered Expression Profile of Different Members of the Tachykinin Family in Human Granulosa Cells. Reprod Sci 2023; 30:258-269. [PMID: 35739351 DOI: 10.1007/s43032-022-00998-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/02/2022] [Indexed: 01/11/2023]
Abstract
Neurokinin B (NKB) and its cognate receptor, NK3R, play a key role in the regulation of reproduction. NKB belongs to the family of tachykinins, which also includes substance P and neurokinin A, both encoded by the by the gene TAC1, and hemokinin-1, encoded by the TAC4 gene. In addition to NK3R, tachykinin effects are mediated by NK1R and NK2R, encoded by the genes TACR1 and TACR2, respectively. The role of these other tachykinins and receptors in the regulation of women infertility is mainly unknown. We have analyzed the expression profile of TAC1, TAC4, TACR1, and TACR2 in mural granulosa and cumulus cells from women presenting different infertility etiologies, including polycystic ovarian syndrome, advanced maternal age, low ovarian response, and endometriosis. We also studied the expression of MME, the gene encoding neprilysin, the most important enzyme involved in tachykinin degradation. Our data show that TAC1, TAC4, TACR1, TACR2, and MME expression is dysregulated in a different manner depending on the etiology of women infertility. The abnormal expression of these tachykinins and their receptors might be involved in the decreased fertility of these patients, offering a new insight regarding the diagnosis and treatment of women infertility.
Collapse
Affiliation(s)
- Víctor Blasco
- Instituto de Investigaciones Químicas, CSIC-US, Seville, Spain
- IVI-RMA Sevilla, Seville, Spain
| | | | | | - Nicolás Prados Dodd
- IVI-RMA Sevilla, Seville, Spain
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Departamento de Biología Molecular E Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - Manuel Fernández-Sánchez
- IVI-RMA Sevilla, Seville, Spain.
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
- Departamento de Biología Molecular E Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain.
- Departamento de Cirugía, Universidad de Sevilla, Seville, Spain.
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC-US, Seville, Spain
| |
Collapse
|
4
|
Wu Y, Berisha A, Borniger JC. Neuropeptides in Cancer: Friend and Foe? Adv Biol (Weinh) 2022; 6:e2200111. [PMID: 35775608 DOI: 10.1002/adbi.202200111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Indexed: 01/28/2023]
Abstract
Neuropeptides are small regulatory molecules found throughout the body, most notably in the nervous, cardiovascular, and gastrointestinal systems. They serve as neurotransmitters or hormones in the regulation of diverse physiological processes. Cancer cells escape normal growth control mechanisms by altering their expression of growth factors, receptors, or intracellular signals, and neuropeptides have recently been recognized as mitogens in cancer growth and development. Many neuropeptides and their receptors exist in multiple subtypes, coupling with different downstream signaling pathways and playing distinct roles in cancer progression. The consideration of neuropeptide/receptor systems as anticancer targets is already leading to new biological and diagnostic knowledge that has the potential to enhance the understanding and treatment of cancer. In this review, recent discoveries regarding neuropeptides in a wide range of cancers, emphasizing their mechanisms of action, signaling cascades, regulation, and therapeutic potential, are discussed. Current technologies used to manipulate and analyze neuropeptides/receptors are described. Applications of neuropeptide analogs and their receptor inhibitors in translational studies and radio-oncology are rapidly increasing, and the possibility for their integration into therapeutic trials and clinical treatment appears promising.
Collapse
Affiliation(s)
- Yue Wu
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Adrian Berisha
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Jeremy C Borniger
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
5
|
Campo A, Dufour S, Rousseau K. Tachykinins, new players in the control of reproduction and food intake: A comparative review in mammals and teleosts. Front Endocrinol (Lausanne) 2022; 13:1056939. [PMID: 36589829 PMCID: PMC9800884 DOI: 10.3389/fendo.2022.1056939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
In vertebrates, the tachykinin system includes tachykinin genes, which encode one or two peptides each, and tachykinin receptors. The complexity of this system is reinforced by the massive conservation of gene duplicates after the whole-genome duplication events that occurred in vertebrates and furthermore in teleosts. Added to this, the expression of the tachykinin system is more widespread than first thought, being found beyond the brain and gut. The discovery of the co-expression of neurokinin B, encoded by the tachykinin 3 gene, and kisspeptin/dynorphin in neurons involved in the generation of GnRH pulse, in mammals, put a spotlight on the tachykinin system in vertebrate reproductive physiology. As food intake and reproduction are linked processes, and considering that hypothalamic hormones classically involved in the control of reproduction are reported to regulate also appetite and energy homeostasis, it is of interest to look at the potential involvement of tachykinins in these two major physiological functions. The purpose of this review is thus to provide first a general overview of the tachykinin system in mammals and teleosts, before giving a state of the art on the different levels of action of tachykinins in the control of reproduction and food intake. This work has been conducted with a comparative point of view, highlighting the major similarities and differences of tachykinin systems and actions between mammals and teleosts.
Collapse
Affiliation(s)
- Aurora Campo
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
- Volcani Institute, Agricultural Research Organization, Rishon LeTsion, Israel
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
- Muséum National d’Histoire Naturelle, Research Unit PhyMA Physiologie Moléculaire et Adaptation CNRS, Paris, France
- *Correspondence: Karine Rousseau,
| |
Collapse
|
6
|
Javid H, Asadi J, Zahedi Avval F, Afshari AR, Hashemy SI. The role of substance P/neurokinin 1 receptor in the pathogenesis of esophageal squamous cell carcinoma through constitutively active PI3K/Akt/NF-κB signal transduction pathways. Mol Biol Rep 2020; 47:2253-2263. [PMID: 32072401 DOI: 10.1007/s11033-020-05330-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/13/2020] [Indexed: 10/25/2022]
Abstract
One of the most prevalent malignancies is esophageal squamous cell carcinoma (ESCC), which is associated with high morbidity and mortality. Substance P (SP), as one of the peptides released from sensory nerves, causes the enhancement of cellular excitability through the activation of the neurokinin-1 (NK1) receptor in several human tumor cells. Aprepitant, a specific, potent, and long-acting NK1 receptor antagonist, is considered as a novel agent to inhibit proliferation and induce apoptosis in malignant cells. Since the antitumor mechanism of aprepitant in ESCC is not completely understood, we conducted this study and found that aprepitant induced growth inhibition of KYSE-30 cells and arrested cells in the G2/M phase of the cell cycle. Aprepitant also caused apoptotic cell death and inhibited activation of the PI3K/Akt axis and its downstream effectors, including NF-κB in KYSE-30 cells. Besides, quantitative real-time (qRT)-PCR analysis showed a significant down-regulation of NF-κB target genes in KYSE-30 cells, indicating a probable NF-κB-dependent mechanism involved in aprepitant cytotoxicity. Thus, the present study recommends that SP/NK1R system might, therefore, be considered as an emerging and promising therapeutic strategy against ESCC.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jahanbakhsh Asadi
- Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farnaz Zahedi Avval
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Javid H, Mohammadi F, Zahiri E, Hashemy SI. The emerging role of substance P/neurokinin-1 receptor signaling pathways in growth and development of tumor cells. J Physiol Biochem 2019; 75:415-421. [PMID: 31372898 DOI: 10.1007/s13105-019-00697-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022]
Abstract
Tachykinins (TKs) include an evolutionarily conserved group of small bio-active peptides which possess a common carboxyl-terminal sequence, Phe-X-Gly-Leu-Met-NH2. TKs also have been shown to have implications in different steps of carcinogenesis, such as angiogenesis, mitogenesis, metastasis, and other growth-related events. The biological actions of substance P (SP), as the most important member of the TK family, are mainly mediated through a G protein-coupled receptor named neurokinin-1 receptor (NK1R). More recently, it has become clear that SP/NK1R system is involved in the initiation and activation of signaling pathways involved in cancer development and progression. Therefore, SP may contribute to triggering a variety of effector mechanisms including protein synthesis and a number of transcription factors that modulate the expression of genes involved in these processes. The overwhelming insights into the blockage of NK1R using specific antagonists could suggest a therapeutic approach in cancer therapy. In this review, we focus on evidence supporting an association between the signaling pathways of the SP/NK1R system and cancer cell proliferation and development.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Zahiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Hu G, He M, Ko WKW, Wong AOL. TAC1 Gene Products Regulate Pituitary Hormone Secretion and Gene Expression in Prepubertal Grass Carp Pituitary Cells. Endocrinology 2017; 158:1776-1797. [PMID: 28323939 DOI: 10.1210/en.2016-1740] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/07/2017] [Indexed: 01/30/2023]
Abstract
Tachykinin-1 (TAC1) is known to have diverse functions in mammals, but similar information is scarce in fish species. Using grass carp as a model, the pituitary actions, receptor specificity and postreceptor signaling of TAC1 gene products, namely substance P (SP) and neurokinin A (NKA), were examined. TAC1 encoding SP and NKA as well as tachykinin receptors NK1R and NK2R were cloned in the carp pituitary. The newly cloned receptors were shown to be functional with properties similar to mammalian counterparts. In carp pituitary cells, SP and NKA could trigger luteinizing hormone (LH), prolactin (PRL), and somatolactin α (SLα) secretion, with parallel rises in PRL and SLα transcripts. Short-term SP treatment (3 hours) induced LH release, whereas prolonged induction (24 hours) could attenuate LHβ messenger RNA (mRNA) expression. At pituitary cell level, LH, PRL, and SLα regulation by TAC1 gene products were mediated by NK1R, NK2R, and NK3R, respectively. Apparently, SP- and NKA-induced LH and SLα secretion and transcript expression were mediated by adenylyl cyclase/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), phospholiphase C (PLC)/inositol 1,4,5-triphosphate/protein kinase C (PKC), and Ca2+/calmodulin (CaM)/CaM-dependent protein kinase-II pathways. The signal transduction for PRL responses was similar, except for the absence of a PKC component. Regarding SP inhibition of LHβ mRNA expression, the cAMP/PKA- and PLC/PKC-dependent (but not Ca2+/CaM-dependent) cascades were involved. These results, as a whole, suggest that TAC1 gene products play a role in LH, PRL, and SLα regulation via overlapping postreceptor signaling coupled to different subtypes of tachykinin receptor expressed in the carp pituitary.
Collapse
Affiliation(s)
- Guangfu Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Mulan He
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Wendy K W Ko
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Anderson O L Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Jana B, Palus K, Meller K, Całka J. Porcine dorsal root ganglia ovarian neurons are affected by long lasting testosterone treatment. Physiol Res 2017; 65:1019-1030. [PMID: 27959574 DOI: 10.33549/physiolres.933342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We studied the effect of testosterone overdose on the number, distribution and chemical coding of ovarian neurons in the dorsal root ganglia (DRGs) in pigs. On day 3 of the estrous cycle, the ovaries of both the control and experimental gilts were injected with retrograde tracer Fast Blue. From day 4 of the estrous cycle to the expected day 20 of the second studied cycle, the experimental gilts were injected with testosterone, while the control gilts received oil. After the completion of the protocol the Th16-L5 DRGs were collected. Injections of testosterone increased the testosterone (~3.5 fold) and estradiol-17beta (~1.6 fold) levels in the peripheral blood, and reduced the following in the DRGs: the total number of the Fast Blue-positive perikarya, the population of perikarya in the L2-L4 ganglia, and the numbers of SP(+)/CGRP(+), SP(+)/PACAP(+), SP(+)/nNOS(+) and SP(-)/nNOS(+) perikarya. In the testosterone-injected gilts, the populations of SP(+)CGRP(-), small and large androgen receptors-expressing perikarya were increased. These results suggest that elevated androgen levels during pathological states may regulate the transmission of sensory modalities from the ovary to the spinal cord, and antidromic regulation of the ovarian functions.
Collapse
Affiliation(s)
- B Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland.
| | | | | | | |
Collapse
|
10
|
Fergani C, Navarro VM. Expanding the Role of Tachykinins in the Neuroendocrine Control of Reproduction. Reproduction 2016; 153:R1-R14. [PMID: 27754872 DOI: 10.1530/rep-16-0378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 11/08/2022]
Abstract
Reproductive function is driven by the hormonal interplay between the gonads and brain-pituitary axis. Gonadotropin-releasing hormone (GnRH) is released in a pulsatile manner, which is critical for the attainment and maintenance of fertility, however, GnRH neurons lack the ability to directly respond to most regulatory factors, and a hierarchical upstream neuronal network governs its secretion. We and others proposed a model in which Kiss1 neurons in the arcuate nucleus (ARC), so called KNDy neurons, release kisspeptin (a potent GnRH secretagogue) in a pulsatile manner to drive GnRH pulses under the coordinated autosynaptic action of its cotransmitters, the tachykinin neurokinin B (NKB, stimulatory) and dynorphin (inhibitory). Numerous genetic and pharmacological studies support this model; however, additional regulatory mechanisms (upstream of KNDy neurons) and alternative pathways of GnRH secretion (kisspeptin-independent) exist, but remain ill defined. In this aspect, attention to other members of the tachykinin family, namely substance P (SP) and neurokinin A (NKA), has recently been rekindled. Even though there are still major gaps in our knowledge about the functional significance of these systems, substantial evidence, as discussed below, is placing tachykinin signaling as an important pathway for the awakening of the reproductive axis and the onset of puberty to physiological GnRH secretion and maintenance of fertility in adulthood.
Collapse
Affiliation(s)
- Chrysanthi Fergani
- C Fergani, Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, 02115, United States
| | - Victor M Navarro
- V Navarro, Endocrinology, Diabetes and Hypertension, Brigham and Women\'s Hospital, Boston, United States
| |
Collapse
|
11
|
García-Ortega J, Pinto FM, Prados N, Bello AR, Almeida TA, Fernández-Sánchez M, Candenas L. Expression of Tachykinins and Tachykinin Receptors and Interaction with Kisspeptin in Human Granulosa and Cumulus Cells1. Biol Reprod 2016; 94:124. [DOI: 10.1095/biolreprod.116.139881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/21/2016] [Indexed: 11/01/2022] Open
Abstract
Abstract
The neurokinin B/NK3 receptor (NK3R) and kisspeptin/kisspeptin receptor (KISS1R), two systems which are essential for reproduction, are coexpressed in human mural granulosa (MGC) and cumulus cells (CCs). However, little is known about the presence of other members of the tachykinin family in the human ovary. In the present study, we analyzed the expression of substance P (SP), hemokinin-1 (HK-1), NK1 receptor (NK1R), and NK2 receptor (NK2R) in MGCs and CCs collected from preovulatory follicles of oocyte donors at the time of oocyte retrieval. RT-PCR, quantitative RT-PCR, immunocytochemistry, and Western blotting were used to investigate the patterns of expression of tachykinin and tachykinin receptor mRNAs and proteins and the possible interaction between the tachykinin family and kisspeptin. Intracellular free Ca2+ levels ([Ca2+]i) in MGCs after exposure to SP or kisspeptin in the presence of SP were also measured. We found that SP, HK-1, the truncated NK1R isoform NK1R-Tr, and NK2R were all expressed in MGCs and CCs. NK1R-Tr mRNA and NK2R mRNA and protein levels were higher in MGCs than in CCs from the same patients. Treatment of cells with kisspeptin modulated the expression of HK-1, NK3R, and KISS1R mRNAs, whereas treatment with SP regulated kisspeptin mRNA levels and reduced the [Ca2+]i response produced by kisspeptin. These data demonstrate that the whole tachykinin system is expressed and acts in coordination with kisspeptin to regulate granulosa cell function in the human ovary.
Collapse
Affiliation(s)
| | | | | | - Aixa R. Bello
- Instituto de enfermedades tropicales y Salud Pública de Canarias, Universidad de la Laguna, La Laguna, Tenerife, Spain
| | - Teresa A. Almeida
- Instituto de enfermedades tropicales y Salud Pública de Canarias, Universidad de la Laguna, La Laguna, Tenerife, Spain
| | | | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Sevilla, Spain
| |
Collapse
|
12
|
Inhibition of substance P signaling aggravates the bone loss in ovariectomy-induced osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:112-121. [PMID: 27237582 DOI: 10.1016/j.pbiomolbio.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/24/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Substance P signaling regulates the functions of both osteoblast and osteoclast. Available reports on the effects of substance P on bone mass are contradictory. The objective of this study was to determine the change of substance P expression in the osteoporotic bone of OVX mice. The effects of substance P signaling blockade by using its specific receptor antagonist L-703606 on bone remodeling in sham-operated mice and OVX mice were also investigated. METHODS Forty-eight nine-week-old female C57BL/6J mice were evenly distributed into three groups with sham surgery, OVX or OVX with estrogen replacement. Substance P expression in the bones of each group of mice was evaluated by immunohistochemistry and enzyme immunoassay. Another thirty-two nine-week-old female C57BL/6J mice were divided into a SHAM group (sham surgery followed by vehicle treatment with DMSO), a SHAM + L group (sham surgery followed by 15 mg/kg/d L-703606 repeated intraperitoneal injections), an OVX group (ovariectomy with the same vehicle treatment) and an OVX + L group (ovariectomy with the same L-703606 injections), with 8 mice in each group. Treatment started 3 weeks after surgery and last for 3 weeks. A 2 × 2 factorial experimental design was used to detect the effects of substance P signaling blockade on bone remodeling in sham-operated mice and OVX mice. Techniques including micro-computed tomography, biomechanical testing, histomorphometric analysis, enzyme immunoassay, and real-time PCR were employed. RESULTS Immunohistochemistry and enzyme immunoassay revealed that substance P expression significantly decreased in the bones of OVX mice both at 3 weeks and 6 weeks after surgery. Micro-CT tomography demonstrated that application of L-703606 led to bone loss in sham-operated mice, and aggravated the micro-structural deterioration of bones in OVX mice. This was shown by reduced BV/TV (Mean bone volume fraction), Tb.N (Mean trabecular number) and Tb.Th (Mean trabecular thickness), and increased Tb.Sp (Mean trabecular separation). Biomechanical analysis demonstrated that blockade of substance P signaling reduced the maximum stress and maximum load of L3 vertebrae and tibiae. Inhibited recruitment of bone mesenchymal stem cells (BMSCs) to bone remodeling sites, which was evidenced by increased number of osteoclasts, decreased number of osteoblasts and increased osteoid volume in the secondary spongiosa, was observed in the mice treated with L-703606. A significant decrease of OPG/RANKL ratio was also found in the bones of mice treated with L-703606. Body weight, uterine weight and serum estradiol level were not significantly different between the mice treated with L-703606 and those treated with vehicle. CONCLUSION The results demonstrated that blocking substance P signaling led to bone loss in sham-operated mice, and exacerbated the bone loss in OVX mice. Substance P signaling had an important role in the maintenance of bone mass.
Collapse
|
13
|
Simavli S, Thompson IR, Maguire CA, Gill JC, Carroll RS, Wolfe A, Kaiser UB, Navarro VM. Substance p regulates puberty onset and fertility in the female mouse. Endocrinology 2015; 156:2313-22. [PMID: 25856429 PMCID: PMC4430622 DOI: 10.1210/en.2014-2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Puberty is a tightly regulated process that leads to reproductive capacity. Kiss1 neurons are crucial in this process by stimulating GnRH, yet how Kiss1 neurons are regulated remains unknown. Substance P (SP), an important neuropeptide in pain perception, induces gonadotropin release in adult mice in a kisspeptin-dependent manner. Here, we assessed whether SP, through binding to its receptor NK1R (neurokinin 1 receptor), participates in the timing of puberty onset and fertility in the mouse. We observed that 1) selective NK1R agonists induce gonadotropin release in prepubertal females; 2) the expression of Tac1 (encoding SP) and Tacr1 (NK1R) in the arcuate nucleus is maximal before puberty, suggesting increased SP tone; 3) repeated exposure to NK1R agonists prepubertally advances puberty onset; and 4) female Tac1(-/-) mice display delayed puberty; moreover, 5) SP deficiency leads to subfertility in females, showing fewer corpora lutea and antral follicles and leading to decreased litter size. Thus, our findings support a role for SP in the stimulation of gonadotropins before puberty, acting via Kiss1 neurons to stimulate GnRH release, and its involvement in the attainment of full reproductive capabilities in female mice.
Collapse
Affiliation(s)
- Serap Simavli
- Division of Endocrinology, Diabetes and Hypertension (S.S., I.R.T., C.A.M., J.C.G., R.S.C., U.B.K., V.M.N.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115; and Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Trujillo A, Morales L, Domínguez R. The effects of sensorial denervation on the ovarian function, by the local administration of capsaicin, depend on the day of the oestrous cycle when the treatment was performed. Endocrine 2015; 48:321-8. [PMID: 24861475 DOI: 10.1007/s12020-014-0299-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
There is evidence that sensory innervation plays a role in the regulation of puberty. The present study investigates the effects of functional sensorial desensitisation induced by capsaicin administration to adult female rats in the days of diestrus 1, diestrus 2, pro-oestrus or oestrus on ovulation and serum oestradiol and progesterone concentration. The animals were allotted at random to one of the following groups: (1) animals with capsaicin administration into the bursa ovarica (local administration) (2) animals with vehicle administration into the bursa ovarica and (3) untreated animals group. The animals treated were killed on the day of oestrus after three consecutive 4-day oestrous cycles. No differences were observed in oestrous cyclicity or the average number of ova shed between the sensorial desensitisation animals and the vehicle-treated groups. Capsaicin administration resulted in a significant increase in the intra-ovarian noradrenaline levels in the day of diestrus 2 and pro-oestrus. Serum oestradiol and progesterone concentrations were different, depending on the day of the oestrous cycle in which the treatment was performed. These results suggest that in adult normal female rats, ovarian sensorial innervations participate together with the sympathetic innervation in the ovarian function regulating the hormone secretion and this participation varies along the oestrous cycle.
Collapse
Affiliation(s)
- Angélica Trujillo
- Escuela de Biología, Benemérita Universidad Autónoma de Puebla, Edificio 112A Ciudad Universitaria, CP 72570, Puebla, Puebla, Mexico,
| | | | | |
Collapse
|
15
|
Donadeu FX, Fahiminiya S, Esteves CL, Nadaf J, Miedzinska K, McNeilly AS, Waddington D, Gérard N. Transcriptome profiling of granulosa and theca cells during dominant follicle development in the horse. Biol Reprod 2014; 91:111. [PMID: 25253738 DOI: 10.1095/biolreprod.114.118943] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Several aspects of equine ovarian physiology are unique among domestic species. Moreover, follicular growth patterns are very similar between horses and humans. This study aimed to characterize, for the first time, global gene expression profiles associated with growth and preovulatory (PO) maturation of equine dominant follicles. Granulosa cells (GCs) and theca interna cells (TCs) were harvested from follicles (n = 5) at different stages of an ovulatory wave in mares corresponding to early dominance (ED; diameter ≥22 mm), late dominance (LD; ≥33 mm) and PO stage (34 h after administration of crude equine gonadotropins at LD stage), and separately analyzed on a horse gene expression microarray, followed by validation using quantitative PCR and immunoblotting/immunohistochemistry. Numbers of differentially expressed transcripts (DETs; ≥2-fold; P < 0.05) during the ED-LD and LD-PO transitions were 546 and 2419 in GCs and 5 and 582 in TCs. The most prominent change in GCs was the down-regulation of transcripts associated with cell division during both ED-LD and LD-PO. In addition, DET sets during LD-PO in GCs were enriched for genes involved in cell communication/adhesion, antioxidation/detoxification, immunity/inflammation, and cholesterol biosynthesis. In contrast, the largest change in TCs during the LD-PO transition was an up-regulation of genes involved in immune activation, with other DET sets mapping to GPCR/cAMP signaling, lipid/amino acid metabolism, and cell proliferation/survival and differentiation. In conclusion, distinct expression profiles were identified between growing and PO follicles and, particularly, between GCs and TCs within each stage. Several DETs were identified that have not been associated with follicle development in other species.
Collapse
Affiliation(s)
- F Xavier Donadeu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Somayyeh Fahiminiya
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom INRA and CNRS, UMR 6175 Physiologie de la Reproduction et des Comportements, Nouzilly, France Université François Rabelais de Tours, UMR 6175 Physiologie de la Reproduction et des Comportements, Tours, France
| | - Cristina L Esteves
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Javad Nadaf
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Alan S McNeilly
- The Queen's Medical Research Institute, MRC Centre for Reproductive Health, Edinburgh, United Kingdom
| | - David Waddington
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Nadine Gérard
- INRA and CNRS, UMR 6175 Physiologie de la Reproduction et des Comportements, Nouzilly, France Université François Rabelais de Tours, UMR 6175 Physiologie de la Reproduction et des Comportements, Tours, France Haras Nationaux, UMR 6175 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
16
|
Quiróz U, Morales-Ledesma L, Morán C, Trujillo A, Domínguez R. Lack of sensorial innervation in the newborn female rats affects the activity of hypothalamic monoaminergic system and steroid hormone secretion during puberty. Endocrine 2014; 46:309-17. [PMID: 24122121 DOI: 10.1007/s12020-013-0055-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/04/2013] [Indexed: 11/30/2022]
Abstract
There is evidence that sensory innervation plays a role regulating ovarian functions, including fertility.Since sensory denervation by means of capsaicin in newborn female rats results in a lower response togonadotropins, the present study analyzed the effects that sensory denervation by means of capsaicin in neonatal rats has on the concentration of monoamines in the anterior(AH) and medium (MH) hypothalamus, and on steroid hormone levels in serum. Groups of newborn female rats were injected subcutaneously with capsaicin and killed at 10, 20, and 30 days of age and on the first vaginal estrous.The concentrations of noradrenaline, dopamine, serotonin(5-HT), and their metabolites in the AH and MH were measured using HPLC, and the levels of estradiol (E),progesterone (P), testosterone (T), FSH, and luteinizing hormone using radioimmunoanalysis. The results show thatat 20 days of age, capsaicin-treated rats have lowernoradrenergic and serotonergic activities in the AH, and that the dopaminergic activity was lower in the MH. These results suggest that the sensorial system connections within the monoaminergic systems of the AH and MH are different.Capsaicin-treated animals had lower T, E, and P levels than in the control group, suggesting that the lower activity in the AH monoaminergic system and lower hormonesecretion could be explained by the blockade of information mediated by the sensory innervation (probably substance P), mainly between the ovary and the AH.
Collapse
|
17
|
Jana B, Lata M, Bulc M, Całka J. Long term estradiol-17β administration changes population of the dorsal root ganglia neurons innervating the ovary in the sexually mature gilts. Neuropeptides 2012; 46:157-65. [PMID: 22677207 DOI: 10.1016/j.npep.2012.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 01/09/2023]
Abstract
The influence of estradiol-17β (E₂) overdose on the number and distribution of neurons in the dorsal root ganglia (DRGs) supplying the ovary of adult pigs was investigated. The numbers of ovarian substance P (SP)-, calcitonin gene-related peptide (CGRP)-, galanin (GAL)-, pituitary adenylate cyclase-activating polypeptide (PACAP)-, neuronal isoform of nitric oxide synthase (nNOS)- and estrogen receptors (ERs)-immunoreactive perikarya were also determined. On day 3 of the estrous cycle, the ovaries of both the control and experimental gilts were injected with retrograde tracer Fast Blue. From day 4 of the estrous cycle to the expected day 20 of the second studied cycle, the experimental gilts were injected with E₂, while the control gilts received oil. The DRGs Th16-L5 were then collected and processed for double-labelling immunofluorescence. Injections of E₂ increased the E₂ level in the peripheral blood ∼4-5-fold and reduced the following in the DRGs: the total number of Fast Blue-positive perikarya, the number of large perikarya, the population of perikarya in the L2 and L3 ganglia, the numbers of SP- and/or CGRP-, PACAP-, nNOS-immunoreactive perikarya and the number of large perikarya expressing ERs subtype α and β. These results show that long-term E₂ treatment of adult gilts affects both the spatial and neurochemical organization pattern of ovary sensory innervation. Our findings suggest that elevated E₂ levels occurring during pathological states may regulate the transmission of sensory modalities from the ovary to the spinal cord.
Collapse
Affiliation(s)
- Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-747 Olsztyn, Tuwima 10, Poland.
| | | | | | | |
Collapse
|
18
|
Aoyama M, Kawada T, Satake H. Localization and enzymatic activity profiles of the proteases responsible for tachykinin-directed oocyte growth in the protochordate, Ciona intestinalis. Peptides 2012; 34:186-92. [PMID: 21827805 DOI: 10.1016/j.peptides.2011.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 11/25/2022]
Abstract
We previously substantiated that Ci-TK, a tachykinin of the protochordate, Ciona intestinalis (Ci), triggered oocyte growth from the vitellogenic stage (stage II) to the post-vitellogenic stage (stage III) via up-regulation of the gene expression and enzymatic activity of the proteases: cathepsin D, carboxypeptidase B1, and chymotrypsin. In the present study, we have elucidated the localization, gene expression and activation profile of these proteases. In situ hybridization showed that the Ci-cathepsin D mRNA was present exclusively in test cells of the stage II oocytes, whereas the Ci-carboxypeptidase B1 and Ci-chymotrypsin mRNAs were detected in follicular cells of the stage II and stage III oocytes. Double-immunostaining demonstrated that the immunoreactivity of Ci-cathepsin D was largely colocalized with that of the receptor of Ci-TK, Ci-TK-R, in test cells of the stage II oocytes. Ci-cathepsin D gene expression was detected at 2h after treatment with Ci-TK, and elevated for up to 5h, and then slightly decreased. Gene expression of Ci-carboxypeptidase B1 and Ci-chymotrypsin was observed at 5h after treatment with Ci-TK, and then decreased. The enzymatic activities of Ci-cathepsin D, Ci-carboxypeptidase B1, and Ci-chymotrypsin showed similar alterations with 1-h lags. These gene expression and protease activity profiles verified that Ci-cathepsin D is initially activated, which is followed by the activation of Ci-carboxypeptidase B1 and Ci-chymotrypsin. Collectively, the present data suggest that Ci-TK directly induces Ci-cahtepsin D in test cells expressing Ci-TK receptor, leading to the secondary activation of Ci-chymotrypsin and Ci-carboxypeptidase B1 in the follicle in the tachykininergic oocyte growth pathway.
Collapse
Affiliation(s)
- Masato Aoyama
- Suntory Institute for Bioorganic Research, Wakayamadai, Mishima-gun, Osaka, Japan
| | | | | |
Collapse
|
19
|
Lasaga M, Debeljuk L. Tachykinins and the hypothalamo-pituitary-gonadal axis: An update. Peptides 2011; 32:1972-8. [PMID: 21801774 DOI: 10.1016/j.peptides.2011.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 11/22/2022]
Abstract
Tachykinins play a critical role in neuroendocrine regulation of reproduction. The best known members of the family are substance P (SP), neurokinin A and neurokinin B. Tachykinins mediate their biological actions through three G protein-coupled receptors, named NK1, NK2, and NK3. SP was suggested to play an important role in the ovulatory process in mammals and humans. Recent findings suggest a role of tachykinins in the aging of the hypothalamo-pituitary-gonadal axis. A high presence of SP was found in the sheep pars tuberalis and evidence indicates that it may have some role in the control of prolactin secretion. The presence of SP was confirmed in Leydig cells of the rat testes of animals submitted to constant light or treated with estrogens. Tachykinins were found to increase the motility of human spermatozoa. Tachykinins were also found to be present in the mouse ovary and more specifically, in the granulose cells. It is possible that tachykinins may play an important role in the ovarian function. NKB has been implicated in the steroid feedback control of GnRH release. Human mutations in the gene encoding this peptide or its receptor (TACR3) lead to a defect in the control of GnRH. A specific subset of neurons in the arcuate nucleus of the hypothalamus, colocalized three neuropeptides, kisspeptin, NKB and dynorphin. This subpopulation of neurons mediates the gonadal hormone feedback control of GnRH secretion. NKB/NK3 signaling plays a role in puberty onset and fertility in humans. This minireview summarizes the recent data about the action of tachykinins on the hypothalamo-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Mercedes Lasaga
- Research Institute for Reproduction, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
20
|
Bridges PJ, Jo M, Al Alem L, Na G, Su W, Gong MC, Jeoung M, Ko C. Production and binding of endothelin-2 (EDN2) in the rat ovary: endothelin receptor subtype A (EDNRA)-mediated contraction. Reprod Fertil Dev 2010; 22:780-7. [PMID: 20450830 DOI: 10.1071/rd09194] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/11/2009] [Indexed: 11/23/2022] Open
Abstract
Endothelin-2 (EDN2)-mediated contraction has been proposed as a final mechanical signal facilitating ovulation. The objectives herein were to determine (1) whether ovarian endothelins were increased before ovulation; (2) whether a specific endothelin-converting enzyme (ECE) was mediating their production; (3) which receptor was facilitating ovarian contraction; and (4) whether receptor-specific antagonism affected ovulation. Follicular development was induced in immature rats with 10 IU pregnant mare serum gonadotrophin (PMSG) and the ovulatory cascade was initiated 48 h later with 10 IU human chorionic gonadotrophin (hCG). In Experiment 1, an immunoassay revealed that the ovarian concentration of endothelin peptide was increased 7-fold 12 h after hCG when compared with 48 h after PMSG (P < 0.05). In Experiment 2, real-time PCR indicated that mRNA for Ece1, but not Ece2, was increased in granulosa cells collected 12 h after hCG when compared with those collected before the ovulatory stimulus (P < 0.05). In Experiment 3, isometric tension analysis revealed that the contractile effect of EDN2 was mediated by endothelin receptor A (EDNRA), not B (EDNRB). In Experiment 4, no effect was observed on the rate of ovulation when rats were treated with an antagonist specific to EDNRA (BQ123) or EDNRB (BQ788), or when mice were treated with BQ123, BQ788 or BQ123 + BQ788. In conclusion, endothelin peptide is produced before ovulation and the contractile action of EDN2 within the ovary is facilitated via EDNRA. In addition, findings of this study indicate synergistic interactions among contractile factors affect ovulatory outcome, while the role of EDNRB alone in the process of ovulation requires further investigation.
Collapse
Affiliation(s)
- Phillip J Bridges
- Division of Clinical and Reproductive Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kawada T, Sekiguchi T, Sakai T, Aoyama M, Satake H. Neuropeptides, hormone peptides, and their receptors in Ciona intestinalis: an update. Zoolog Sci 2010; 27:134-53. [PMID: 20141419 DOI: 10.2108/zsj.27.134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The critical phylogenetic position of ascidians leads to the presumption that neuropeptides and hormones in vertebrates are highly likely to be evolutionarily conserved in ascidians, and the cosmopolitan species Ciona intestinalis is expected to be an excellent deuterostome Invertebrate model for studies on neuropeptides and hormones. Nevertheless, molecular and functional characterization of Ciona neuropeptides and hormone peptides was restricted to a few peptides such as a cholecystokinin (CCK)/gastrin peptide, cionin, and gonadotropin-releasing hormones (GnRHs). In the past few years, mass spectrometric analyses and database searches have detected Ciona orthologs or prototypes of vertebrate peptides and their receptors, including tachykinin, insulin/relaxin, calcitonin, and vasopressin. Furthermore, studies have shown that several Ciona peptides, including vasopressin and a novel GnRH-related peptide, have acquired ascidian-specific molecular forms and/or biological functions. These findings provided indisputable evidence that ascidians, unlike other invertebrates (including the traditional protostome model animals), possess neuropeptides and hormone peptides structurally and functionally related to vertebrate counterparts, and that several peptides have uniquely diverged in ascidian evolutionary lineages. Moreover, recent functional analyses of Ciona tachykinin in the ovary substantiated the novel tachykininergic protease-assoclated oocyte growth pathway, which could not have been revealed in studies on vertebrates. These findings confirm the outstanding advantages of ascidians in understanding the neuroscience, endocrinology, and evolution of vertebrate neuropeptides and hormone peptides. This article provides an overview of basic findings and reviews new knowledge on ascidian neuropeptides and hormone peptides.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | | | | | | | | |
Collapse
|
22
|
Pinto FM, Pintado CO, Pennefather JN, Patak E, Candenas L. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus. Reprod Biol Endocrinol 2009; 7:77. [PMID: 19627578 PMCID: PMC2724541 DOI: 10.1186/1477-7827-7-77] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/23/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In the mouse uterus, pregnancy is accompanied by changes in tachykinin and tachykinin receptor gene expression and in the uterotonic effects of endogenous tachykinins. In this study we have investigated whether changes in tachykinin expression and responses are a result of changes in ovarian steroid levels. METHODS We quantified the mRNAs of tachykinins and tachykinin receptors in uteri from ovariectomized mice and studied their regulation in response to estrogen and progesterone using real-time quantitative RT-PCR. Early (3 h) and late (24 h) responses to estrogen were evaluated and the participation of the estrogen receptors (ER), ERalpha and ERbeta, was analyzed by treating mice with propylpyrazole triol, a selective ERalpha agonist, or diarylpropionitrile, a selective agonist of ERbeta. RESULTS All genes encoding tachykinins (Tac1, Tac2 and Tac4) and tachykinin receptors (Tacr1, Tacr2 and Tacr3) were expressed in uteri from ovariectomized mice. Estrogen increased Tac1 and Tacr1 mRNA after 3 h and decreased Tac1 and Tac4 expression after 24 h. Tac2 and Tacr3 mRNA levels were decreased by estrogen at both 3 and 24 h. Most effects of estrogen were also observed in animals treated with propylpyrazole triol. Progesterone treatment increased the levels of Tac2. CONCLUSION These results show that the expression of tachykinins and their receptors in the mouse uterus is tightly and differentially regulated by ovarian steroids. Estrogen effects are mainly mediated by ERalpha supporting an essential role for this estrogen receptor in the regulation of the tachykinergic system in the mouse uterus.
Collapse
Affiliation(s)
- Francisco M Pinto
- Instituto de Investigaciones Químicas, CSIC, Avda. Americo Vespucio 49, 41092, Sevilla, Spain
| | - C Oscar Pintado
- Centro de Producción y Experimentación Animal, Universidad de Sevilla, Sevilla, Spain
| | - Jocelyn N Pennefather
- Department of Pharmaceutical Biology, Monash University, Parkville, Victoria 3052, Australia
| | - Eva Patak
- Department of Anaesthetics, Royal Women's Hospital, Carlton, Victoria 3051, Australia
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Avda. Americo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
23
|
Aoyama M, Kawada T, Fujie M, Hotta K, Sakai T, Sekiguchi T, Oka K, Satoh N, Satake H. A novel biological role of tachykinins as an up-regulator of oocyte growth: identification of an evolutionary origin of tachykininergic functions in the ovary of the ascidian, Ciona intestinalis. Endocrinology 2008; 149:4346-56. [PMID: 18483149 DOI: 10.1210/en.2008-0323] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tachykinins (TKs) and their receptors have been shown to be expressed in the mammalian ovary. However, the biological roles of ovarian TKs have yet to be verified. Ci-TK-I and Ci-TK-R, characterized from the protochordate (ascidian), Ciona intestinalis, are prototypes of vertebrate TKs and their receptors. In the present study, we show a novel biological function of TKs as an inducible factor for oocyte growth using C. intestinalis as a model organism. Immunostaining demonstrated the specific expression of Ci-TK-R in test cells residing in oocytes at the vitellogenic stage. DNA microarray and real-time PCR revealed that Ci-TK-I induced gene expression of several proteases, including cathepsin D, chymotrypsin, and carboxy-peptidase B1, in the ovary. The enzymatic activities of these proteases in the ovary were also shown to be enhanced by Ci-TK-I. Of particular significance is that the treatment of Ciona oocytes with Ci-TK-I resulted in progression of growth from the vitellogenic stage to the post-vitellogenic stage. The Ci-TK-I-induced oocyte growth was blocked by a TK antagonist or by protease inhibitors. These results led to the conclusion that Ci-TK-I enhances growth of the vitellogenic oocytes via up-regulation of gene expression and enzymatic activities of the proteases. This is the first clarification of the biological roles of TKs in the ovary and the underlying essential molecular mechanism. Furthermore, considering the phylogenetic position of ascidians as basal chordates, we suggest that the novel TK-regulated oocyte growth is an "evolutionary origin" of the tachykininergic functions in the ovary.
Collapse
Affiliation(s)
- Masato Aoyama
- Suntory Institute for Bioorganic Research, Wakayamadai 1-1-1, Mishima-gun, Osaka 618-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ghosh P, Saha SK, Bhattacharya S, Bhattacharya S, Mukherjee S, Roy SS. Tachykinin family genes and their receptors are differentially expressed in the hypothyroid ovary and pituitary. Cell Physiol Biochem 2007; 20:357-68. [PMID: 17762164 DOI: 10.1159/000107521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2007] [Indexed: 11/19/2022] Open
Abstract
Plasma tachykinin levels are known to be altered with sexual acyclicity and loss of reproductive function. Ovulatory dysfunction, as seen in postmenopausal women, is also often encountered in hypothyroid patients. To know the involvement of different tachykinin genes in hypothyroidism-associated reproductive disorders, we performed DD-PCR with the pituitary RNA of control and hypothyroid rats to see the differentially expressed gene profile. Subsequently, we selected a few clones, tachykinin being one of them. Since its expression was up regulated in hypothyroidism as it does in the sexually acyclic females, we wanted to correlate these two phenomena with hypothyroidism associated reproductive disorders. We observed differential expression of tac2 along with other tk genes and their receptors in rat pituitary and ovary, which suggests that hypothyroidism affects the expression of these genes in these tissues. The experiments were repeated in ovarian tissue obtained at surgery from hypothyroid human patients, which showed similar expression pattern of TAC3 (equivalent to rat tac2) and their receptors as in rat ovary. Significant reduction of tac2 expression in reproductively less active rat ovary suggests the association of tac2 with reproductive senescence. Our results suggest that decline in reproductive function in hypothyroidism is associated with altered expression level of tac2 and its receptors. Further investigation in this area could elucidate the possible mechanism of tachykinins' involvement in loss of sexual cyclicity and other reproductive disorders associated with hypothyroidism.
Collapse
Affiliation(s)
- Pamela Ghosh
- Molecular Endocrinology Laboratory, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | | | |
Collapse
|