1
|
Nystrom GS, Ellsworth SA, Ward MJ, Rokyta DR. Varying Modes of Selection Among Toxin Families in the Venoms of the Giant Desert Hairy Scorpions (Hadrurus). J Mol Evol 2023; 91:935-962. [PMID: 38091038 DOI: 10.1007/s00239-023-10148-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023]
Abstract
Venoms are primarily believed to evolve under strong diversifying selection resulting from persistent coevolution between predator and prey. Recent research has challenged this hypothesis, proposing that venoms from younger venomous lineages (e.g., snakes and cone snails) are governed predominantly by diversifying selection, while venoms from older venomous lineages (e.g., centipedes, scorpions, and spiders) are under stronger purifying selection. However, most research in older lineages has tested selection at more diverse phylogenetic scales. Although these tests are important for evaluating broad macroevolutionary trends underlying venom evolution, they are less equipped to detect species-level evolutionary trends, which likely have large impacts on venom variation seen at more diverse phylogenetic scales. To test for selection among closely related species from an older venomous lineage, we generated high-throughput venom-gland transcriptomes and venom proteomes for four populations of Giant Desert Hairy Scorpions (Hadrurus), including three Hadrurus arizonensis populations and one Hadrurus spadix population. We detected significant episodic and pervasive diversifying selection across a highly abundant toxin family that likely has a major role in venom function ([Formula: see text]KTxs), providing a contrast to the stronger purifying selection identified from other studies on scorpion venoms. Conversely, we detected weak episodic diversifying and/or stronger purifying selection in four toxin families (non-disulfide bridged peptides, phospholipase A2s, scorpine-like antimicrobial peptides, and serine proteases), most of which were less abundant and likely have ancillary functional roles. Finally, although we detected several major toxin families at disproportionate transcriptomic and/or proteomic abundances, we did not identify significant sex-based variation in Hadrurus venoms.
Collapse
Affiliation(s)
- Gunnar S Nystrom
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306-4295, USA
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306-4295, USA
| | - Micaiah J Ward
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306-4295, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306-4295, USA.
| |
Collapse
|
2
|
Nystrom GS, Ellsworth SA, Rokyta DR. The remarkably enzyme-rich venom of the Big Bend Scorpion (Diplocentrus whitei). Toxicon 2023; 226:107080. [PMID: 36907567 DOI: 10.1016/j.toxicon.2023.107080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Scorpion venoms have long been studied for their peptide discovery potential, with modern high-throughput venom-characterization techniques paving the way for the discovery of thousands of novel putative toxins. Research into these toxins has provided insight into the pathology and treatment of human diseases, even resulting in the development of one compound with Food and Drug Administration (FDA) approval. Although most of this research has focused on the toxins of scorpion species considered medically significant to humans, the venom of harmless scorpion species possess toxins that are homologous to those from medically significant species, indicating that harmless scorpion venoms may also serve as valuable sources of novel peptide variants. Furthermore, as harmless scorpions represent a vast majority of scorpion species diversity, and therefore venom toxin diversity, venoms from these species likely contain entirely new toxin classes. We sequenced the venom-gland transcriptome and venom proteome of two male Big Bend scorpions (Diplocentrus whitei), providing the first high-throughput venom characterization for a member of this genus. We identified a total of 82 toxins in the venom of D. whitei, 25 of which were identified in both the transcriptome and proteome, and 57 of which were only identified in the transcriptome. Furthermore, we identified a unique, enzyme-rich venom dominated by serine proteases and the first arylsulfatase B toxins identified in scorpions.
Collapse
Affiliation(s)
- Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
3
|
Megaly AMA, Miyashita M, Abdel-Wahab M, Nakagawa Y, Miyagawa H. Molecular Diversity of Linear Peptides Revealed by Transcriptomic Analysis of the Venom Gland of the Spider Lycosa poonaensis. Toxins (Basel) 2022; 14:toxins14120854. [PMID: 36548751 PMCID: PMC9788040 DOI: 10.3390/toxins14120854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Spider venom is a complex mixture of bioactive components. Previously, we identified two linear peptides in Lycosa poonaensis venom using mass spectrometric analysis and predicted the presence of more linear peptides therein. In this study, a transcriptomic analysis of the L. poonaensis venom gland was conducted to identify other undetermined linear peptides in the venom. The results identified 87 contigs encoding peptides and proteins in the venom that were similar to those in other spider venoms. The number of contigs identified as neurotoxins was the highest, and 15 contigs encoding 17 linear peptide sequences were identified. Seven peptides that were representative of each family were chemically synthesized, and their biological activities were evaluated. All peptides showed significant antibacterial activity against Gram-positive and Gram-negative bacteria, although their selectivity for bacterial species differed. All peptides also exhibited paralytic activity against crickets, but none showed hemolytic activity. The secondary structure analysis based on the circular dichroism spectroscopy showed that all these peptides adopt an amphiphilic α-helical structure. Their activities appear to depend on the net charge, the arrangement of basic and acidic residues, and the hydrophobicity of the peptides.
Collapse
Affiliation(s)
- Alhussin Mohamed Abdelhakeem Megaly
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit 71524, Egypt
| | - Masahiro Miyashita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Correspondence:
| | - Mohammed Abdel-Wahab
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit 71524, Egypt
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hisashi Miyagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Contrasting patterns of venom regeneration in a centipede (Scolopendra viridis) and a scorpion (Centruroides hentzi). Toxicon 2022; 210:132-140. [PMID: 35245607 DOI: 10.1016/j.toxicon.2022.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
Abstract
As biochemical traits with clear fitness consequences, venoms serve a critical ecological role for the animals that produce them. Understanding how venoms are maintained and regenerated after use will, therefore, provide valuable insight into the ecology of venomous animals. Furthermore, most studies on venomous organisms often require removing animals from the wild and waiting extended periods of time between venom extractions. Uncovering the patterns of venom regeneration across different species will likely lead to the development of more efficient venom extraction protocols, reducing both experimental time and the number of animals required. Using reversed-phase high-performance liquid chromatography, we identified asynchronous regeneration of venom protein component abundances in the centipede Scolopendra viridis but found no evidence for asynchronous venom regeneration in the scorpion Centruroides hentzi. We also observed high levels of intraspecific venom variation in C. hentzi, emphasizing the importance of testing for intraspecific venom variation in studies evaluating the synchronicity of venom regeneration. Although the regeneration of relative venom protein component abundances is an asynchronous process in S. viridis, we provide evidence that the presence-absence of major venom components is not an asynchronous process and suggest that studies relying on just the presence/absence of individual proteins (e.g. bioprospecting, drug discovery) could use catch-and-release methods of venom extraction to reduce the number of animals removed from the wild.
Collapse
|
5
|
Lozano-Trujillo LA, Garzón-Perdomo DK, Vargas ACR, de Los Reyes LM, Avila-Rodriguez MF, Gay OTG, Turner LF. Cytotoxic Effects of Blue Scorpion Venom (Rhopalurus junceus) in a Glioblastoma Cell Line Model. Curr Pharm Biotechnol 2021; 22:636-645. [PMID: 32679017 DOI: 10.2174/1389201021666200717092207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/12/2020] [Accepted: 06/14/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Cancer is one of the leading cause of death worldwide. Besides current therapies and treatments to counter cancer, new alternatives are required to diminish the cell proliferation of oncogenic processes. METHODS One of the most promissory therapy includes the use of blue scorpion venom as a specific cytotoxic agent to kill tumoral cells, including Glioblastoma multiforme. OBJECTIVES We show evidence of the cytotoxic effect of blue scorpion venom in a cellular model of Glioblastoma multiforme. RESULTS Our results demonstrate that 50 μg/ml of scorpion venom is capable to diminish the viability of Glioblastoma populations. CONCLUSION It is possible that the action mechanism could be associated with a loss of membrane integrity. Additionally, some metalloproteinases as MMP2 and MMP9 may also participate in the potential action mechanism.
Collapse
Affiliation(s)
- Laura A Lozano-Trujillo
- Departamento de Biologia, Facultad de Ciencias, Universidad del Tolima, 730006299, Ibague, Colombia
| | - Diana K Garzón-Perdomo
- Departamento de Biologia, Facultad de Ciencias, Universidad del Tolima, 730006299, Ibague, Colombia
| | - Andrea C R Vargas
- Departamento de Biologia, Facultad de Ciencias, Universidad del Tolima, 730006299, Ibague, Colombia
| | - Lina M de Los Reyes
- Departamento de Biologia, Facultad de Ciencias, Universidad del Tolima, 730006299, Ibague, Colombia
| | - Marco F Avila-Rodriguez
- Departamento de Ciencias Clinicas, Facultad de Ciencias de la Salud, Universidad del Tolima, 730006299, Ibague, Colombia
| | | | - Liliana F Turner
- Departamento de Biologia, Facultad de Ciencias, Universidad del Tolima, 730006299, Ibague, Colombia
| |
Collapse
|
6
|
Zerouti K, Khemili D, Laraba-Djebari F, Hammoudi-Triki D. Nontoxic fraction of scorpion venom reduces bacterial growth and inflammatory response in a mouse model of infection. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1614064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Khedidja Zerouti
- Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, Algiers, Algeria
| | - Dalila Khemili
- Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, Algiers, Algeria
| | - Fatima Laraba-Djebari
- Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, Algiers, Algeria
| | - Djelila Hammoudi-Triki
- Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, Algiers, Algeria
| |
Collapse
|
7
|
Alajmi R, Al-ghamdi S, Barakat I, Mahmoud A, Abdon N, Al-Ahidib M, Abdel-Gaber R. Antimicrobial Activity of Two Novel Venoms from Saudi Arabian Scorpions (Leiurus quinquestriatus and Androctonus crassicauda). Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09816-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Meucin-49, a multifunctional scorpion venom peptide with bactericidal synergy with neurotoxins. Amino Acids 2018; 50:1025-1043. [DOI: 10.1007/s00726-018-2580-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/27/2018] [Indexed: 10/16/2022]
|
9
|
Gao B, Zhu S. Mesobuthus Venom-Derived Antimicrobial Peptides Possess Intrinsic Multifunctionality and Differential Potential as Drugs. Front Microbiol 2018; 9:320. [PMID: 29599756 PMCID: PMC5863496 DOI: 10.3389/fmicb.2018.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/09/2018] [Indexed: 11/15/2022] Open
Abstract
Animal venoms are a mixture of peptides and proteins that serve two basic biological functions: predation and defense against both predators and microbes. Antimicrobial peptides (AMPs) are a common component extensively present in various scorpion venoms (herein abbreviated as svAMPs). However, their roles in predation and defense against predators and potential as drugs are poorly understood. Here, we report five new venom peptides with antimicrobial activity from two Mesobuthus scorpion species. These α-helical linear peptides displayed highly bactericidal activity toward all the Gram-positive bacteria used here but differential activity against Gram-negative bacteria and fungi. In addition to the antibiotic activity, these AMPs displayed lethality to houseflies and hemotoxin-like toxicity on mice by causing hemolysis, tissue damage and inducing inflammatory pain. Unlike AMPs from other origins, these venom-derived AMPs seem to be unsuitable as anti-infective drugs due to their high hemolysis and low serum stability. However, MeuTXKβ1, a known two-domain Mesobuthus AMP, is an exception since it exhibits high activity toward antibiotic resistant Staphylococci clinical isolates with low hemolysis and high serum stability. The findings that the classical AMPs play predatory and defensive roles indicate that the multifunctionality of scorpion venom components is an intrinsic feature likely evolved by natural selection from microbes, prey and predators of scorpions. This definitely provides an excellent system in which one can study how a protein adaptively evolves novel functions in a new environment. Meantimes, new strategies are needed to remove the toxicity of svAMPs on eukaryotic cells when they are used as leads for anti-infective drugs.
Collapse
Affiliation(s)
- Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Molecular characterization and expression analysis of CSαβ defensin genes from the scorpion Mesobuthus martensii. Biosci Rep 2017; 37:BSR20171282. [PMID: 29162666 PMCID: PMC6435467 DOI: 10.1042/bsr20171282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 11/25/2022] Open
Abstract
Defensins are important components of innate host defence system against bacteria, fungi, parasites and viruses. Here, we predicted six potential defensin genes from the genome of the scorpion Mesobuthus martensii and then validated four genes from them via the combination of PCR and genomic sequence analysis. These four scorpion defensin genes share the same gene organization and structure of two exons and one phase-I intron with the GT-AG rule. Conserved motif and phylogenetic analysis showed that they belonged to the members of the invertebrate cysteine-stabilized α-helix/β-sheet motif defensin (CSαβ) defensin family. All these four CSαβ defensin genes have the expression feature of constitutive transcription (CON) by the whole scorpion infection model, promoter sequence analysis and dual luciferase assays. Further evolution and comparison analysis found that the invertebrate CSαβ defensin genes from most of arachnids and mollusks appear to share the expression pattern of CON, but those from insects and lower invertebrates (nematodes, annelids, cnidarians and sponges) seem to have identical inducible transcription (IND) after being challenged by microorganisms. Together, we identified four scorpion CSαβ defensin genes with the expression feature of CON, and characterized the diversified expression patterns of the invertebrate CSαβ defensin genes, which will shed insights into the evolution of the invertebrate CSαβ defensin genes and their expression patterns.
Collapse
|
11
|
Miyashita M, Kitanaka A, Yakio M, Yamazaki Y, Nakagawa Y, Miyagawa H. Complete de novo sequencing of antimicrobial peptides in the venom of the scorpion Isometrus maculatus. Toxicon 2017; 139:1-12. [DOI: 10.1016/j.toxicon.2017.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/30/2017] [Accepted: 09/20/2017] [Indexed: 11/29/2022]
|
12
|
Almaaytah A, Ajingi Y, Abualhaijaa A, Tarazi S, Alshar’i N, Al-Balas Q. Peptide consensus sequence determination for the enhancement of the antimicrobial activity and selectivity of antimicrobial peptides. Infect Drug Resist 2016; 10:1-17. [PMID: 28096686 PMCID: PMC5207468 DOI: 10.2147/idr.s118877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The rise of multidrug-resistant bacteria is causing a serious threat to the world's human population. Recent reports have identified bacterial strains displaying pan drug resistance against antibiotics and generating fears among medical health specialists that humanity is on the dawn of entering a post-antibiotics era. Global research is currently focused on expanding the lifetime of current antibiotics and the development of new antimicrobial agents to tackle the problem of antimicrobial resistance. In the present study, we designed a novel consensus peptide named "Pepcon" through peptide consensus sequence determination among members of a highly homologous group of scorpion antimicrobial peptides. Members of this group were found to possess moderate antimicrobial activity with significant toxicity against mammalian cells. The aim of our design method was to generate a novel peptide with an enhanced antimicrobial potency and selectivity against microbial rather than mammalian cells. The results of our study revealed that the consensus peptide displayed potent antibacterial activities against a broad range of Gram-positive and Gram-negative bacteria. Our membrane permeation studies displayed that the peptide efficiently induced membrane damage and consequently led to cell death through the process of cell lysis. The microbial DNA binding assay of the peptide was found to be very weak suggesting that the peptide is not targeting the microbial DNA. Pepcon induced minimal cytotoxicity at the antimicrobial concentrations as the hemolytic activity was found to be zero at the minimal inhibitory concentrations (MICs). The results of our study demonstrate that the consensus peptide design strategy is efficient in generating peptides.
Collapse
Affiliation(s)
- Ammar Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ya’u Ajingi
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad Abualhaijaa
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Shadi Tarazi
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Nizar Alshar’i
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Qosay Al-Balas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
13
|
High Proteolytic Resistance of Spider-Derived Inhibitor Cystine Knots. INTERNATIONAL JOURNAL OF PEPTIDES 2015; 2015:537508. [PMID: 26843868 PMCID: PMC4710912 DOI: 10.1155/2015/537508] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
Proteolytic stability in gastrointestinal tract and blood plasma is the major obstacle for oral peptide drug development. Inhibitor cystine knots (ICKs) are linear cystine knot peptides which have multifunctional properties and could become promising drug scaffolds. ProTx-I, ProTx-II, GTx1-15, and GsMTx-4 were spider-derived ICKs and incubated with pepsin, trypsin, chymotrypsin, and elastase in physiological conditions to find that all tested peptides were resistant to pepsin, and ProTx-II, GsMTx-4, and GTx1-15 showed resistance to all tested proteases. Also, no ProTx-II degradation was observed in rat blood plasma for 24 hours in vitro and ProTx-II concentration in circulation decreased to half in 40 min, indicating absolute stability in plasma and fast clearance from the system. So far, linear peptides are generally thought to be unsuitable in vivo, but all tested ICKs were not degraded by pepsin and stomach could be selected for the alternative site of drug absorption for fast onset of the drug action. Since spider ICKs are selective inhibitors of various ion channels which are related to the pathology of many diseases, engineered ICKs will make a novel class of peptide medicines which can treat variety of bothering symptoms.
Collapse
|
14
|
Zhang L, Shi W, Zeng XC, Ge F, Yang M, Nie Y, Bao A, Wu S, E G. Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis. J Proteomics 2015; 128:231-50. [DOI: 10.1016/j.jprot.2015.07.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022]
|
15
|
AaeAP1 and AaeAP2: novel antimicrobial peptides from the venom of the scorpion, Androctonus aeneas: structural characterisation, molecular cloning of biosynthetic precursor-encoding cDNAs and engineering of analogues with enhanced antimicrobial and anticancer activities. Toxins (Basel) 2015; 7:219-37. [PMID: 25626077 PMCID: PMC4344621 DOI: 10.3390/toxins7020219] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/19/2015] [Indexed: 11/23/2022] Open
Abstract
The main functions of the abundant polypeptide toxins present in scorpion venoms are the debilitation of arthropod prey or defence against predators. These effects are achieved mainly through the blocking of an array of ion channel types within the membranes of excitable cells. However, while these ion channel-blocking toxins are tightly-folded by multiple disulphide bridges between cysteine residues, there are additional groups of peptides in the venoms that are devoid of cysteine residues. These non-disulphide bridged peptides are the subject of much research interest, and among these are peptides that exhibit antimicrobial activity. Here, we describe two novel non-disulphide-bridged antimicrobial peptides that are present in the venom of the North African scorpion, Androctonus aeneas. The cDNAs encoding the biosynthetic precursors of both peptides were cloned from a venom-derived cDNA library using 3'- and 5'-RACE strategies. Both translated precursors contained open-reading frames of 74 amino acid residues, each encoding one copy of a putative novel nonadecapeptide, whose primary structures were FLFSLIPSVIAGLVSAIRN and FLFSLIPSAIAGLVSAIRN, respectively. Both peptides were C-terminally amidated. Synthetic versions of each natural peptide displayed broad-spectrum antimicrobial activities, but were devoid of antiproliferative activity against human cancer cell lines. However, synthetic analogues of each peptide, engineered for enhanced cationicity and amphipathicity, exhibited increases in antimicrobial potency and acquired antiproliferative activity against a range of human cancer cell lines. These data clearly illustrate the potential that natural peptide templates provide towards the design of synthetic analogues for therapeutic exploitation.
Collapse
|
16
|
Smith JJ, Herzig V, King GF, Alewood PF. The insecticidal potential of venom peptides. Cell Mol Life Sci 2013; 70:3665-93. [PMID: 23525661 PMCID: PMC11114029 DOI: 10.1007/s00018-013-1315-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/19/2022]
Abstract
Pest insect species are a burden to humans as they destroy crops and serve as vectors for a wide range of diseases including malaria and dengue. Chemical insecticides are currently the dominant approach for combating these pests. However, the de-registration of key classes of chemical insecticides due to their perceived ecological and human health risks in combination with the development of insecticide resistance in many pest insect populations has created an urgent need for improved methods of insect pest control. The venoms of arthropod predators such as spiders and scorpions are a promising source of novel insecticidal peptides that often have different modes of action to extant chemical insecticides. These peptides have been optimized via a prey-predator arms race spanning hundreds of millions of years to target specific types of insect ion channels and receptors. Here we review the current literature on insecticidal venom peptides, with a particular focus on their structural and pharmacological diversity, and discuss their potential for deployment as insecticides.
Collapse
Affiliation(s)
- Jennifer J. Smith
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| |
Collapse
|
17
|
Ahmed U, Mujaddad-Ur-Rehman M, Khalid N, Fawad SA, Fatima A. Antibacterial activity of the venom of Heterometrus xanthopus. Indian J Pharmacol 2013; 44:509-11. [PMID: 23087515 PMCID: PMC3469957 DOI: 10.4103/0253-7613.99332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/26/2012] [Accepted: 04/30/2012] [Indexed: 01/07/2023] Open
Abstract
Heterometrus xanthopus (Scorpion) is one of the most venomous and ancient arthropods. Its venom contains anti-microbial peptides like hadrurin, scorpine, Pandinin 1, and Pandinin 2 that are able to effectively kill multidrug-resistant pathogens. The present study was conducted to evaluate the anti-bacterial activity of H. xanthopus venom. Six Gram-positive and Gram-negative bacterial strains were tested against 1/100, 1/10, and 1/1 fractions of distilled water diluted and crude venom. 1/100 and 1/10 dilutions were not successful in any of the six bacterial strains studied while the 1/1 dilution was effective on Bacillus subtilis ATCC 6633, Salmonella typhimurium ATCC 14028, and Pseudomonas aeruginosa ATCC 27853 with highest zone of inhibition were obtained on B. subtilis. Crude venom was effective against Enterococcus faecalis ATCC 14506, B. subtilis, S. typhimurium, and P. aeruginosa. The most effective results were observed on B. subtilis.
Collapse
Affiliation(s)
- Umair Ahmed
- Faculty of Health Sciences, Department of Microbiology, Hazara University, Mansehra, Pakistan
| | | | | | | | | |
Collapse
|
18
|
Hmed B, Serria HT, Mounir ZK. Scorpion peptides: potential use for new drug development. J Toxicol 2013; 2013:958797. [PMID: 23843786 PMCID: PMC3697785 DOI: 10.1155/2013/958797] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/19/2013] [Accepted: 05/20/2013] [Indexed: 12/13/2022] Open
Abstract
Several peptides contained in scorpion fluids showed diverse array of biological activities with high specificities to their targeted sites. Many investigations outlined their potent effects against microbes and showed their potential to modulate various biological mechanisms that are involved in immune, nervous, cardiovascular, and neoplastic diseases. Because of their important structural and functional diversity, it is projected that scorpion-derived peptides could be used to develop new specific drugs. This review summarizes relevant findings improving their use as valuable tools for new drugs development.
Collapse
Affiliation(s)
- BenNasr Hmed
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| | - Hammami Turky Serria
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| | - Zeghal Khaled Mounir
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| |
Collapse
|
19
|
Almaaytah A, Zhou M, Wang L, Chen T, Walker B, Shaw C. Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: biochemical and functional characterization of natural peptides and a single site-substituted analog. Peptides 2012; 35:291-9. [PMID: 22484288 DOI: 10.1016/j.peptides.2012.03.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 11/22/2022]
Abstract
The venoms of scorpions are complex cocktails of polypeptide toxins that fall into two structural categories: those that contain cysteinyl residues with associated disulfide bridges and those that do not. As the majority of lethal toxins acting upon ion channels fall into the first category, most research has been focused there. Here we report the identification and structural characterization of two novel 18-mer antimicrobial peptides from the venom of the North African scorpion, Androctonus amoreuxi. Named AamAP1 and AamAP2, both peptides are C-terminally amidated and differ in primary structure at just two sites: Leu-->Pro at position 2 and Phe-->Ile at position 17. Synthetic replicates of both peptides exhibited a broad-spectrum of antimicrobial activity against a Gram-positive bacterium (Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli) and a yeast (Candida albicans), at concentrations ranging between 20 μM and 150 μM. In this concentration range, both peptides produced significant degrees of hemolysis. A synthetic replicate of AamAP1 containing a single substitution (His-->Lys) at position 8, generated a peptide (AamAP-S1) with enhanced antimicrobial potency (3-5 μM) against the three test organisms and within this concentration range, hemolytic effects were negligible. In addition, this His-->Lys variant exhibited potent growth inhibitory activity (ID(50) 25-40 μm) against several human cancer cell lines and endothelial cells that was absent in both natural peptides. Natural bioactive peptide libraries, such as those that occur in scorpion venoms, thus constitute a unique source of novel lead compounds with drug development potential whose biological properties can be readily manipulated by simple synthetic chemical means.
Collapse
Affiliation(s)
- Ammar Almaaytah
- Natural Drug Discovery Group, School of Pharmacy, Medical Biology Centre, Queen's University, Belfast, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
20
|
Ma Y, Zhao Y, Zhao R, Zhang W, He Y, Wu Y, Cao Z, Guo L, Li W. Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis. Proteomics 2010; 10:2471-85. [PMID: 20443192 DOI: 10.1002/pmic.200900763] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Scorpion venoms contain a vast untapped reservoir of natural products, which have the potential for medicinal value in drug discovery. In this study, toxin components from the scorpion Heterometrus petersii venom were evaluated by transcriptome and proteome analysis.Ten known families of venom peptides and proteins were identified, which include: two families of potassium channel toxins, four families of antimicrobial and cytolytic peptides,and one family from each of the calcium channel toxins, La1-like peptides, phospholipase A2,and the serine proteases. In addition, we also identified 12 atypical families, which include the acid phosphatases, diuretic peptides, and ten orphan families. From the data presented here, the extreme diversity and convergence of toxic components in scorpion venom was uncovered. Our work demonstrates the power of combining transcriptomic and proteomic approaches in the study of animal venoms.
Collapse
Affiliation(s)
- Yibao Ma
- College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gao B, Xu J, del Carmen Rodriguez M, Lanz-Mendoza H, Hernández-Rivas R, Du W, Zhu S. Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie 2010; 92:350-9. [DOI: 10.1016/j.biochi.2010.01.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 01/14/2010] [Indexed: 12/23/2022]
|
22
|
Tian C, Gao B, Fang Q, Ye G, Zhu S. Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective. BMC Genomics 2010; 11:187. [PMID: 20302637 PMCID: PMC2853521 DOI: 10.1186/1471-2164-11-187] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 03/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are an essential component of innate immunity which can rapidly respond to diverse microbial pathogens. Insects, as a rich source of AMPs, attract great attention of scientists in both understanding of the basic biology of the immune system and searching molecular templates for anti-infective drug design. Despite a large number of AMPs have been identified from different insect species, little information in terms of these peptides is available from parasitic insects. RESULTS By using integrated computational approaches to systemically mining the Hymenopteran parasitic wasp Nasonia vitripennis genome, we establish the first AMP repertoire whose members exhibit extensive sequence and structural diversity and can be distinguished into multiple molecular types, including insect and fungal defensin-like peptides (DLPs) with the cysteine-stabilized alpha-helical and beta-sheet (CSalphabeta) fold; Pro- or Gly-rich abaecins and hymenoptaecins; horseshoe crab tachystatin-type AMPs with the inhibitor cystine knot (ICK) fold; and a linear alpha-helical peptide. Inducible expression pattern of seven N. vitripennis AMP genes were verified, and two representative peptides were synthesized and functionally identified to be antibacterial. In comparison with Apis mellifera (Hymenoptera) and several non-Hymenopteran model insects, N. vitripennis has evolved a complex antimicrobial immune system with more genes and larger protein precursors. Three classical strategies that are likely responsible for the complexity increase have been recognized: 1) Gene duplication; 2) Exon duplication; and 3) Exon-shuffling. CONCLUSION The present study established the N. vitripennis peptidome associated with antimicrobial immunity by using a combined computational and experimental strategy. As the first AMP repertoire of a parasitic wasp, our results offer a basic platform for further studying the immunological and evolutionary significances of these newly discovered AMP-like genes in this class of insects.
Collapse
Affiliation(s)
- Caihuan Tian
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
23
|
AdDLP, a bacterial defensin-like peptide, exhibits anti-Plasmodium activity. Biochem Biophys Res Commun 2009; 387:393-8. [DOI: 10.1016/j.bbrc.2009.07.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/10/2009] [Indexed: 11/18/2022]
|
24
|
Antidotes against venomous animals: State of the art and prospectives. J Proteomics 2009; 72:183-99. [DOI: 10.1016/j.jprot.2009.01.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 01/14/2009] [Accepted: 01/14/2009] [Indexed: 12/12/2022]
|
25
|
Gao B, Sherman P, Luo L, Bowie J, Zhu S. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides. FASEB J 2008; 23:1230-45. [DOI: 10.1096/fj.08-122317] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bin Gao
- Group of Animal Innate ImmunityState Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Patrick Sherman
- Department of ChemistryThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Lan Luo
- Group of Animal Innate ImmunityState Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - John Bowie
- Department of ChemistryThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Shunyi Zhu
- Group of Animal Innate ImmunityState Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
26
|
Zhu S, Wei L, Yamasaki K, Gallo RL. Activation of cathepsin L by the cathelin-like domain of protegrin-3. Mol Immunol 2008; 45:2531-6. [PMID: 18289683 DOI: 10.1016/j.molimm.2008.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/05/2008] [Accepted: 01/08/2008] [Indexed: 11/18/2022]
Abstract
The cathelin-like domain (CLD) of the antimicrobial cathelicidin family constitutes a unique protein family with structural similarity to cystatins, the cysteine protease inhibitors. CLDs are derived from the processed amino-terminal prosequence of the cathelicidin precursors with conservation across the vertebrate lineage ranging from fish to human. Initial attempt to characterize a possible inhibitory activity of protegrin-3 (PG3) CLD protein (a member of the multigene family of porcine cathelicidins) against several proteases led to an unexpected finding that PG3 CLD efficiently activated rather than inhibited human cathepsin L. Partial deletion of the L2 loop of PG3 CLD, a structurally equivalent region important in interaction of cystatins with proteases, significantly decreased its activating effect on cathepsin L. A complex model based on this functional loop was proposed to explain this unexpected effect, in which evolutionary emergence of completely opposite biological activity could be associated with structural discrepancies of the loop due to sequence variations between pig and human. Our results provide new insights into deeper understanding of the immune-related biological activity of this so-called pro-domain of the cathelicidin family.
Collapse
Affiliation(s)
- Shunyi Zhu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | |
Collapse
|