1
|
Oncogenesis, Microenvironment Modulation and Clinical Potentiality of FAP in Glioblastoma: Lessons Learned from Other Solid Tumors. Cells 2021; 10:cells10051142. [PMID: 34068501 PMCID: PMC8151573 DOI: 10.3390/cells10051142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, glioblastoma (GBM) is the most common malignant tumor of the central nervous system in adults. Fibroblast activation protein (FAP) is a member of the dipeptidyl peptidase family, which has catalytic activity and is engaged in protein recruitment and scaffolds. Recent studies have found that FAP expression in different types of cells within the GBM microenvironment is typically upregulated compared with that in lower grade glioma and is most pronounced in the mesenchymal subtype of GBM. As a marker of cancer-associated fibroblasts (CAFs) with tumorigenic activity, FAP has been proven to promote tumor growth and invasion via hydrolysis of molecules such as brevican in the extracellular matrix and targeting of downstream pathways and substrates, such as fibroblast growth factor 21 (FGF21). In addition, based on its ability to suppress antitumor immunity in GBM and induce temozolomide resistance, FAP may be a potential target for immunotherapy and reversing temozolomide resistance; however, current studies on therapies targeting FAP are still limited. In this review, we summarized recent progress in FAP expression profiling and the understanding of the biological function of FAP in GBM and raised the possibility of FAP as an imaging biomarker and therapeutic target.
Collapse
|
2
|
Urata Y, Salehi R, Lima PDA, Osuga Y, Tsang BK. Neuropeptide Y regulates proliferation and apoptosis in granulosa cells in a follicular stage-dependent manner. J Ovarian Res 2020; 13:5. [PMID: 31915051 PMCID: PMC6950994 DOI: 10.1186/s13048-019-0608-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022] Open
Abstract
Background The complex regulatory mechanism involved in ovarian follicular development is not completely understood. Neuronal neuropeptide Y (NPY) is involved in the regulation of feeding behavior, energy homeostasis, and reproduction behavior, while its function in ovarian follicular development is not clear. The objective of this study was to investigate if and how NPY regulates follicle development in the ovary. Methods All experiments were performed using Sprague Dawley rats. To understand NPY expression pattern at different stages of follicular development, NPY content was assessed using immunohistochemistry in individual follicles. NPY and its receptors expression pattern were evaluated in granulosa cells isolated from preantral (PA), early antral (EA) and late antral follicles (LAF). The influence of NPY on granulosa cell proliferation and apoptosis were further assessed in vitro, using Ki67- and TUNEL-positivity assays. To investigate whether NPY induced-proliferation in EA granulosa cells is mediated through the activation of NPY receptor Y5 (NPY5R) and Mitogen-activated protein kinase (MEK) signal pathway, EA granulosa cells were treated with NPY5R antagonist (CGP71683) and MEK inhibitors (PD98059 and U0126), and Ki67-positive cells were assessed. Results NPY protein expression was follicular stage-dependent and cell type-specific. NPY signal intensity in EA was higher than those in PA and LAF. Antral granulosa cells showed the highest signal intensity compared to mural granulosa cells, cumulus cells and theca cells. Granulosa cells NPY protein content and mRNA abundance were higher in EA than in LAF. NPY receptor contents in granulosa cells were follicular stage-dependent. While NPY reduced apoptosis of EA granulosa cells, it increased the proliferation through NPY5R and MEK pathway. In contrast, in LAF granulosa cells, NPY reduced proliferation and increased the number of apoptotic cells, with no significant effects on PA granulosa cells. Conclusion This study is the first to evaluate the intraovarian role of NPY in granulosa cells at various stage of follicular development. These results indicate that NPY regulates granulosa cells proliferation and apoptosis in a follicular stage-dependent and autocrine manner. NPY may play a role in pathogenesis of ovarian follicular disorders.
Collapse
Affiliation(s)
- Yoko Urata
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Interdisciplinary School of Health Sciences, University of Ottawa; Chronic Disease Program, Ottawa Hospital Research Institute, Critical Care Wing, 3rd floor, Room W3107, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Obstetrics and Gynecology, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Reza Salehi
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Interdisciplinary School of Health Sciences, University of Ottawa; Chronic Disease Program, Ottawa Hospital Research Institute, Critical Care Wing, 3rd floor, Room W3107, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Patricia D A Lima
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Interdisciplinary School of Health Sciences, University of Ottawa; Chronic Disease Program, Ottawa Hospital Research Institute, Critical Care Wing, 3rd floor, Room W3107, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.,Queen's Cardiopulmonary Unit, Queen's University, BioSciences Complex, Room 1605, 116 Barrie Street, Kingston, ON, K7L 3N6, Canada
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Benjamin K Tsang
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Interdisciplinary School of Health Sciences, University of Ottawa; Chronic Disease Program, Ottawa Hospital Research Institute, Critical Care Wing, 3rd floor, Room W3107, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
3
|
Krawczyk E, Hong SH, Galli S, Trinh E, Wietlisbach L, Misiukiewicz SF, Tilan JU, Chen YS, Schlegel R, Kitlinska J. Murine neuroblastoma cell lines developed by conditional reprogramming preserve heterogeneous phenotypes observed in vivo. J Transl Med 2020; 100:38-51. [PMID: 31409888 PMCID: PMC6920526 DOI: 10.1038/s41374-019-0297-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric tumor of the peripheral nervous system. Treatment of the disease represents an unsolved clinical problem, as survival of patients with aggressive form of NB remains below 50%. Despite recent identification of numerous potential therapeutic targets, clinical trials validating them are challenging due to the rarity of the disease and its high patient-to-patient heterogeneity. Hence, there is a need for the accurate preclinical models that would allow testing novel therapeutic approaches and prioritizing the clinical studies, preferentially in personalized way. Here, we propose using conditional reprogramming (CR) technology for rapid development of primary NB cell cultures that could become a new model for such tests. This newly established method allowed for indefinite propagation of normal and tumor cells of epithelial origin in an undifferentiated state by their culture in the presence of Rho-associated kinase (ROCK) inhibitor, Y-27632, and irradiated mouse feeder cells. Using a modification of this approach, we isolated cell lines from tumors arising in the TH-MYCN murine transgenic model of NB (CR-NB). The cells were positive for neuronal markers, including Phox2B and peripherin and consisted of two distinct populations: mesenchymal and adrenergic expressing corresponding markers of their specific lineage. This heterogeneity of the CR-NB cells mimicked the different tumor cell phenotypes in TH-MYCN tumor tissues. The CR-NB cells preserved anchorage-independent growth capability and were successfully passaged, frozen and biobanked. Further studies are required to determine the utility of this method for isolation of human NB cultures, which can become a novel model for basic, translational, and clinical research, including individualized drug testing.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington DC, USA.
| | - Sung-Hyeok Hong
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Susana Galli
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Emily Trinh
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Larissa Wietlisbach
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Sara F. Misiukiewicz
- Human Science Department, School of Nursing and Health Studies, Georgetown University Medical Center, Washington DC
| | - Jason U. Tilan
- Human Science Department, School of Nursing and Health Studies, Georgetown University Medical Center, Washington DC
| | - You-Shin Chen
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Richard Schlegel
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington DC
| | - Joanna Kitlinska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| |
Collapse
|
4
|
Aquino JB, Sierra R. Schwann cell precursors in health and disease. Glia 2017; 66:465-476. [PMID: 29124786 DOI: 10.1002/glia.23262] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/07/2017] [Accepted: 10/26/2017] [Indexed: 12/25/2022]
Abstract
Schwann cell precursors (SCPs) are frequently regarded as neural crest-derived cells (NCDCs) found in contact with axons during nerve formation. Nevertheless, cells with SCPs properties can be found up to the adulthood. They are well characterized with regard to both gene expression profile and cellular behavior -for instance, proliferation, migratory capabilities and survival requirements-. They differ in origin regarding their anatomic location: even though most of them are derived from migratory NCCs, there is also contribution of the boundary cap neural crest cells (bNCCs) to the skin and other tissues. Many functions are known for SCPs in normal development, including nerve fasciculation and target innervation, arterial branching patterning and differentiation, and other morphogenetic processes. In addition, SCPs are now known to be a source of many neural (glia, endoneural fibroblasts, melanocytes, visceral neurons, and chromaffin cells) and non-neural-like (mesenchymal stromal cells, able e.g., to generate dentine-producing odontoblasts) cell types. Until now no reports of endoderm-like derivatives were reported so far. Interestingly, in the Schwann cell lineage only early SCPs are likely able to differentiate into melanocytes and bone marrow mesenchymal stromal cells. We have also herein discussed the literature regarding their role in repair as well as in disease mechanisms, such as in diverse cancers. Moreover, many caveats in our knowledge of SCPs biology are highlighted all through this article. Future research should expand more into the relevance of SCPs in pathologies and in other regenerative mechanisms which might bring new unexpected clinically-relevant knowledge.
Collapse
Affiliation(s)
- Jorge B Aquino
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Romina Sierra
- Developmental Biology & Regenerative Medicine Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| |
Collapse
|
5
|
Mörl K, Beck-Sickinger AG. Intracellular Trafficking of Neuropeptide Y Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:73-96. [PMID: 26055055 DOI: 10.1016/bs.pmbts.2015.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The multireceptor multiligand system of neuropeptide Y receptors and their ligands is involved in the regulation of a multitude of physiological and pathophysiological processes. Specific expression patterns, ligand-binding modes, and signaling properties contribute to the complex network regulating distinct cellular responses. Intracellular trafficking processes are important key steps that are regulated in context with accessory proteins. These proteins exert their influence by interacting directly or indirectly with the receptors, causing modification of the receptors, or operating as scaffolds for the assembly of larger signaling complexes. On the intracellular receptor faces, sequence-specific motifs have been identified that play an important role in this process. Interestingly, it is also possible to influence the receptor internalization by modification of the peptide ligand.
Collapse
Affiliation(s)
- Karin Mörl
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany.
| | - Annette G Beck-Sickinger
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Medeiros PJ, Jackson DN. Neuropeptide Y Y5-receptor activation on breast cancer cells acts as a paracrine system that stimulates VEGF expression and secretion to promote angiogenesis. Peptides 2013; 48:106-13. [PMID: 23932937 DOI: 10.1016/j.peptides.2013.07.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 01/03/2023]
Abstract
Accumulating data implicate a pathological role for sympathetic neurotransmitters like neuropeptide Y (NPY) in breast cancer progression. Our group and others reported that NPY promotes proliferation and migration in breast cancer cells, however the angiogenic potential of NPY in breast cancer is unknown. Herein we sought to determine if NPY promotes angiogenesis in vitro by increasing vascular endothelial growth factor (VEGF) expression and release from 4T1 breast cancer cells. Western blot analysis revealed that NPY treatment caused a 52 ± 14% increase in VEGF expression in the 4T1 cells compared to non-treated controls. Using selective NPY Y-receptor agonists (Y1R, Y2R and Y5R) we observed an increase in VEGF expression only when cells were treated with Y5R agonist. Congruently, using selective Y1R, Y2R, or Y5R antagonists, NPY-induced increases in VEGF expression in 4T1 cells were attenuated only under Y5R antagonism. Endothelial tube formation assays were conducted using conditioned media (CM) from NPY treated 4T1 cells. Concentration-dependent increases in number of branch points and complete endothelial networks were observed in HUVEC exposed to NPY CM. CM from Y5R agonist treated 4T1 cells caused similar increases in number of branch points and complete endothelial networks. VEGF concentration was quantified in CM (ELISA) from agonist experiments; we observed a 2-fold and 2.5-fold increase in VEGF release from NPY and Y5R agonist treated 4T1 cells respectively. Overall these data highlight a novel mechanism by which NPY may promote breast cancer progression, and further implicate a pathological role of the NPY Y5R.
Collapse
Affiliation(s)
- Philip J Medeiros
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
7
|
Therapeutic concentrations of valproate but not amitriptyline increase neuropeptide Y (NPY) expression in the human SH-SY5Y neuroblastoma cell line. ACTA ACUST UNITED AC 2013; 186:123-30. [PMID: 23994577 DOI: 10.1016/j.regpep.2013.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 01/26/2023]
Abstract
Neuropeptide Y (NPY) is a peptide found in the brain and autonomic nervous system, which is associated with anxiety, depression, epilepsy, learning and memory, sleep, obesity and circadian rhythms. NPY has recently gained much attention as an endogenous antiepileptic and antidepressant agent, as drugs with antiepileptic and/or mood-stabilizing properties may exert their action by increasing NPY concentrations, which in turn can reduce anxiety and depression levels, dampen seizures or increase seizure threshold. We have used human neuroblastoma SH-SY5Y cells to investigate the effect of valproate (VPA) and amitriptyline (AMI) on NPY expression at therapeutic plasma concentrations of 0.6mM and 630nM, respectively. In addition, 12-O-tetradecanoylphorbol-13-acetate (TPA) known to differentiate SH-SY5Y cells into a neuronal phenotype and to increase NPY expression through activation of protein kinase C (PKC) was applied as a positive control (16nM). Cell viability after drug treatment was tested with a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. NPY expression was measured using immunofluorescence and quantitative RT-PCR (qRT-PCR). Results from immunocytochemistry have shown NPY levels to be significantly increased following a 72h but not 24h VPA treatment. A further increase in expression was observed with simultaneous VPA and TPA treatment, suggesting that the two agents may increase NPY expression through different mechanisms. The increase in NPY mRNA by VPA and TPA was confirmed with qRT-PCR after 72h. In contrast, AMI had no effect on NPY expression in SH-SY5Y cells. Together, the data point to an elevation of human NPY mRNA and peptide levels by therapeutic concentrations of VPA following chronic treatment. Thus, upregulation of NPY may have an impact in anti-cancer treatment of neuroblastomas with VPA, and antagonizing hypothalamic NPY effects may help to ameliorate VPA-induced weight gain and obesity without interfering with the desired central effects of VPA.
Collapse
|
8
|
Morgat C, Hindié E, Mishra AK, Allard M, Fernandez P. Gallium-68: chemistry and radiolabeled peptides exploring different oncogenic pathways. Cancer Biother Radiopharm 2013; 28:85-97. [PMID: 23461410 DOI: 10.1089/cbr.2012.1244] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract Early and specific tumor detection and also therapy selection and response evaluation are some challenges of personalized medicine. This calls for high sensitive and specific molecular imaging such as positron emission tomography (PET). The use of peptides for PET molecular imaging has undeniable advantages: possibility of targeting through peptide-receptor interaction, small size and low-molecular weight conferring good penetration in the tissue or at cellular level, low toxicity, no antigenicity, and possibility of wide choice for radiolabeling. Among β(+)-emitter radioelements, Gallium-68 is a very attractive positron-emitter compared with carbon-11 or fluorine-18 taking into account its easy production via a (68)Ge/(68)Ga generator and well established radiochemistry. Gallium-68 chemistry is based on well-defined coordination complexes with macrocycle or chelates having strong binding properties, particularly suitable for linking peptides that allow resistance to in vivo transchelation of the metal ion. Understanding specific and nonspecific molecular mechanisms involved in oncogenesis is one major key to develop new molecular imaging tools. The present review focuses on peptide signaling involved in different oncogenic pathways. This peptide signalization might be common for tumoral and non-tumoral processes or could be specific of an oncological process. This review describes gallium chemistry and different (68)Ga-radiolabeled peptides already in use or under development aiming at developing molecular PET imaging of different oncological processes.
Collapse
|
9
|
Medeiros PJ, Al-Khazraji BK, Novielli NM, Postovit LM, Chambers AF, Jackson DN. Neuropeptide Y stimulates proliferation and migration in the 4T1 breast cancer cell line. Int J Cancer 2011; 131:276-86. [PMID: 21823118 DOI: 10.1002/ijc.26350] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 07/26/2011] [Indexed: 11/10/2022]
Abstract
Stress has long been thought of to be associated with increased risk of cancer. Chronic stress is associated with elevated levels of sympathetic neurotransmitter (norepinephrine and neuropeptide Y: NPY) release and immunosuppression. The expression of NPY receptors has been reported in human breast carcinomas. Recently, activation of the NPY Y5 receptor was shown to stimulate cell growth and increase migration in human breast cancer cells; however the effects of NPY have yet to be investigated in a murine model of breast cancer. Thus, the specific aims of the current study were to: (i) characterize NPY receptor expression in 4T1 breast cancer cells and orthotopic tumors grown in BALB/c mice and (ii) investigate the impact of NPY receptor activation on 4T1 cell proliferation and migration in vitro. Positive expression of NPY receptors (Y1R, Y2R and Y5R) was observed in cells and tumor tissue. As well, NPY treatment of 4T1 cells promoted a concentration-dependent increase in proliferation, through increased phosphorylation of ERK 1/2. Using NPY receptor antagonists (Y1R:BIBP3226, Y2R:BIIE0246 and Y5R:L-152,804), we found the proliferative response to be Y5R mediated. Additionally, NPY increased chemotaxis through Y2R and Y5R activation. These data are in congruence with those from human cell lines and highlight the 4T1 cell line as a translatable model of breast cancer in which the effects of NPY can be studied in an immunocompetent system.
Collapse
Affiliation(s)
- Philip J Medeiros
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood. It accounts for 15% of pediatric cancer deaths. Children with high-risk disease have a 3-year event-free survival rate of only 20%. Chemotherapy is the mainstay of treatment in children with advanced neuroblastoma. The aim of this article was to review and critically evaluate the pharmacotherapy of neuroblastoma, using peer reviewed and review literature from 2000-11. All peer reviewed, published human subject studies of therapy for neuroblastoma in children were included. Animal model and in vitro studies were included only if they added to the understanding of the mechanism of a proposed or existing human neuroblastoma therapy. Current therapeutic options for neuroblastoma involve insufficient differentiation of normal from neoplastic tissue. Critically needed new approaches will increasingly exploit targeting of therapy for unique characteristics of the neuroblastoma cell. Pharmacotherapy for neuroblastoma still suffers from an inadequate therapeutic window. Enhancement of toxicity for tumor and safety for normal tissues will entail innovation in targeting neuroblastoma cells and rescuing or protecting normal tissue elements.
Collapse
Affiliation(s)
- Veena R Ganeshan
- Center for Neural Development and Disease, and Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
11
|
The neuropeptide Y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol Ther 2011; 131:91-113. [DOI: 10.1016/j.pharmthera.2011.03.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 12/28/2022]
|
12
|
Abstract
Neuropeptide Y (NPY) is widely distributed in the human body and contributes to a vast number of physiological processes. Since its discovery, NPY has been implicated in metabolic regulation and, although interest in its role in central mechanisms related to food intake and obesity has somewhat diminished, the topic remains a strong focus of research concerning NPY signalling. In addition, a number of other uses for modulators of NPY receptors have been implied in a range of diseases, although the development of NPY receptor ligands has been slow, with no clinically approved receptor therapeutics currently available. Nevertheless, several interesting small molecule compounds, notably Y2 receptor antagonists, have been published recently, fueling optimism in the field. Herein we review the role of NPY in the pathophysiology of a number of diseases and highlight instances where NPY receptor signalling systems are attractive therapeutic targets.
Collapse
Affiliation(s)
- Shaun P Brothers
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
13
|
An illustration of the potential for mapping MRI/MRS parameters with genetic over-expression profiles in human prostate cancer. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2008; 21:411-21. [PMID: 18752015 DOI: 10.1007/s10334-008-0133-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) and MR spectroscopy can probe a variety of physiological (e.g. blood vessel permeability) and metabolic characteristics of prostate cancer. However, little is known about the changes in gene expression that underlie the spectral and imaging features observed in prostate cancer. Tumor induced changes in vascular permeability and angiogenesis are thought to contribute to patterns of dynamic contrast enhanced (DCE) MRI images of prostate cancer even though the genetic basis of tumor vasculogenesis is complex and the specific mechanisms underlying these DCEMRI features have not yet been determined. MATERIALS AND METHODS In order to identify the changes in gene expression that correspond to MRS and DCEMRI patterns in human prostate cancers, we have utilized tissue print micropeel techniques to generate "whole mount" molecular maps of radical prostatectomy specimens that correspond to pre-surgical MRI/MRS studies. These molecular maps include RNA expression profiles from both Affymetrix GeneChip microarrays and quantitative reverse transcriptase PCR (qrt-PCR) analysis, as well as immunohistochemical studies. RESULTS Using these methods on patients with prostate cancer, we found robust over-expression of choline kinase a in the majority of primary tumors. We also observed overexpression of neuropeptide Y (NPY), a newly identified angiogenic factor, in a subset of prostate cancers, visualized on DCEMRI. CONCLUSION These studies set the stage for establishing MRI/MRS parameters as validated biomarkers for human prostate cancer.
Collapse
|
14
|
Abstract
Neuroblastomas continue to remain a clinical challenge, despite advances in multimodal therapy. Currently, studies are aimed at novel targets for neuroblastoma directed toward poor prognostic indicators such as the MYCN oncogene and marked angiogenesis. There have also been recent discoveries in neuroblastoma pathogenesis involving epigenetic regulation and retinoic acid therapy. Understanding the intricate complexities of this tumor may lead to innovative agents for more effective combinational therapy.
Collapse
|
15
|
Ribatti D, Conconi MT, Nussdorfer GG. Nonclassic Endogenous Novel Regulators of Angiogenesis. Pharmacol Rev 2007; 59:185-205. [PMID: 17540906 DOI: 10.1124/pr.59.2.3] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Angiogenesis, the process through which new blood vessels arise from preexisting ones, is regulated by several "classic" factors, among which the most studied are vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2). In recent years, investigations showed that, in addition to the classic factors, numerous endogenous peptides play a relevant regulatory role in angiogenesis. Such regulatory peptides, each of which exerts well-known specific biological activities, are present, along with their receptors, in the blood vessels and may take part in the control of the "angiogenic switch." An in vivo and in vitro proangiogenic effect has been demonstrated for erythropoietin, angiotensin II (ANG-II), endothelins (ETs), adrenomedullin (AM), proadrenomedullin N-terminal 20 peptide (PAMP), urotensin-II, leptin, adiponectin, resistin, neuropeptide-Y, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), and substance P. There is evidence that the angiogenic action of some of these peptides is at least partly mediated by their stimulating effect on VEGF (ANG-II, ETs, PAMP, resistin, VIP and PACAP) and/or FGF-2 systems (PAMP and leptin). AM raises the expression of VEGF in endothelial cells, but VEGF blockade does not affect the proangiogenic action of AM. Other endogenous peptides have been reported to exert an in vivo and in vitro antiangiogenic action. These include somatostatin and natriuretic peptides, which suppress the VEGF system, and ghrelin, that antagonizes FGF-2 effects. Investigations on "nonclassic" regulators of angiogenesis could open new perspectives in the therapy of diseases coupled to dysregulation of angiogenesis.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, School of Medicine, University of Bari, Bari, Italy.
| | | | | |
Collapse
|