1
|
Saklani P, Khan H, Gupta S, Kaur A, Singh TG. Neuropeptides: Potential neuroprotective agents in ischemic injury. Life Sci 2022; 288:120186. [PMID: 34852271 DOI: 10.1016/j.lfs.2021.120186] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
AIM Ischemic damage to the brain is linked to an increased rate of morbidity and mortality worldwide. In certain parts of the world, it remains a leading cause of mortality and the primary cause of long-term impairment. Ischemic injury is exacerbated when particular neuropeptides are removed, or their function in the brain is blocked, whereas supplying such neuropeptides lowers ischemic harm. Here, we have discussed the role of neuropeptides in ischemic injury. MATERIALS & METHODS Numerous neuropeptides had their overexpression following cerebral ischemia. Neuropeptides such as NPY, CGRP, CART, SP, BK, PACAP, oxytocin, nociception, neurotensin and opioid peptides act as transmitters, documented in several "in vivo" and "in vitro" studies. Neuropeptides provide neuroprotection by activating the survival pathways or inhibiting the death pathways, i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB. KEY FINDINGS Neuropeptides have numerous beneficial effects in ischemic models, including antiapoptotic, anti-inflammatory, and antioxidant actions that provide a powerful protective impact in neurons when combined. These innovative therapeutic substances have the potential to treat ischemia injury due to their pleiotropic modes of action. SIGNIFICANCE This review emphasizes the neuroprotective role of neuropeptides in ischemic injury via modulation of various signalling pathways i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB.
Collapse
Affiliation(s)
- Priyanka Saklani
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | |
Collapse
|
2
|
On JSW, Su L, Shen H, Arokiaraj AWR, Cardoso JCR, Li G, Chow BKC. PACAP/GCGa Is an Important Modulator of the Amphioxus CNS-Hatschek's Pit Axis, the Homolog of the Vertebrate Hypothalamic-Pituitary Axis in the Basal Chordates. Front Endocrinol (Lausanne) 2022; 13:850040. [PMID: 35498398 PMCID: PMC9049855 DOI: 10.3389/fendo.2022.850040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The Hatschek's pit in the cephalochordate amphioxus, an invertebrate deuterostome basal to chordates is suggested to be the functional homolog structure of the vertebrate adenohypophysis based on anatomy and expression of homologous neuroendocrine genes. However, the endocrine potential of the cephalochordate Hatschek's pit remains to be demonstrated as well as the physiological actions of the secreted neuropeptides. In this study, we have explored the distribution and characterize the potential function of the amphioxus PACAP/GCG precursor, which is the ortholog of the hypothalamic PACAP neuropeptide in vertebrates. In amphioxi, two PACAP/GCG transcripts PACAP/GCGa and PACAP/GCGbc that are alternative isoforms of a single gene with different peptide coding potentials were isolated. Immunofluorescence staining detected their expression around the nucleus of Rohde, supporting that this structure may be homologous of the neurosecretory cells of the vertebrate hypothalamus where abundant PACAP is found. PACAP/GCGa was also detected in the infundibulum-like downgrowth approaching the Hatschek's pit, indicating diffusion of PACAP/GCGa from the CNS to the pit via the infundibulum-like downgrowth. Under a high salinity challenge, PACAP/GCGa was upregulated in amphioxi head and PACAP/GCGa treatment increased expression of GHl in Hatschek's pit in a dose-dependent manner, suggesting that PACAP/GCGa may be involved in the regulation of GHl via hypothalamic-pituitary (HP)-like axis similar as in the vertebrates. Our results support that the amphioxus Hatschek's pit is likely to be the functional homolog of pituitary gland in vertebrates.
Collapse
Affiliation(s)
- Jason S. W. On
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Liuru Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hong Shen
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | | - João C. R. Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- *Correspondence: Billy K. C. Chow, ; Guang Li,
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- *Correspondence: Billy K. C. Chow, ; Guang Li,
| |
Collapse
|
3
|
Cardoso JCR, Garcia MG, Power DM. Tracing the Origins of the Pituitary Adenylate-Cyclase Activating Polypeptide (PACAP). Front Neurosci 2020; 14:366. [PMID: 32508559 PMCID: PMC7251081 DOI: 10.3389/fnins.2020.00366] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a well-conserved neuropeptide characteristic of vertebrates. This pluripotent hypothalamic neuropeptide regulates neurotransmitter release, intestinal motility, metabolism, cell division/differentiation, and immunity. In vertebrates, PACAP has a specific receptor (PAC1) but it can also activate the Vasoactive Intestinal Peptide receptors (VPAC1 and VPAC2). The evolution of the vertebrate PACAP ligand - receptor pair has been well-described. In contrast, the situation in invertebrates is much less clear. The PACAP ligand - receptor pair in invertebrates has mainly been studied using heterologous antibodies raised against mammalian peptides. A few partial PACAP cDNA clones sharing >87% aa identity with vertebrate PACAP have been isolated from a cnidarian, several protostomes and tunicates but no gene has been reported. Moreover, current evolutionary models of the peptide and receptors using molecular data from phylogenetically distinct invertebrate species (mostly nematodes and arthropods) suggests the PACAP ligand and receptors are exclusive to vertebrate genomes. A basal deuterostome, the cephalochordate amphioxus (Branchiostoma floridae), is the only invertebrate in which elements of a PACAP-like system exists but the peptides and receptor share relatively low sequence conservation with the vertebrate homolog system and are a hybrid with the vertebrate glucagon system. In this study, the evolution of the PACAP system is revisited taking advantage of the burgeoning sequence data (genome and transcriptomes) available for invertebrates to uncover clues about when it first appeared. The results suggest that elements of the PACAP system are absent from protozoans, non-bilaterians, and protostomes and they only emerged after the protostome-deuterostome divergence. PACAP and its receptors appeared in vertebrate genomes and they probably shared a common ancestral origin with the cephalochordate PACAP/GCG-like system which after the genome tetraploidization events that preceded the vertebrate radiation generated the PACAP ligand and receptor pair and also the other members of the Secretin family peptides and their receptors.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Molecular and Integrative Biology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Manuel G Garcia
- Comparative Molecular and Integrative Biology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Deborah M Power
- Comparative Molecular and Integrative Biology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
4
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
5
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1005] [Impact Index Per Article: 143.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
6
|
Cardoso JCR, Félix RC, Martins RST, Trindade M, Fonseca VG, Fuentes J, Power DM. PACAP system evolution and its role in melanophore function in teleost fish skin. Mol Cell Endocrinol 2015; 411:130-45. [PMID: 25933704 DOI: 10.1016/j.mce.2015.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 01/12/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) administered to tilapia melanophores ex-vivo causes significant pigment aggregation and this is a newly identified function for this peptide in fish. The G-protein coupled receptors (GPCRs), adcyap1r1a (encoding Pac1a) and vipr2a (encoding Vpac2a), are the only receptors in melanophores with appreciable levels of expression and are significantly (p < 0.05) down-regulated in the absence of light. Vpac2a is activated exclusively by peptide histidine isoleucine (PHI), which suggests that Pac1a mediates the melanin aggregating effect of PACAP on melanophores. Paradoxically activation of Pac1a with PACAP caused a rise in cAMP, which in fish melanophores is associated with melanin dispersion. We hypothesise that the duplicate adcyap1ra and vipr2a genes in teleosts have acquired a specific role in skin and that the melanin aggregating effect of PACAP results from the interaction of Pac1a with Ramp that attenuates cAMP-dependent PKA activity and favours the Ca(2+)/Calmodulin dependent pathway.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Rute S T Martins
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Vera G Fonseca
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan Fuentes
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
7
|
Krajcs N, Hernádi L, Pirger Z, Reglődi D, Tóth G, Kiss T. PACAP Modulates Acetylcholine-Elicited Contractions at Nicotinic Neuromuscular Contacts of the Land Snail. J Mol Neurosci 2015; 57:492-500. [PMID: 26138333 DOI: 10.1007/s12031-015-0605-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/17/2015] [Indexed: 12/29/2022]
Abstract
In this study, we investigate the potentiating effect of PACAP27 on cholinergic neuromuscular transmission in the recently discovered flexor muscles of the land snail, Helix pomatia. Using immunohistochemistry, we show that PACAP and PAC1 receptors are present in nerve fibers innervating the flexor muscles but not in the muscle itself. We also observed that PACAP27 exerts both pre- and postsynaptic effects on the cholinergic synapse and performed tests using a broad spectrum of chemicals in order to explore the possible intracellular pathways through which PACAP mediates its stimulatory effect. Our pharmacological data demonstrate that PACAP27 presynaptically enhances the release of acetylcholine by activating the adenylate cyclase-cAMP-PKA pathway. Postsynaptically, PACAP27 was found to enhance muscle contractility by PKC-mediated signaling pathway resulting in an increased Ca(2+) release from intracellular stores. These findings suggest that regulation of Ca(2+) release may contribute to the stimulatory effect of PACAP. Our data are the first demonstration of the potentiating effect of PACAP27 at the molluscan excitatory neuromuscular contact.
Collapse
Affiliation(s)
- Nóra Krajcs
- Chemical Ecology and Neurobiology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u 3, H-8237, Tihany, Hungary
| | - László Hernádi
- Chemical Ecology and Neurobiology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u 3, H-8237, Tihany, Hungary
| | - Zsolt Pirger
- Chemical Ecology and Neurobiology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u 3, H-8237, Tihany, Hungary.,Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u 3, H-8237, Tihany, Hungary.,MTA-PTE "Momentum" PACAP Research Team, University of Pecs, Pecs, Hungary
| | - Dóra Reglődi
- MTA-PTE "Momentum" PACAP Research Team, University of Pecs, Pecs, Hungary
| | - Gábor Tóth
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Tibor Kiss
- Chemical Ecology and Neurobiology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u 3, H-8237, Tihany, Hungary.
| |
Collapse
|
8
|
Cardoso JCR, Félix RC, Trindade M, Power DM. Fish genomes provide novel insights into the evolution of vertebrate secretin receptors and their ligand. Gen Comp Endocrinol 2014; 209:82-92. [PMID: 24906176 DOI: 10.1016/j.ygcen.2014.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 01/21/2023]
Abstract
The secretin receptor (SCTR) is a member of Class 2 subfamily B1 GPCRs and part of the PAC1/VPAC receptor subfamily. This receptor has long been known in mammals but has only recently been identified in other vertebrates including teleosts, from which it was previously considered to be absent. The ligand for SCTR in mammals is secretin (SCT), an important gastrointestinal peptide, which in teleosts has not yet been isolated, or the gene identified. This study revises the evolutionary model previously proposed for the secretin-GPCRs in metazoan by analysing in detail the fishes, the most successful of the extant vertebrates. All the Actinopterygii genomes analysed and the Chondrichthyes and Sarcopterygii fish possess a SCTR gene that shares conserved sequence, structure and synteny with the tetrapod homologue. Phylogenetic clustering and gene environment comparisons revealed that fish and tetrapod SCTR shared a common origin and diverged early from the PAC1/VPAC subfamily group. In teleosts SCTR duplicated as a result of the fish specific whole genome duplication but in all the teleost genomes analysed, with the exception of tilapia (Oreochromis niloticus), one of the duplicates was lost. The function of SCTR in teleosts is unknown but quantitative PCR revealed that in both sea bass (Dicentrarchus labrax) and tilapia (Oreochromis mossambicus) transcript abundance is high in the gastrointestinal tract suggesting it may intervene in similar processes to those in mammals. In contrast, no gene encoding the ligand SCT was identified in the ray-finned fishes (Actinopterygii) although it was present in the coelacanth (lobe finned fish, Sarcopterygii) and in the elephant shark (holocephalian). The genes in linkage with SCT in tetrapods and coelacanth were also identified in ray-finned fishes supporting the idea that it was lost from their genome. At present SCTR remains an orphan receptor in ray-finned fishes and it will be of interest in the future to establish why SCT was lost and which ligand substitutes for it so that full characterization of the receptor can occur.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
9
|
Acclimation to different environmental salinities induces molecular endocrine changes in the GH/IGF-I axis of juvenile gilthead sea bream (Sparus aurata L.). J Comp Physiol B 2014; 185:87-101. [PMID: 25395251 DOI: 10.1007/s00360-014-0871-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 10/15/2014] [Accepted: 10/26/2014] [Indexed: 02/03/2023]
Abstract
To assess the role of the GH/IGF-I axis in osmotic acclimation of the gilthead seabream Sparus aurata, juvenile specimens were acclimated to four environmental salinities: hyposmotic (5 ‰), isosmotic (12 ‰) and hyperosmotic (40 and 55 ‰). The full-length cDNAs for both pituitary adenylate cyclase-activating peptide (PACAP) and prepro-somatostatin-I (PSS-I), the precursor for mature somatostatin-I (SS-I), were cloned. Hypothalamic PACAP and PSS-I, hypophyseal growth hormone (GH) and prolactin (PRL), and hepatic insulin-like growth factor-I (IGF-I) mRNA expression levels were analyzed in the four rearing salinities tested. PACAP and IGF-I mRNA values increased significantly in response to both 5 and 55 ‰ salinities, showing a U-shaped curve relationship with the basal level in the 40 ‰ group. Hypothalamic PSS-I expression increased strongly in the 55 ‰ environment. GH mRNA levels did not change in any of the tested environmental salinities. PRL mRNA maximum levels were encountered in the 5 and 12 ‰ environments, but significantly down-regulated in the 40 ‰. Plasma cortisol levels significantly increased in the 40 ‰ environment. These results are discussed in relation to the well-known high adaptability of Sparus aurata to different environmental salinities and the role of the GH/IGF-I axis in this process.
Collapse
|
10
|
Agnese M, Rosati L, Prisco M, Coraggio F, Valiante S, Scudiero R, Laforgia V, Andreuccetti P. The VIP/VPACR system in the reproductive cycle of male lizard Podarcis sicula. Gen Comp Endocrinol 2014; 205:94-101. [PMID: 24694517 DOI: 10.1016/j.ygcen.2014.03.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 11/28/2022]
Abstract
Starting from the knowledge that in the reproductive period the Vasoactive Intestinal Peptide (VIP) is widely distributed in Podarcis sicula testis, we studied VIP expression and the localization of the neuropeptide and its receptors in the testis of the Italian wall lizard P. sicula in the other phases of its reproductive cycle (summer stasis, autumnal resumption, winter stasis, spring resumption). By Real Time-PCR, we demonstrated that testicular VIP mRNA levels change during the reproductive cycle, showing a cyclic trend with two peaks, one in the mid-autumnal resumption and the other in the reproductive period. By in situ hybridization and immunohistochemistry, we demonstrated that both VIP mRNA and protein were widely distributed in the testis in almost all the phases of the cycle, except in the early autumnal resumption. As regards the receptors, the VPAC1R was localized mainly in Leydig cells, while the VPAC2R showed the same distribution of VIP. Our results demonstrate that, differently from mammals, where VIP is present only in nerve fibres innerving the testis, an endotesticular synthesis takes place in the lizard and the VIP synthesis changes throughout the reproductive cycle. Moreover, the VIP/VPAC receptor system distribution observed in germ and somatic cells in various phases of the cycle, and particularly in the autumnal resumption and the reproductive period, strongly suggests its involvement in both spermatogenesis and steroidogenesis. Finally, the wider distribution of VIP in lizards with respect to mammals leads us to hypothesize that during the evolution the synthesis sites have been transferred from the testis to other districts, such as the brain.
Collapse
Affiliation(s)
- Marisa Agnese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marina Prisco
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Vincenza Laforgia
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
11
|
Agnese M, Rosati L, Coraggio F, Valiante S, Prisco M. Molecular cloning of VIP and distribution of VIP/VPACR system in the testis of Podarcis sicula. ACTA ACUST UNITED AC 2014; 321:334-47. [PMID: 24753326 DOI: 10.1002/jez.1866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/10/2022]
Abstract
Using molecular, biochemical, and cytological tools, we studied the nucleotide and the deduced amino acid sequence of PHI/VIP and the distribution of VIP/VPAC receptor system in the testis of the Italian wall lizard Podarcis sicula to evaluate the involvement of such a neuropeptide in the spermatogenesis control. We demonstrated that (1) Podarcis sicula VIP had a high identity with other vertebrate VIP sequences, (2) differently from mammals, VIP was synthesized directly in the testis, and (3) VIP and its receptor VPAC2 were widely distributed in germ and somatic cells, while the VPAC1 R had a distribution limited to Leydig cells. Our results demonstrated that in Podarcis sicula the VIP sequence is highly preserved and that this neuropeptide is involved in lizard spermatogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Marisa Agnese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | | | | |
Collapse
|
12
|
Lugo JM, Carpio Y, Morales R, Rodríguez-Ramos T, Ramos L, Estrada MP. First report of the pituitary adenylate cyclase activating polypeptide (PACAP) in crustaceans: conservation of its functions as growth promoting factor and immunomodulator in the white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1788-1796. [PMID: 24036332 DOI: 10.1016/j.fsi.2013.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/02/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
The high conservation of the pituitary adenylate cyclase activating polypeptide (PACAP) sequence indicates that this peptide fulfills important biological functions in a broad spectrum of organisms. However, in invertebrates, little is known about its presence and its functions remain unclear. Up to now, in non-mammalian vertebrates, the majority of studies on PACAP have focused mainly on the localization, cloning and structural evolution of this peptide. As yet, little is known about its biological functions as growth factor and immunomodulator in lower vertebrates. Recently, we have shown that PACAP, apart from its neuroendocrine role, influences immune functions in larval and juvenile fish. In this work, we isolated for the first time the cDNA encoding the mature PACAP from a crustacean species, the white shrimp Litopenaeus vannamei, corroborating its high degree of sequence conservation, when compared to sequences reported from tunicates to mammalian vertebrates. Based on this, we have evaluated the effects of purified recombinant Clarias gariepinus PACAP administrated by immersion baths on white shrimp growth and immunity. We demonstrated that PACAP improves hemocyte count, superoxide dismutase, lectins and nitric oxide synthase derived metabolites in treated shrimp related with an increase in total protein concentration and growth performance. From our results, PACAP acts as a regulator of shrimp growth and immunity, suggesting that in crustaceans, as in vertebrate organisms, PACAP is an important molecule shared by both the endocrine and the immune systems.
Collapse
Affiliation(s)
- Juana María Lugo
- Aquatic Biotechnology Project, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | | | | | | | | | | |
Collapse
|
13
|
Ng SYL, Chow BKC, Kasamatsu J, Kasahara M, Lee LTO. Agnathan VIP, PACAP and their receptors: ancestral origins of today's highly diversified forms. PLoS One 2012; 7:e44691. [PMID: 22957100 PMCID: PMC3434177 DOI: 10.1371/journal.pone.0044691] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/06/2012] [Indexed: 01/04/2023] Open
Abstract
VIP and PACAP are pleiotropic peptides belonging to the secretin superfamily of brain-gut peptides and interact specifically with three receptors (VPAC1, PAC1 and VPAC2) from the class II B G protein-coupled receptor family. There is immense interest regarding their molecular evolution which is often described closely alongside gene and/or genome duplications. Despite the wide array of information available in various vertebrates and one invertebrate the tunicate, their evolutionary origins remain unresolved. Through searches of genome databases and molecular cloning techniques, the first lamprey VIP/PACAP ligands and VPAC receptors are identified from the Japanese lamprey. In addition, two VPAC receptors (VPACa/b) are identified from inshore hagfish and ligands predicted for sea lamprey. Phylogenetic analyses group these molecules into their respective PHI/VIP, PRP/PACAP and VPAC receptor families and show they resemble ancestral forms. Japanese lamprey VIP/PACAP peptides synthesized were tested with the hagfish VPAC receptors. hfVPACa transduces signal via both adenylyl cylase and phospholipase C pathways, whilst hfVPACb was only able to transduce through the calcium pathway. In contrast to the widespread distribution of VIP/PACAP ligands and receptors in many species, the agnathan PACAP and VPAC receptors were found almost exclusively in the brain. In situ hybridisation further showed their abundance throughout the brain. The range of VIP/PACAP ligands and receptors found are highly useful, providing a glimpse into the evolutionary events both at the structural and functional levels. Though representative of ancestral forms, the VIP/PACAP ligands in particular have retained high sequence conservation indicating the importance of their functions even early in vertebrate evolution. During these nascent stages, only two VPAC receptors are likely responsible for eliciting functions before evolving later into specific subtypes post-Agnatha. We also propose VIP and PACAP's first functions to predominate in the brain, evolving alongside the central nervous system, subsequently establishing peripheral functions.
Collapse
Affiliation(s)
- Stephanie Y. L. Ng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Jun Kasamatsu
- Department of Pathology, Graduate School of Medicine, Hokkaido University, Kita-ku, Japan
| | - Masanori Kasahara
- Department of Pathology, Graduate School of Medicine, Hokkaido University, Kita-ku, Japan
| | - Leo T. O. Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Special Administrative Region, China
- * E-mail:
| |
Collapse
|
14
|
Expression of VIP and its Receptors in the Testis of the Spotted Ray Torpedo marmorata (Risso 1880). J Mol Neurosci 2012; 48:638-46. [DOI: 10.1007/s12031-012-9857-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
|
15
|
Gómez-Requeni P, Kraemer MN, Canosa LF. Regulation of somatic growth and gene expression of the GH-IGF system and PRP-PACAP by dietary lipid level in early juveniles of a teleost fish, the pejerrey (Odontesthes bonariensis). J Comp Physiol B 2012; 182:517-30. [PMID: 22227923 DOI: 10.1007/s00360-011-0640-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 11/26/2022]
Abstract
Growth and mRNA levels of the pituitary adenylate cyclase-activating polypeptide (PACAP) and its related peptide (PRP), and the system controlled by the growth hormone (GH) and insulin-like growth factors (IGFs) were analyzed in pejerrey fry fed with graded levels of dietary lipids: 10% (L10), 13% (L13) and 21% (L21). First, the full sequence of pejerrey PRP-PACAP was obtained by RT-PCR, using primers based on conserved fragments of teleosts PACAP sequences. The growth of the fish at 83 days after hatching (dah) and the GH mRNA levels were not significantly affected by the dietary treatment. Conversely, PRP-PACAP expression significantly decreased with increasing dietary lipids (L10 > L21). While GH receptor (GHR)-I and IGF-I transcripts did not differ among groups, GHR-II transcripts decreased in group L21. IGF-II expression apparently followed the same trend. These results in combination with the lower expression of the anorexigenic PRP-PACAP in fish fed diet L21 and the correlation analysis evidencing a particularly fine tuning of the GH-IGF system in group L13, suggest that this diet may cover the energy demands for growing pejerrey from 27 dah onwards. Our results show for first time in fish a differential response of PRP-PACAP transcripts to dietary manipulations, and confirm the sensitivity of the pejerrey GH-IGF system to changes in diet composition despite the lack of (or in advance to) a clear response of somatic growth.
Collapse
Affiliation(s)
- Pedro Gómez-Requeni
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), Chascomús, Buenos Aires, Argentina.
| | | | | |
Collapse
|
16
|
|
17
|
Cardoso JCR, Vieira FA, Gomes AS, Power DM. The serendipitous origin of chordate secretin peptide family members. BMC Evol Biol 2010; 10:135. [PMID: 20459630 PMCID: PMC2880984 DOI: 10.1186/1471-2148-10-135] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 05/06/2010] [Indexed: 01/15/2023] Open
Abstract
Background The secretin family is a pleotropic group of brain-gut peptides with affinity for class 2 G-protein coupled receptors (secretin family GPCRs) proposed to have emerged early in the metazoan radiation via gene or genome duplications. In human, 10 members exist and sequence and functional homologues and ligand-receptor pairs have been characterised in representatives of most vertebrate classes. Secretin-like family GPCR homologues have also been isolated in non-vertebrate genomes however their corresponding ligands have not been convincingly identified and their evolution remains enigmatic. Results In silico sequence comparisons failed to retrieve a non-vertebrate (porifera, cnidaria, protostome and early deuterostome) secretin family homologue. In contrast, secretin family members were identified in lamprey, several teleosts and tetrapods and comparative studies revealed that sequence and structure is in general maintained. Sequence comparisons and phylogenetic analysis revealed that PACAP, VIP and GCG are the most highly conserved members and two major peptide subfamilies exist; i) PACAP-like which includes PACAP, PRP, VIP, PH, GHRH, SCT and ii) GCG-like which includes GCG, GLP1, GLP2 and GIP. Conserved regions flanking secretin family members were established by comparative analysis of the Takifugu, Xenopus, chicken and human genomes and gene homologues were identified in nematode, Drosophila and Ciona genomes but no gene linkage occurred. However, in Drosophila and nematode genes which flank vertebrate secretin family members were identified in the same chromosome. Conclusions Receptors of the secretin-like family GPCRs are present in protostomes but no sequence homologues of the vertebrate cognate ligands have been identified. It has not been possible to determine when the ligands evolved but it seems likely that it was after the protostome-deuterostome divergence from an exon that was part of an existing gene or gene fragment by rounds of gene/genome duplication. The duplicate exon under different evolutionary pressures originated the chordate PACAP-like and GCG-like subfamily groups. This event occurred after the emergence of the metazoan secretin GPCRs and led to the establishment of novel peptide-receptor interactions that contributed to the generation of novel physiological functions in the chordate lineage.
Collapse
Affiliation(s)
- João C R Cardoso
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal.
| | | | | | | |
Collapse
|
18
|
Pirger Z, Laszlo Z, Hiripi L, Hernadi L, Toth G, Lubics A, Reglodi D, Kemenes G, Mark L. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors are present and biochemically active in the central nervous system of the pond snail Lymnaea stagnalis. J Mol Neurosci 2010; 42:464-71. [PMID: 20396976 DOI: 10.1007/s12031-010-9361-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/23/2010] [Indexed: 02/06/2023]
Abstract
PACAP is a highly conserved adenylate cyclase (AC) activating polypeptide, which, along with its receptors (PAC1-R, VPAC1, and VPAC2), is expressed in both vertebrate and invertebrate nervous systems. In vertebrates, PACAP has been shown to be involved in associative learning, but it is not known if it plays a similar role in invertebrates. To prepare the way for a detailed investigation into the possible role of PACAP and its receptors in a suitable invertebrate model of learning and memory, here, we undertook a study of their expression and biochemical role in the central nervous system of the pond snail Lymnaea stagnalis. Lymnaea is one of the best established invertebrate model systems to study the molecular mechanisms of learning and memory, including the role of cyclic AMP-activated signaling mechanisms, which crucially depend on the learning-induced activation of AC. However, there was no information available on the expression of PACAP and its receptors in sensory structures and central ganglia of the Lymnaea nervous system known to be involved in associative learning or whether or not PACAP can actually activate AC in these ganglia. Here, using matrix-assisted laser desorption ionization time of flight (MALDI-TOF) and immunohistochemistry, we established the presence of PACAP-like peptides in the cerebral ganglia and the lip region of Lymnaea. The MALDI-TOF data indicated an identity with mammalian PACAP-27 and the presence of a squid-like PACAP-38 highly homologous to vertebrate PACAP-38. We also showed that PACAP, VIP, and maxadilan stimulated the synthesis of cAMP in Lymnaea cerebral ganglion homogenates and that this effect was blocked by the appropriate general and selective PACAP receptor antagonists.
Collapse
Affiliation(s)
- Zsolt Pirger
- Department of Experimental Zoology, Balaton Limnological Research Institute, Tihany, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor is expressed during embryonic development of the earthworm. Cell Tissue Res 2010; 339:649-53. [DOI: 10.1007/s00441-009-0909-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
|
20
|
|
21
|
Wang Y, Li J, Wang CY, Kwok AY, Zhang X, Leung FC. Characterization of the receptors for chicken GHRH and GHRH-related peptides: identification of a novel receptor for GHRH and the receptor for GHRH-LP (PRP). Domest Anim Endocrinol 2010; 38:13-31. [PMID: 19748756 DOI: 10.1016/j.domaniend.2009.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 11/15/2022]
Abstract
Growth hormone-releasing hormone and its structurally related peptides, GHRH-like peptide (GHRH-LP) (also called PRP), peptide histidine-isoleucine (PHI), vasoactive intestinal polypeptide (VIP), and pituitary adenylate cyclase-activating polypeptide (PACAP), have been reported to play important physiological roles in pituitary and extrapituitary tissues of vertebrates; however, little is known about the identity of these GHRH-related peptide receptors in birds. In this study, 6 receptors for GHRH and GHRH-related peptides (cGHRHR(1), cGHRHR(2), cGHRH-LPR, cPAC(1), cVPAC(1), and cVPAC(2)) were cloned from chicken brain or pituitary, and their functionalities were examined in Chinese hamster ovary (CHO) cells using a pGL3-CRE-luciferase reporter system. Results showed that: (1) all receptors are G protein-coupled receptors functionally coupled to the intracellular PKA signaling pathway; (2) 2 GHRH receptors (cGHRHR(1) and cGHRHR(2)) were identified, and both receptors could be potently activated by cGHRH; (3) cGHRH-LP could activate its specific receptor cGHRH-LPR (cPRP-R), and it also activated cGHRHR(1) and cGHRHR(2); and (4) PACAP could potently activate its receptors cPAC(1), cVPAC(1) and cVPAC(2); however, cVPAC(1) and cVPAC(2) could also be effectively activated by cVIP and tPHI, indicating that they can serve as VIP receptors and potential PHI receptors. Using a reverse transcription polymerase chain reaction assay, we further examined the mRNA expression of these receptors in adult chicken tissues. The expressions of cGHRHR(1), cGHRHR(2), and cGHRH-LPR are restricted mainly to the pituitary and/or brain, whereas cPAC(1), cVPAC(1), and cVPAC(2) are expressed in most of the tissues examined. Collectively, our study identified the receptors for chicken GHRH and GHRH-related peptides, including a novel GHRH receptor (cGHRHR(2)), and established a basis to elucidate the roles of these peptides in target tissues.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- CHO Cells
- Chickens/genetics
- Chickens/metabolism
- Cloning, Molecular
- Cricetinae
- Cricetulus
- Molecular Sequence Data
- Pituitary Adenylate Cyclase-Activating Polypeptide/genetics
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- RNA/chemistry
- RNA/genetics
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/veterinary
- Sequence Alignment
- Sequence Analysis, DNA
- Transfection/veterinary
Collapse
Affiliation(s)
- Y Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Castro A, Becerra M, Manso MJ, Tello J, Sherwood NM, Anadón R. Distribution of growth hormone-releasing hormone-like peptide: Immunoreactivity in the central nervous system of the adult zebrafish (Danio rerio). J Comp Neurol 2009; 513:685-701. [PMID: 19235874 DOI: 10.1002/cne.21977] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The distribution of growth hormone-releasing hormone-like peptides (GHRH-LP) in the central nervous system of the zebrafish was investigated by using immunohistochemical techniques with polyclonal antibodies. ELISAs showed that the antiserum raised against salmon (s)GHRH-LP recognized both zebrafish GHRH-LP1 and -2, whereas the antiserum raised against carp (c)GHRH-LP was more sensitive but detected only zebrafish GHRH-LP1. Neither antiserum detected the true GHRH. Large cells in the nucleus lateralis tuberis were immunoreactive with both antisera, which suggests that they contained zebrafish GHRH-LP1, but not excluding GHRH-LP2. Also, immunoreactive fibers, which putatively originated from these hypothalamic neurons, were present in the hypophysis; both antisera detected fibers, although only sGHRH-LP antiserum stained fibers in the neurointermediate lobe. These fibers may have a neuroendocrine role. Candidates for a role in feeding include several areas in which both antisera labeled cells and fibers, implying a strong reaction for GHRH-LP1 and possibly GHRH-LP2. These areas include the isthmus with cells in the secondary gustatory/visceral nucleus, which were also calretinin immunoreactive. Numerous GHRH-LP-immunoreactive fibers (also labeled by both antisera) probably originate from the gustatory/visceral nucleus to innervate the ventral area of the telencephalon, preglomerular nuclei, torus lateralis and hypothalamic diffuse nucleus, habenula, torus semicircularis, and dorsolateral funiculus of the spinal cord. Present results in the zebrafish brain suggest involvement of GHRH-LP in both neuroendocrine and feeding-associated nervous circuits. The present data on the location of the two GHRH-LPs are the first clue to the possible functions of these two hormones.
Collapse
Affiliation(s)
- Antonio Castro
- Department of Cell and Molecular Biology, University of A Coruña, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Roch GJ, Wu S, Sherwood NM. Hormones and receptors in fish: do duplicates matter? Gen Comp Endocrinol 2009; 161:3-12. [PMID: 19007784 DOI: 10.1016/j.ygcen.2008.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/26/2008] [Accepted: 10/06/2008] [Indexed: 11/20/2022]
Abstract
Modern fish are the result of major changes in evolution including three possible duplications of the whole genome. Retained duplicate genes are often involved with metabolism, transcription, neurogenic processes and development. Here we examine the consequences of the most recent (350 mya) teleost-specific duplication in five fishes (zebrafish, fugu, medaka, stickleback and rainbow trout) in regard to duplicate copies of hormones and receptors in the secretin superfamily. This subset of genes was selected as the superfamily is limited to ten hormones and their receptors and includes some important members: glucagon, growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP). We used reports from the literature and an extensive database search of the fish genomes to evaluate the status of the superfamily and its duplicate genes. We found that all five fish species have an almost complete set of orthologs with the human superfamily of hormones, although they lack secretin and its receptor. Receptor orthologs are present in zebrafish, fugu, medaka, stickleback and to a lesser extent in salmonids. Zebrafish retain duplicate copies for seven hormones and five receptors. Duplicated genes in fugu, medaka, stickleback and salmonids are also present, based mainly on genome annotation or mRNA transcription. Separate chromosome locations and synteny support zebrafish duplicates as the result of large-scale duplications. Novel changes in fish include the modification of a duplicate glucagon receptor to a GLP-1 receptor and, unlike humans, the presence of bioactive and specific PHI and GHRH-like peptide receptors. We conclude that fish duplicates in the secretin superfamily are a rich, mostly unexplored area for endocrine research.
Collapse
Affiliation(s)
- Graeme J Roch
- Department of Biology, University of Victoria, Victoria, BC, Canada V8W 3N5
| | | | | |
Collapse
|
24
|
Nam BH, Kim YO, Kong HJ, Kim WJ, Lee SJ, Choi TJ. Identification and characterization of the prepro-vasoactive intestinal peptide gene from the teleost Paralichthys olivaceus. Vet Immunol Immunopathol 2009; 127:249-58. [DOI: 10.1016/j.vetimm.2008.10.320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 10/09/2008] [Accepted: 10/16/2008] [Indexed: 11/30/2022]
|
25
|
Valiante S, Prisco M, De Falco M, Sellitti A, Zambrano I, Sciarrillo R, Capaldo A, Gay F, Andreuccetti P, Laforgia V. Distribution and molecular evolution of the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors in the lizard Podarcis sicula (Squamata, Lacertidae). J Mol Neurosci 2009; 39:144-56. [PMID: 19184550 DOI: 10.1007/s12031-009-9178-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 01/07/2009] [Indexed: 11/24/2022]
Abstract
The presence of the pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors PAC(1), VPAC(1), and VPAC(2) was studied in the lizard Podarcis sicula gastrointestinal and respiratory tissues. The expression and distribution of this neuropeptide was investigated using RT-PCR, immunohistochemistry, and in situ hybridization techniques. RT-PCR showed that several tissues of this reptile synthesize an mRNA encoding for PACAP. Performing in situ hybridization and immunohistochemistry, we found a wide distribution of PACAP and its mRNA in intestine, stomach, liver, and lung. PACAP receptors possess a specific distribution in both gastrointestinal and respiratory system. Further, we analyzed the conservation of PACAP amino acid sequence demonstrating that this peptide in the lizard is very similar to that of other vertebrates. Our findings suggest that also in reptiles an effective PACAP system is present and that it could be implicated in some essential physiological functions as a result of its high conservation amongst vertebrates.
Collapse
Affiliation(s)
- Salvatore Valiante
- Dipartimento delle Scienze Biologiche--Sezione di Biologia Evolutiva e Comparata, Università Federico II di Napoli, Via Mezzocannone, 8, 80134, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Carroll SM, Bridgham JT, Thornton JW. Evolution of hormone signaling in elasmobranchs by exploitation of promiscuous receptors. Mol Biol Evol 2008; 25:2643-52. [PMID: 18799714 DOI: 10.1093/molbev/msn204] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Specific interactions among proteins, nucleic acids, and metabolites drive virtually all cellular functions and underlie phenotypic complexity and diversity. Despite the fundamental importance of interactions, the mechanisms and dynamics by which they evolve are poorly understood. Here we describe novel interactions between a lineage-specific hormone and its receptors in elasmobranchs, a subclass of cartilaginous fishes, and infer how these associations evolved using phylogenetic and protein structural analyses. The hormone 1alpha-hydroxycorticosterone (1alpha-B) is a physiologically important steroid synthesized only in elasmobranchs. We show that 1alpha-B modulates gene expression in vitro by activating two paralogous intracellular transcription factors, the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), in the little skate Leucoraja erinacea; MR serves as a high-sensitivity and GR as a low-sensitivity receptor. Using functional analysis of extant and resurrected ancestral proteins, we show that receptor sensitivity to 1alpha-B evolved millions of years before the hormone itself evolved. The 1alpha-B differs from more ancient corticosteroids only by the addition of a hydroxyl group; the three-dimensional structure of the ancestral receptor shows that the ligand pocket contained ample unoccupied space to accommodate this moiety. Our findings indicate that the interactions between 1alpha-B and elasmobranch GR and MR proteins evolved by molecular exploitation: a novel hormone recruited into new functional partnerships two ancient receptors that had previously interacted with other ligands. The ancestral receptor's promiscuous capacity to fortuitously bind compounds that are slight structural variants of its original ligands set the stage for the evolution of this new interaction.
Collapse
|
27
|
Takei Y. Exploring novel hormones essential for seawater adaptation in teleost fish. Gen Comp Endocrinol 2008; 157:3-13. [PMID: 18452919 DOI: 10.1016/j.ygcen.2008.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 12/29/2022]
Abstract
Marine fish are dehydrated in hyperosmotic seawater (SW), but maintain water balance by drinking surrounding SW if they are capable of excreting the excess ions, particularly Na(+) and Cl(-), absorbed with water by the intestine. An integrative approach is essential for understanding the mechanisms for SW adaptation, in which hormones play pivotal roles. Comparative genomic analyses have shown that hormones that have Na(+)-extruding and vasodepressor properties are greatly diversified in teleost fish. Physiological studies at molecular to organismal levels have revealed that these diversified hormones are much more potent and efficacious in teleost fish than in mammals and are important for survival in SW and for maintenance of low arterial pressure in a gravity-free aquatic environment. This is typified by the natriuretic peptide (NP) family, which is diversified into seven members (ANP, BNP, VNP and CNP1, 2, 3 and 4) and exerts potent hyponatremic and vasodepressor actions in marine fish. Another example is the guanylin family, which consists of three paralogs (guanylin, uroguanylin and renoguanylin), and stimulates Cl(-) secretion into the intestinal lumen and activates the absorptive-type Na-K-2Cl cotransporter by local luminocrine actions. The most recent addition is the adrenomedullin (AM) family, which has five members (AM1, 2, 3, 4 and 5), with AM2 and AM5 showing the most potent or efficacious vasodepressor and osmoregulatory effects among known hormones in teleost fish. Accumulating evidence strongly indicates that members of these diversified hormone families play essential roles in SW adaptation in teleost fish. In this short review, the author has attempted to propose a novel approach for identification of new hormones that are important for SW adaptation using comparative genomic and functional studies. The author has also suggested potential hormone families that are diversified in teleost fish and appear to be involved in SW adaptation through their ion-extruding actions.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan.
| |
Collapse
|
28
|
Pirger Z, Nemeth J, Hiripi L, Toth G, Kiss P, Lubics A, Tamas A, Hernadi L, Kiss T, Reglodi D. PACAP has anti-apoptotic effect in the salivary gland of an invertebrate species, Helix pomatia. J Mol Neurosci 2008; 36:105-14. [PMID: 18473188 DOI: 10.1007/s12031-008-9070-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 04/09/2008] [Indexed: 12/15/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) shows a remarkable sequence similarity among species and several studies provide evidence that the functions of PACAP have also been conserved among vertebrate species. Relatively little is known about its presence and functions in invertebrates. The aim of the present study was to investigate whether the well-known anti-apoptotic effect of PACAP can also be demonstrated in invertebrates. This effect was studied in the salivary gland of a molluscan species, Helix pomatia. In this work, we first showed the presence of PACAP-like immunoreactivity in the Helix salivary gland by means of immunohistochemistry. Radioimmunoassay measurements showed that PACAP38-like immunoreactivity dominated in the salivary gland of both active and inactive snails and its concentration was higher in active than in inactive animals in contrast to PACAP27-like immunoreactivity, which did not show activity-dependent changes. PACAP induced a significant elevation of cAMP level in salivary gland extracts. Application of apoptosis-inducing agents, dopamine and colchicine, led to a marked increase in the number of terminal uridine deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells in the salivary gland, which was significantly attenuated by PACAP treatment. In a similar manner, the number of caspase-positive cells was reduced after co-application of dopamine and PACAP. Taken together, the data indicate that PACAP activates cAMP in a molluscan species and we show, for the first time, that PACAP is anti-apoptotic in the invertebrate Helix pomatia.
Collapse
Affiliation(s)
- Zsolt Pirger
- Department of Experimental Zoology, Balaton Limnological Research Institute, Hungarian Academy of Sciences, Tihany, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hernádi L, Pirger Z, Kiss T, Németh J, Mark L, Kiss P, Tamas A, Lubics A, Toth G, Shioda S, Reglodi D. The presence and distribution of pituitary adenylate cyclase activating polypeptide and its receptor in the snail Helix pomatia. Neuroscience 2008; 155:387-402. [PMID: 18590802 DOI: 10.1016/j.neuroscience.2008.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/06/2008] [Accepted: 05/06/2008] [Indexed: 12/17/2022]
Abstract
The aim of this study was to show the presence, distribution and function of the pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors in the CNS and peripheral nervous system of the mollusk, Helix pomatia. PACAP-like and pituitary adenylate cyclase activating polypeptide receptor (PAC1-R)-like immunoreactivity was abundant both in the CNS and the peripheral nervous system of the snail. In addition several non-neuronal cells also revealed PACAP-like immunoreactivity. In inactive animals labeled cell bodies were mainly found and in the neuropile of active animals dense immunostained fiber system was additionally detected suggesting that expression of PACAP-like peptide was affected by the behavioral state of the animal. RIA measurements revealed the existence of both forms of PACAP in the CNS where the 27 amino acid form was found to be dominant. The concentration of PACAP27 was significantly higher in samples from active animals supporting the data obtained by immunohistochemistry. In Western blot experiments PACAP27 and PACAP38 antibodies specifically labeled protein band at 4.5 kDa both in rat and snail brain homogenates, and additionally an approximately 14 kDa band in snail. The 4.5 kDa protein corresponds to PACAP38 and the 14 kDa protein corresponds to the preproPACAP or to a PACAP-like peptide having larger molecular weight than mammalian PACAP38. In matrix-assisted laser desorption ionization time of flight (MALDI TOF) measurements fragments of PACAP38 were identified in brain samples suggesting the presence of a large molecular weight peptide in the snail. Applying antibodies developed against the PACAP receptor PAC1-R, immunopositive stained neurons and a dense network of fibers were identified in each of the ganglia. In electrophysiological experiments, extracellular application of PACAP27 and PACAP38 transiently depolarized or increased postsynaptic activity of neurons expressing PAC1-R. In several neurons PACAP elicited a long lasting hyperpolarization which was eliminated after 1.5 h continuous washing. Taken together, these results indicate that PACAP may have significant role in a wide range of basic physiological functions in snail.
Collapse
Affiliation(s)
- L Hernádi
- Department of Experimental Zoology, Balaton Limnological Research Institute, Hungarian Academy of Sciences, P.O. Box 35, H-8237 Tihany, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cardoso JCR, de Vet ECJM, Louro B, Elgar G, Clark MS, Power DM. Persistence of duplicated PAC1 receptors in the teleost, Sparus auratus. BMC Evol Biol 2007; 7:221. [PMID: 17997850 PMCID: PMC2245808 DOI: 10.1186/1471-2148-7-221] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 11/12/2007] [Indexed: 12/05/2022] Open
Abstract
Background: Duplicated genes are common in vertebrate genomes. Their persistence is assumed to be either a consequence of gain of novel function (neofunctionalisation) or partitioning of the function of the ancestral molecule (sub-functionalisation). Surprisingly few studies have evaluated the extent of such modifications despite the numerous duplicated receptor and ligand genes identified in vertebrate genomes to date. In order to study the importance of function in the maintenance of duplicated genes, sea bream (Sparus auratus) PAC1 receptors, sequence homologues of the mammalian receptor specific for PACAP (Pituitary Adenylate Cyclase-Activating Polypeptide), were studied. These receptors belong to family 2 GPCRs and most of their members are duplicated in teleosts although the reason why both persist in the genome is unknown. Results: Duplicate sea bream PACAP receptor genes (sbPAC1A and sbPAC1B), members of family 2 GPCRs, were isolated and share 77% amino acid sequence identity. RT-PCR with specific primers for each gene revealed that they have a differential tissue distribution which overlaps with the distribution of the single mammalian receptor. Furthermore, in common with mammals, the teleost genes undergo alternative splicing and a PAC1Ahop1 isoform has been characterised. Duplicated orthologous receptors have also been identified in other teleost genomes and their distribution profile suggests that function may be species specific. Functional analysis of the paralogue sbPAC1s in Cos7 cells revealed that they are strongly stimulated in the presence of mammalian PACAP27 and PACAP38 and far less with VIP (Vasoactive Intestinal Peptide). The sbPAC1 receptors are equally stimulated (LOGEC50 values for maximal cAMP production) in the presence of PACAP27 (-8.74 ± 0.29 M and -9.15 ± 0.21 M, respectively for sbPAC1A and sbPAC1B, P > 0.05) and PACAP38 (-8.54 ± 0.18 M and -8.92 ± 0.24 M, respectively for sbPAC1A and sbPAC1B, P > 0.05). Human VIP was found to stimulate sbPAC1A (-7.23 ± 0.20 M) more strongly than sbPAC1B (-6.57 ± 0.14 M, P < 0.05) and human secretin (SCT), which has not so far been identified in fish genomes, caused negligible stimulation of both receptors. Conclusion: The existence of functionally divergent duplicate sbPAC1 receptors is in line with previously proposed theories about the origin and maintenance of duplicated genes. Sea bream PAC1 duplicate receptors resemble the typical mammalian PAC1, and PACAP peptides were found to be more effective than VIP in stimulating cAMP production, although sbPAC1A was more responsive for VIP than sbPAC1B. These results together with the highly divergent pattern of tissue distribution suggest that a process involving neofunctionalisation occurred after receptor duplication within the fish lineage and probably accounts for their persistence in the genome. The characterisation of further duplicated receptors and their ligands should provide insights into the evolution and function of novel protein-protein interactions associated with the vertebrate radiation.
Collapse
Affiliation(s)
- João C R Cardoso
- CCMAR, Molecular and Comparative Endocrinology, University of Algarve, 8005-139 Faro, Portugal.
| | | | | | | | | | | |
Collapse
|