1
|
Mahdavi K, Zendehdel M, Baghbanzadeh A. Central effects of opioidergic system on food intake in birds and mammals: a review. Vet Res Commun 2023; 47:1103-1114. [PMID: 37209184 DOI: 10.1007/s11259-023-10142-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Undoubtedly, the food intake process is one of the most necessary physiological functions for the survival of animals and humans. Although; this operation seems simple on the surface, the regulation of the mechanisms involved in it requires the cooperation of many neurotransmitters, peptides, and hormonal factors in the nervous and endocrine systems. Understanding the signals that regulate energy levels and appetite, may open new approaches to therapeutics and drugs used in obesity-related complications. Improving the quality of animal products and health is also possible due to this research. The present review is aimed to sum up the current findings on central effects of opioids on the food consumption of birds and mammals. Based on the reviewed articles, the opioidergic system appears to be one of the key elements in the birds' and mammals' food intake and is closely related to other systems involved in appetite regulation. According to the findings, it seems that the effects of this system on nutritional mechanisms are often applied via kappa- and mu-opioid receptors. Controversial observations have been made regarding opioid receptors, highlighting the need for further studies, especially at the molecular level. The role of opiates in taste or diet craving also showed the efficacy of this system, especially the mu-opioid receptor, on preferences such as diets containing high sugar and fat. Finally, putting the results of this study together with the findings of human experiments and other primates can lead to a correct comprehension of the appetite regulation processes, especially the role of the opioidergic system.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Ali Baghbanzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| |
Collapse
|
2
|
Serirukchutarungsee S, Watari I, Narukawa M, Podyma-Inoue KA, Sangsuriyothai P, Ono T. Two-generation exposure to a high-fat diet induces the change of salty taste preference in rats. Sci Rep 2023; 13:5742. [PMID: 37029190 PMCID: PMC10082214 DOI: 10.1038/s41598-023-31662-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/15/2023] [Indexed: 04/09/2023] Open
Abstract
High-fat diet (HFD) leads to multiple complications, including taste alteration. This study observed the effect of a two-generation exposure to an HFD on the peripheral taste system in offspring. Ten pregnant Wistar rats were assigned a standard diet (SD) (n = 5) or HFD (n = 5) from day 7 of pregnancy through the lactation. Thirty-six male and female 3-week-old offspring were measured for body weight and blood glucose level, and the circumvallate papillae were collected. The other twenty-four 3-week-old offspring were weaned on the same diet as their mothers and raised individually. The taste preference behaviors were studied using the two-bottle taste preference test and analyzed five basic tastes (sweet, bitter, umami, sour, and salty). The expressions of epithelial sodium channel alpha subunit (ENaCα) and angiotensin II receptor type 1 (AT1) in the circumvallate papilla were analyzed by immunohistochemical staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We found increased body weight and salty taste preference of offspring from the HFD group in both sexes. Correspondingly, the AT1 level of the taste bud cells significantly increased in 3-week-old female offspring from the HFD group. An increase in AT1 levels may be a risk factor for changes in salty taste preference.
Collapse
Affiliation(s)
- Saranya Serirukchutarungsee
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo City, Tokyo, 113-8510, Japan
- Department of Pedodontics and Preventive Dentistry, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Ippei Watari
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo City, Tokyo, 113-8510, Japan.
| | - Masataka Narukawa
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Katarzyna Anna Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Pornchanok Sangsuriyothai
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo City, Tokyo, 113-8510, Japan
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo City, Tokyo, 113-8510, Japan
| |
Collapse
|
3
|
Whole Transcriptome Analysis of Hypothalamus in Mice during Short-Term Starvation. Int J Mol Sci 2023; 24:ijms24043204. [PMID: 36834616 PMCID: PMC9968171 DOI: 10.3390/ijms24043204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Molecular profiling of the hypothalamus in response to metabolic shifts is a critical cue to better understand the principle of the central control of whole-body energy metabolism. The transcriptional responses of the rodent hypothalamus to short-term calorie restriction have been documented. However, studies on the identification of hypothalamic secretory factors that potentially contribute to the control of appetite are lacking. In this study, we analyzed the differential expression of hypothalamic genes and compared the selected secretory factors from the fasted mice with those of fed control mice using bulk RNA-sequencing. We verified seven secretory genes that were significantly altered in the hypothalamus of fasted mice. In addition, we determined the response of secretory genes in cultured hypothalamic cells to treatment with ghrelin and leptin. The current study provides further insights into the neuronal response to food restriction at the molecular level and may be useful for understanding the hypothalamic control of appetite.
Collapse
|
4
|
Nielsen MS, Schmidt JB, le Roux CW, Sjödin A. Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on Food Preferences and Potential Mechanisms Involved. Curr Obes Rep 2019; 8:292-300. [PMID: 31222526 DOI: 10.1007/s13679-019-00354-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Bariatric surgery leads to a substantial decrease in energy intake. It is unclear whether this decrease in energy intake is simply due to eating smaller portions of the same food items or a shift in food preference towards less energy-dense foods. This review evaluates the existing literature on changes in food preferences after bariatric surgery and the potential mechanisms involved. RECENT FINDINGS Changes in food preferences have been reported; however, the evidence is mainly based on indirect measurements, such as self-reporting. When changes in food preferences are directly assessed, results contradict previous findings, indicating that results based on self-reporting must be interpreted with caution as they do not necessarily reflect actual behaviour. However, it seems that there could be inter-individual differences in the response to surgery. Future studies investigating changes in food preferences should not only focus on direct measured of behaviour but should also consider the heterogeneity of the response after bariatric surgery.
Collapse
Affiliation(s)
- Mette S Nielsen
- Department of Nutrition, Exercise and Sports, Faculty of Science (Obesity research), University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
- The Danish Diabetes Academy, Odense University Hospital, Odense, Denmark.
| | - Julie B Schmidt
- Department of Nutrition, Exercise and Sports, Faculty of Science (Obesity research), University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Carel W le Roux
- Investigative Science, Imperial College London, London, UK
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science (Obesity research), University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| |
Collapse
|
5
|
Landayan D, Feldman DS, Wolf FW. Satiation state-dependent dopaminergic control of foraging in Drosophila. Sci Rep 2018; 8:5777. [PMID: 29636522 PMCID: PMC5893590 DOI: 10.1038/s41598-018-24217-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/28/2018] [Indexed: 01/01/2023] Open
Abstract
Hunger evokes stereotypic behaviors that favor the discovery of nutrients. The neural pathways that coordinate internal and external cues to motivate foraging behaviors are only partly known. Drosophila that are food deprived increase locomotor activity, are more efficient in locating a discrete source of nutrition, and are willing to overcome adversity to obtain food. We developed a simple open field assay that allows flies to freely perform multiple steps of the foraging sequence, and we show that two distinct dopaminergic neural circuits regulate measures of foraging behaviors. One group, the PAM neurons, functions in food deprived flies while the other functions in well fed flies, and both promote foraging. These satiation state-dependent circuits converge on dopamine D1 receptor-expressing Kenyon cells of the mushroom body, where neural activity promotes foraging independent of satiation state. These findings provide evidence for active foraging in well-fed flies that is separable from hunger-driven foraging.
Collapse
Affiliation(s)
- Dan Landayan
- Quantitative & Systems Biology, University of California, Merced, Merced, CA, 95343, USA
| | - David S Feldman
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Fred W Wolf
- Quantitative & Systems Biology, University of California, Merced, Merced, CA, 95343, USA.
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA.
| |
Collapse
|
6
|
Sita LV, Diniz GB, Canteras NS, Xavier GF, Bittencourt JC. Effect of intrahippocampal administration of anti-melanin-concentrating hormone on spatial food-seeking behavior in rats. Peptides 2016; 76:130-8. [PMID: 26804300 DOI: 10.1016/j.peptides.2015.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/07/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022]
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic peptide that plays a critical role in the regulation of food intake and energy metabolism. In this study, we investigated the potential role of dense hippocampal MCH innervation in the spatially oriented food-seeking component of feeding behavior. Rats were trained for eight sessions to seek food buried in an arena using the working memory version of the food-seeking behavior (FSB) task. The testing day involved a bilateral anti-MCH injection into the hippocampal formation followed by two trials. The anti-MCH injection did not interfere with the performance during the first trial on the testing day, which was similar to the training trials. However, during the second testing trial, when no food was presented in the arena, the control subjects exhibited a dramatic increase in the latency to initiate digging. Treatment with an anti-MCH antibody did not interfere with either the food-seeking behavior or the spatial orientation of the subjects, but the increase in the latency to start digging observed in the control subjects was prevented. These results are discussed in terms of a potential MCH-mediated hippocampal role in the integration of the sensory information necessary for decision-making in the pre-ingestive component of feeding behavior.
Collapse
Affiliation(s)
- Luciane Valéria Sita
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo-USP, 05508-000 Sao Paulo, Brazil
| | - Giovanne Baroni Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo-USP, 05508-000 Sao Paulo, Brazil
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo-USP, 05508-000 Sao Paulo, Brazil; Center for Neuroscience and Behavior, Institute of Psychology, University of Sao Paulo, 05508-030 Sao Paulo, Brazil
| | - Gilberto Fernando Xavier
- Department of Physiology, Institute of Biosciences, University of Sao Paulo-USP, 05508-090 Sao Paulo, Brazil; Center for Neuroscience and Behavior, Institute of Psychology, University of Sao Paulo, 05508-030 Sao Paulo, Brazil
| | - Jackson Cioni Bittencourt
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo-USP, 05508-000 Sao Paulo, Brazil; Center for Neuroscience and Behavior, Institute of Psychology, University of Sao Paulo, 05508-030 Sao Paulo, Brazil.
| |
Collapse
|
7
|
Involvement of opioid signaling in food preference and motivation. PROGRESS IN BRAIN RESEARCH 2016; 229:159-187. [DOI: 10.1016/bs.pbr.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Zhang W, Yan Z, Li B, Jan LY, Jan YN. Identification of motor neurons and a mechanosensitive sensory neuron in the defecation circuitry of Drosophila larvae. eLife 2014; 3:e03293. [PMID: 25358089 PMCID: PMC4244571 DOI: 10.7554/elife.03293] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/29/2014] [Indexed: 01/19/2023] Open
Abstract
Defecation allows the body to eliminate waste, an essential step in food processing for animal survival. In contrast to the extensive studies of feeding, its obligate counterpart, defecation, has received much less attention until recently. In this study, we report our characterizations of the defecation behavior of Drosophila larvae and its neural basis. Drosophila larvae display defecation cycles of stereotypic frequency, involving sequential contraction of hindgut and anal sphincter. The defecation behavior requires two groups of motor neurons that innervate hindgut and anal sphincter, respectively, and can excite gut muscles directly. These two groups of motor neurons fire sequentially with the same periodicity as the defecation behavior, as revealed by in vivo Ca(2+) imaging. Moreover, we identified a single mechanosensitive sensory neuron that innervates the anal slit and senses the opening of the intestine terminus. This anus sensory neuron relies on the TRP channel NOMPC but not on INACTIVE, NANCHUNG, or PIEZO for mechanotransduction.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Zhiqiang Yan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Bingxue Li
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Lily Yeh Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Yuh Nung Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
9
|
Webster RI, Newmyer BA, Furuse M, Gilbert ER, Cline MA. The orexigenic effect of kyotorphin in chicks involves hypothalamus and brainstem activity and opioid receptors. Neuropeptides 2013; 47:193-8. [PMID: 23261360 DOI: 10.1016/j.npep.2012.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/10/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
Abstract
Kyotorphin (KTP), first isolated in the bovine brain and now having been identified in a variety of species, is known most extensively for its analgesic-like properties. KTP indirectly stimulates opioid receptors by releasing methionine enkephalin (met-enkephalin). Stimulation of opioid receptors is linked to hunger perception. In the present study, we sought to elucidate the effect of KTP on food intake in the neonatal chick. Intracerebroventricular injection of 0.6, 3.0 and 12 nmol KTP increased feeding up to 60 min post-injection. KTP treated chicks increased pecking efficiency and decreased time spent in deep rest, 20 and 30 min following injection, respectively. Gastrointestinal transit rate was not affected by KTP. Blocking mu, delta, and kappa opioid receptors suppressed orexigenic effects of KTP, suggesting that all three types are involved in KTP's stimulatory effect. The lateral hypothalamus (LH) and arcuate nucleus (ARC) of the hypothalamus and the nucleus of the solitary tract (NTS), within the brainstem had increased numbers of c-Fos immunoreactive cells following KTP treatment. In conclusion, KTP caused increased feeding in broiler-type chicks, likely through activation of the LH, ARC, and NTS.
Collapse
|
10
|
Coexisting role of fasting or feeding and dietary lipids in the control of gene expression of enzymes involved in the synthesis of saturated, monounsaturated and polyunsaturated fatty acids. Gene 2012; 496:28-36. [DOI: 10.1016/j.gene.2011.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 01/17/2023]
|
11
|
LaJeunesse DR, Johnson B, Presnell JS, Catignas KK, Zapotoczny G. Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells. BMC PHYSIOLOGY 2010; 10:14. [PMID: 20698983 PMCID: PMC2933646 DOI: 10.1186/1472-6793-10-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/10/2010] [Indexed: 11/24/2022]
Abstract
Background The underlying cellular and molecular mechanisms that coordinate the physiological processes in digestion are complex, cryptic, and involve the integration of multiple cellular and organ systems. In all intestines, peristaltic action of the gut moves food through the various stages of digestion from the anterior end towards the posterior, with the rate of flow dependent on signals, both intrinsic and extrinsic to the gut itself. Results We have identified an enteroendocrine cell type that regulates gut motility in the Drosophila melanogaster larval midgut. These cells are located at the junction of the anterior and the acidic portions of the midgut and are a group of enteroendocrine cells that express the peptide hormone Diuretic Hormone 31 in this region of the gut. Using cell ablation and ectopic activation via expression of the Chlamydomonas reinhardtii blue light-activated channelopsin, we demonstrate that these enteroendocrine cells are both necessary and sufficient for the peristalsis in the junction region of the midgut and require the Diuretic Hormone 31 to affect normal peristalsis in this region. Within the same junction region of the midgut, we have also identified morphological features suggesting that this region acts as a valve that regulates the transit of food from the anterior midgut into the acidic portion of the gut. Conclusions We have characterized and described a set of enteroendocrine cells called the Midgut Junction DH31 expressing cells that are required for peristaltic movement in the junction region between the anterior portion and acidic region of the larval midgut of Drosophila melanogaster. We have shown that the Midgut Junction DH31 expressing cells are necessary and sufficient for motility and that the peptide hormone DH31 is required for peristalsis in the junction region of the midgut. The Drosophila model system will allow for a further dissection of the digestion process and provide a better understanding of the mechanisms that regulate digestion in all organisms.
Collapse
Affiliation(s)
- Dennis R LaJeunesse
- Department of Biology, 312 Eberhart Bldg,, University of North Carolina Greensboro, Greensboro, North Carolina 27402, USA.
| | | | | | | | | |
Collapse
|
12
|
Tsurugizawa T, Uematsu A, Nakamura E, Hasumura M, Hirota M, Kondoh T, Uneyama H, Torii K. Mechanisms of neural response to gastrointestinal nutritive stimuli: the gut-brain axis. Gastroenterology 2009; 137:262-73. [PMID: 19248781 DOI: 10.1053/j.gastro.2009.02.057] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 02/12/2009] [Accepted: 02/17/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The gut-brain axis, which transmits nutrient information from the gastrointestinal tract to the brain, is important for the detection of dietary nutrients. We used functional magnetic resonance imaging of the rat forebrain to investigate how this pathway conveys nutrient information from the gastrointestinal tract to the brain. METHODS We investigated the contribution of the vagus nerve by comparing changes of blood oxygenation level-dependent signals between 24 control rats and 22 rats that had undergone subdiaphragmatic vagotomy. Functional data were collected under alpha-chloralose anesthesia continuously 30 minutes before and 60 minutes after the start of intragastric infusion of L-glutamate or glucose. Plasma insulin, L-glutamate, and blood glucose levels were measured and compared with blood oxygenation level-dependent signals. RESULTS Intragastric administration of L-glutamate or glucose induced activation in distinct forebrain regions, including the cortex, hypothalamus, and limbic areas, at different time points. Vagotomy strongly suppressed L-glutamate-induced activation in most parts of the forebrain. In contrast, vagotomy did not significantly affect brain activation induced by glucose. Instead, blood oxygenation level-dependent signals in the nucleus accumbens and amygdala, in response to gastrointestinal glucose, varied along with fluctuations of plasma insulin levels. CONCLUSIONS These results indicate that the vagus nerve and insulin are important for signaling the presence of gastrointestinal nutrients to the rat forebrain. These signal pathways depend on the ingested nutrients.
Collapse
|
13
|
|