1
|
Kobayashi S, Hahn Y, Silverstein B, Singh M, Fleitz A, Van J, Chen H, Liang Q. Lysosomal dysfunction in diabetic cardiomyopathy. FRONTIERS IN AGING 2023; 4:1113200. [PMID: 36742461 PMCID: PMC9894896 DOI: 10.3389/fragi.2023.1113200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Diabetes is a major risk factor for a variety of cardiovascular complications, while diabetic cardiomyopathy, a disease specific to the myocardium independent of vascular lesions, is an important causative factor for increased risk of heart failure and mortality in diabetic populations. Lysosomes have long been recognized as intracellular trash bags and recycling facilities. However, recent studies have revealed that lysosomes are sophisticated signaling hubs that play remarkably diverse roles in adapting cell metabolism to an ever-changing environment. Despite advances in our understanding of the physiological roles of lysosomes, the events leading to lysosomal dysfunction and how they relate to the overall pathophysiology of the diabetic heart remain unclear and are under intense investigation. In this review, we summarize recent advances regarding lysosomal injury and its roles in diabetic cardiomyopathy.
Collapse
|
2
|
Anapindi KDB, Romanova EV, Checco JW, Sweedler JV. Mass Spectrometry Approaches Empowering Neuropeptide Discovery and Therapeutics. Pharmacol Rev 2022; 74:662-679. [PMID: 35710134 DOI: 10.1124/pharmrev.121.000423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of insulin in the early 1900s ushered in the era of research related to peptides acting as hormones and neuromodulators, among other regulatory roles. These essential gene products are found in all organisms, from the most primitive to the most evolved, and carry important biologic information that coordinates complex physiology and behavior; their misregulation has been implicated in a variety of diseases. The evolutionary origins of at least 30 neuropeptide signaling systems have been traced to the common ancestor of protostomes and deuterostomes. With the use of relevant animal models and modern technologies, we can gain mechanistic insight into orthologous and paralogous endogenous peptides and translate that knowledge into medically relevant insights and new treatments. Groundbreaking advances in medicine and basic science influence how signaling peptides are defined today. The precise mechanistic pathways for over 100 endogenous peptides in mammals are now known and have laid the foundation for multiple drug development pipelines. Peptide biologics have become valuable drugs due to their unique specificity and biologic activity, lack of toxic metabolites, and minimal undesirable interactions. This review outlines modern technologies that enable neuropeptide discovery and characterization, and highlights lessons from nature made possible by neuropeptide research in relevant animal models that is being adopted by the pharmaceutical industry. We conclude with a brief overview of approaches/strategies for effective development of peptides as drugs. SIGNIFICANCE STATEMENT: Neuropeptides, an important class of cell-cell signaling molecules, are involved in maintaining a range of physiological functions. Since the discovery of insulin's activity, over 100 bioactive peptides and peptide analogs have been used as therapeutics. Because these are complex molecules not easily predicted from a genome and their activity can change with subtle chemical modifications, mass spectrometry (MS) has significantly empowered peptide discovery and characterization. This review highlights contributions of MS-based research towards the development of therapeutic peptides.
Collapse
Affiliation(s)
- Krishna D B Anapindi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - James W Checco
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| |
Collapse
|
3
|
Ali A, Alzeyoudi SAR, Almutawa SA, Alnajjar AN, Vijayan R. Molecular basis of the therapeutic properties of hemorphins. Pharmacol Res 2020; 158:104855. [PMID: 32438036 DOI: 10.1016/j.phrs.2020.104855] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022]
Abstract
Hemorphins are endogenous peptides, 4-10 amino acids long, belonging to the family of atypical opioid peptides released during the sequential cleavage of hemoglobin protein. Hemorphins have been shown to exhibit diverse therapeutic effects in both human and animal models. However, the precise cellular and molecular mechanisms involved in such effects remain elusive. In this review, we summarize and propose potential mechanisms based on studies that investigated the biological activity of hemorphins of different lengths on multiple therapeutic targets. Special emphasis is given to molecular events related to renin-angiotensin system (RAS), opioid receptors and insulin-regulated aminopeptidase receptor (IRAP). This review provides a comprehensive coverage of the molecular mechanisms that underpin the therapeutic potential of hemorphins. Furthermore, it highlights the role of various hemorphin residues in pathological conditions, which could be explored further for therapeutic purposes.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | | | - Shamma Abdulla Almutawa
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Alya Nasir Alnajjar
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
4
|
Hyperglycemia-induced cardiomyocyte death is mediated by lysosomal membrane injury and aberrant expression of cathepsin D. Biochem Biophys Res Commun 2019; 523:239-245. [PMID: 31862139 DOI: 10.1016/j.bbrc.2019.12.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/10/2019] [Indexed: 11/24/2022]
Abstract
Hyperglycemia is an independent risk factor for diabetic heart failure. However, the mechanisms that mediate hyperglycemia-induced cardiac damage remain poorly understood. Previous studies have shown an association between lysosomal dysfunction and diabetic heart injury. The present study examined if mimicking hyperglycemia in cultured cardiomyocytes could induce lysosomal membrane permeabilization (LMP), leading to the release of lysosome enzymes and subsequent cell death. High glucose (HG) reduced the number of lysosomes with acidic pH as shown by a fluorescent pH indicator. Also, HG induced lysosomal membrane injury as shown by an accumulation of Galectin3-RFP puncta, which was accompanied by the leakage of cathepsin D (CTSD), an aspartic protease that normally resides within the lysosomal lumen. Furthermore, CTSD expression was increased in HG-cultured cardiomyocytes and in the hearts of 2 mouse models of type 1 diabetes. Either CTSD knockdown with siRNA or inhibition of CTSD activity by pepstatin A markedly diminished HG-induced cardiomyocyte death, while CTSD overexpression exaggerated HG-induced cell death. Together, these results suggested that HG increased CTSD expression, induced LMP and triggered CTSD release from the lysosomes, which collectively contributed to HG-induced cardiomyocyte injury.
Collapse
|
5
|
Singh H, Yu Y, Suh MJ, Torralba MG, Stenzel RD, Tovchigrechko A, Thovarai V, Harkins DM, Rajagopala SV, Osborne W, Cogen FR, Kaplowitz PB, Nelson KE, Madupu R, Pieper R. Type 1 Diabetes: Urinary Proteomics and Protein Network Analysis Support Perturbation of Lysosomal Function. Theranostics 2017; 7:2704-2717. [PMID: 28819457 PMCID: PMC5558563 DOI: 10.7150/thno.19679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
While insulin replacement therapy restores the health and prevents the onset of diabetic complications (DC) for many decades, some T1D patients have elevated hemoglobin A1c values suggesting poor glycemic control, a risk factor of DC. We surveyed the stool microbiome and urinary proteome of a cohort of 220 adolescents and children, half of which had lived with T1D for an average of 7 years and half of which were healthy siblings. Phylogenetic analysis of the 16S rRNA gene did not reveal significant differences in gut microbial alpha-diversity comparing the two cohorts. The urinary proteome of T1D patients revealed increased abundances of several lysosomal proteins that correlated with elevated HbA1c values. In silico protein network analysis linked such proteins to extracellular matrix components and the glycoprotein LRG1. LRG1 is a prominent inflammation and neovascularization biomarker. We hypothesize that these changes implicate aberrant glycation of macromolecules that alter lysosomal function and metabolism in renal tubular epithelial cells, cells that line part of the upper urinary tract.
Collapse
|
6
|
Reddy S, Amutha A, Rajalakshmi R, Bhaskaran R, Monickaraj F, Rangasamy S, Anjana RM, Abhijit S, Gokulakrishnan K, Das A, Mohan V, Balasubramanyam M. Association of increased levels of MCP-1 and cathepsin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy. J Diabetes Complications 2017; 31:804-809. [PMID: 28336215 DOI: 10.1016/j.jdiacomp.2017.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023]
Abstract
AIM Young onset type 2 diabetes patients (T2DM-Y) have been shown to possess an increased risk of developing microvascular complications particularly diabetic retinopathy. However, the molecular mechanisms are not clearly understood. In this study, we investigated the serum levels of monocyte chemotactic protein 1 (MCP-1) and cathepsin-D in patients with T2DM-Y without and with diabetic retinopathy. METHODS In this case-control study, participants comprised individuals with normal glucose tolerance (NGT=40), patients with type 2 diabetes mellitus (T2DM=35), non-proliferative diabetic retinopathy (NPDR=35) and proliferative diabetic retinopathy (PDR=35). Clinical characterization of the study subjects was done by standard procedures and MCP-1 and cathepsin-D were measured by ELISA. RESULTS Compared to control individuals, patients with T2DM-Y, NPDR and PDR exhibited significantly (p<0.001) higher levels of MCP-1. Cathepsin-D levels were also significantly (p<0.001) higher in patients with T2DM-Y without and with diabetic retinopathy. Correlation analysis revealed a positive association (p<0.001) between MCP-1 and cathepsin-D levels. There was also a significant negative correlation of MCP1/cathepsin-D with C-peptide levels. The association of increased levels of MCP-1/cathepsin-D in patients with DR persisted even after adjusting for all the confounding factors. CONCLUSION As both MCP-1 and cathepsin-D are molecular signatures of cellular senescence, we suggest that these biomarkers might be useful to predict the development of retinopathy in T2DM-Y patients.
Collapse
Affiliation(s)
- Sruthi Reddy
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Anandakumar Amutha
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Ramachandran Rajalakshmi
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Regin Bhaskaran
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Finny Monickaraj
- Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sampathkumar Rangasamy
- Neurogenomics Division, Translational Genomics Research Institute, (TGen), Phoenix, AZ, USA
| | - Ranjit Mohan Anjana
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Shiny Abhijit
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Kuppan Gokulakrishnan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Arup Das
- Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Viswanathan Mohan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India..
| |
Collapse
|
7
|
Gonçalves I, Hultman K, Dunér P, Edsfeldt A, Hedblad B, Fredrikson GN, Björkbacka H, Nilsson J, Bengtsson E. High levels of cathepsin D and cystatin B are associated with increased risk of coronary events. Open Heart 2016; 3:e000353. [PMID: 26848396 PMCID: PMC4731836 DOI: 10.1136/openhrt-2015-000353] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/19/2015] [Accepted: 12/23/2015] [Indexed: 12/01/2022] Open
Abstract
Objective The majority of acute coronary syndromes are caused by plaque ruptures. Proteases secreted by macrophages play an important role in plaque ruptures by degrading extracellular matrix proteins in the fibrous cap. Matrix metalloproteinases have been shown to be markers for cardiovascular disease whereas the members of the cathepsin protease family are less studied. Methods Cathepsin D, cathepsin L and cystatin B were measured in plasma at baseline from 384 individuals who developed coronary events (CEs), and from 409 age-matched and sex-matched controls from the Malmö Diet and Cancer cardiovascular cohort. Results Cathepsin D (180 (142–238) vs 163 (128–210), p<0.001), cathepsin L (55 (44–73) vs 52 (43–67), p<0.05) and cystatin B levels (45 (36–57) vs 42 (33–52), p<0.001) were significantly increased in CE cases compared to controls. In addition, increased cathepsin D (220 (165–313) vs 167 (133–211), p<0.001), cathepsin L (61 (46–80) vs 53 (43–68), p<0.05) and cystatin B (46 (38–58) vs 43 (34–54), p<0.05) were associated with prevalent diabetes. Furthermore, cathepsin D and cystatin B were increased in smokers. The HRs for incident CE comparing the highest to the lowest tertile(s) of cathepsin D and cystatin B were 1.34 (95% CI 1.02 to 1.75) and 1.26 (95% CI 1.01 to 1.57), respectively, after adjusting for age, sex, low-density lipoprotein/high-density lipoprotein ratio, triglycerides, body mass index, hypertension and glucose, but these associations did not remain significant after further addition of smoking to the model. In addition, cathepsin D was increased in incident CE cases among smokers after adjusting for cardiovascular risk factors. Conclusions The associations of cathepsin D and cystatin B with future CE provide clinical support for a role of these factors in cardiovascular disease, which for cathepsin D may be of particular importance for smokers.
Collapse
Affiliation(s)
- Isabel Gonçalves
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Karin Hultman
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences , Lund University , Malmö , Sweden
| | - Pontus Dunér
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences , Lund University , Malmö , Sweden
| | - Andreas Edsfeldt
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Bo Hedblad
- Department of Clinical Sciences , Lund University , Malmö , Sweden
| | - Gunilla Nordin Fredrikson
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences , Lund University , Malmö , Sweden
| | - Harry Björkbacka
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences , Lund University , Malmö , Sweden
| | - Jan Nilsson
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences , Lund University , Malmö , Sweden
| | - Eva Bengtsson
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences , Lund University , Malmö , Sweden
| |
Collapse
|
8
|
Monickaraj F, McGuire PG, Nitta CF, Ghosh K, Das A. Cathepsin D: an Mϕ-derived factor mediating increased endothelial cell permeability with implications for alteration of the blood-retinal barrier in diabetic retinopathy. FASEB J 2015; 30:1670-82. [PMID: 26718887 DOI: 10.1096/fj.15-279802] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023]
Abstract
Inflammation plays an important role in the pathogenesis of diabetic retinopathy (DR). We have previously reported increased monocyte (Mono) trafficking into the retinas of diabetic animals. In this study, we have examined the effect of activated Monos on retinal endothelial cells (ECs). The U937 Mϕ-conditioned medium (CM) significantly decreased the transendothelial resistance of EC monolayers as measured by electric cell-substrate impedance sensing (P= 0.007). The CM was fractioned, and the effective fraction (30-100 kDa) was analyzed by liquid chromatography-mass spectrometry, and cathepsin D (CD) was identified as a major secreted product. Immunoprecipitated CD resulted in decreased resistance in ECs (P= 0.006). The specificity of CD in mediating alterations of the EC barrier was confirmed using small interfering RNA. The decreased resistance correlated with a significantly increased gap between ECs. CD altered the Ras homolog gene family, member A/Rho-associated kinase pathway with increased stress actin filament formation in the EC layer. Increased CD levels were found in the retinas of diabetic mice (3-fold) and serum samples of patients with diabetic macular edema (1.6-fold) measured by Western blot and ELISA. These findings suggest an important role for Mϕ-derived CD in altering the blood-retinal barrier and reveal a potential therapeutic target in the treatment of DR.-Monickaraj, F., McGuire, P. G., Nitta, C. F., Ghosh, K., Das, A. Cathepsin D: an Mϕ-derived factor mediating increased endothelial cell permeability with implications for alteration of the blood-retinal barrier in diabetic retinopathy.
Collapse
Affiliation(s)
- Finny Monickaraj
- *Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA; New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA; and Department of Bioengineering, University of California, Riverside, Riverside, California, USA
| | - Paul G McGuire
- *Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA; New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA; and Department of Bioengineering, University of California, Riverside, Riverside, California, USA
| | - Carolina Franco Nitta
- *Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA; New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA; and Department of Bioengineering, University of California, Riverside, Riverside, California, USA
| | - Kaustabh Ghosh
- *Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA; New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA; and Department of Bioengineering, University of California, Riverside, Riverside, California, USA
| | - Arup Das
- *Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA; New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA; and Department of Bioengineering, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
9
|
Ahmed RH, Huri HZ, Al-Hamodi Z, Salem SD, Muniandy S. Serum Levels of Soluble CD26/Dipeptidyl Peptidase-IV in Type 2 Diabetes Mellitus and Its Association with Metabolic Syndrome and Therapy with Antidiabetic Agents in Malaysian Subjects. PLoS One 2015; 10:e0140618. [PMID: 26474470 PMCID: PMC4608690 DOI: 10.1371/journal.pone.0140618] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/27/2015] [Indexed: 12/15/2022] Open
Abstract
Background A soluble form of CD26/dipeptidyl peptidase-IV (sCD26/DPP-IV) induces DPP-IV enzymatic activity that degrades incretin. We investigated fasting serum levels of sCD26/DPP-IV and active glucagon-like peptide-1 (GLP-1) in Malaysian patients with type 2 diabetes mellitus (T2DM) with and without metabolic syndrome (MetS), as well as the associations between sCD26/DPP-IV levels, MetS, and antidiabetic therapy. Methods We assessed sCD26/DPP-IV levels, active GLP-1 levels, body mass index (BMI), glucose, insulin, A1c, glucose homeostasis indices, and lipid profiles in 549 Malaysian subjects (including 257 T2DM patients with MetS, 57 T2DM patients without MetS, 71 non-diabetics with MetS, and 164 control subjects without diabetes or metabolic syndrome). Results Fasting serum levels of sCD26/DPP-IV were significantly higher in T2DM patients with and without MetS than in normal subjects. Likewise, sCD26/DPP-IV levels were significantly higher in patients with T2DM and MetS than in non-diabetic patients with MetS. However, active GLP-1 levels were significantly lower in T2DM patients both with and without MetS than in normal subjects. In T2DM subjects, sCD26/DPP-IV levels were associated with significantly higher A1c levels, but were significantly lower in patients using monotherapy with metformin. In addition, no significant differences in sCD26/DPP-IV levels were found between diabetic subjects with and without MetS. Furthermore, sCD26/DPP-IV levels were negatively correlated with active GLP-1 levels in T2DM patients both with and without MetS. In normal subjects, sCD26/DPP-IV levels were associated with increased BMI, cholesterol, and LDL-cholesterol (LDL-c) levels. Conclusion Serum sCD26/DPP-IV levels increased in T2DM subjects with and without MetS. Active GLP-1 levels decreased in T2DM patients both with and without MetS. In addition, sCD26/DPP-IV levels were associated with Alc levels and negatively correlated with active GLP-1 levels. Moreover, metformin monotherapy was associated with reduced sCD26/DPP-IV levels. In normal subjects, sCD26/DPP-IV levels were associated with increased BMI, cholesterol, and LDL-c.
Collapse
Affiliation(s)
- Radwan H. Ahmed
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (RHA); (SM)
| | - Hasniza Zaman Huri
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Clinical Investigation Centre, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Zaid Al-Hamodi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Sana’a University, Sana’a, Yemen
| | - Sameer D. Salem
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Sana’a University, Sana’a, Yemen
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (RHA); (SM)
| |
Collapse
|
10
|
Cubedo J, Padró T, García-Arguinzonis M, Vilahur G, Miñambres I, Pou JM, Ybarra J, Badimon L. A novel truncated form of apolipoprotein A-I transported by dense LDL is increased in diabetic patients. J Lipid Res 2015; 56:1762-73. [PMID: 26168996 DOI: 10.1194/jlr.p057513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 11/20/2022] Open
Abstract
Diabetic (DM) patients have exacerbated atherosclerosis and high CVD burden. Changes in lipid metabolism, lipoprotein structure, and dysfunctional HDL are characteristics of diabetes. Our aim was to investigate whether serum ApoA-I, the main protein in HDL, was biochemically modified in DM patients. By using proteomic technologies, we have identified a 26 kDa ApoA-I form in serum. MS analysis revealed this 26 kDa form as a novel truncated variant lacking amino acids 1-38, ApoA-IΔ(1-38). DM patients show a 2-fold increase in ApoA-IΔ(1-38) over nondiabetic individuals. ApoA-IΔ(1-38) is found in LDL, but not in VLDL or HDL, with an increase in LDL3 and LDL4 subfractions. To identify candidate mechanisms of ApoA-I truncation, we investigated potentially involved enzymes by in silico data mining, and tested the most probable molecule in an established animal model of diabetes. We have found increased hepatic cathepsin D activity as one of the potential proteases involved in ApoA-I truncation. Cathepsin D-cleaved ApoA-I exhibited increased LDL binding affinity and decreased antioxidant activity against LDL oxidation. In conclusion, we show for the first time: a) presence of a novel truncated ApoA-I form, ApoA-IΔ(1-38), in human serum; b) ApoA-IΔ(1-38) is transported by LDL; c) ApoA-IΔ(1-38) is increased in dense LDL fractions of DM patients; and d) cathepsin D-ApoA-I truncation may lead to ApoA-IΔ(1-38) binding to LDLs, increasing their susceptibility to oxidation and contributing to the high cardiovascular risk of DM patients.
Collapse
Affiliation(s)
- Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC), Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center (CSIC-ICCC), Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Maisa García-Arguinzonis
- Cardiovascular Research Center (CSIC-ICCC), Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Research Center (CSIC-ICCC), Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Inka Miñambres
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jose María Pou
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain Cardiovascular Research Chair, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Maraninchi M, Feron D, Fruitier-Arnaudin I, Bégu-Le Corroller A, Nogueira JP, Mancini J, Valéro R, Piot JM, Vialettes B. Serum hemorphin-7 levels are decreased in obesity. Obesity (Silver Spring) 2013; 21:378-81. [PMID: 23532992 DOI: 10.1002/oby.20280] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 05/31/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Hemorphin peptides exhibit biological activities that interfere with the endorphin system, the inflammatory response, and blood-pressure control. VV-hemorphin-7 and LVV-hemorphin-7 peptides exert a hypotensive effect, in particular, by inhibiting the renin-angiotensin system. Furthermore, levels of circulating hemorphin-7 peptides have been found to be decreased in diseases such as type 1 and type 2 diabetes. DESIGN AND METHODS Because type 2 diabetes and obesity share common features, such as insulin resistance, microinflammation, high glomerular-filtration rate (GFR), and cardiovascular risk, we evaluated serum VV-hemorphin-7 like immunoreactivity (VVH7-i.r.) levels, using an enzyme-linked immunosorbent assay method, on a group of 54 obese subjects without diabetes or hypertension, compared with a group of 33 healthy normal-weight subjects. RESULTS Circulating VVH7-i.r. levels were significantly decreased in the obese group compared with the control group (1.98 ± 0.19 vs. 4.86 ± 0.54 µmol/l, respectively, P < 0.01), and a significant negative correlation between VVH7-i.r. and diastolic blood pressure (DBP) was found in obese patients (r = -0.35, P = 0.011). There was no significant correlation between VVH7-i.r. level and insulin resistance, metabolic syndrome, or GFR. CONCLUSIONS The decreased serum hemorphin-7 found in obese subjects, as in diabetes, may contribute to the development of hypertension and to the cardiovascular risk associated with these metabolic diseases.
Collapse
Affiliation(s)
- Marie Maraninchi
- Aix Marseille Université, Inserm, INRA, NORT UMR_1062, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Aghili N, Devaney JM, Alderman LO, Zukowska Z, Epstein SE, Burnett MS. Polymorphisms in dipeptidyl peptidase IV gene are associated with the risk of myocardial infarction in patients with atherosclerosis. Neuropeptides 2012; 46:367-71. [PMID: 23122333 DOI: 10.1016/j.npep.2012.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dipeptidyl peptidase IV (DPP-IV) is not only important in pancreatic β-cell regulation but also has proinflammatory actions that can contribute to atherosclerosis progression. Previously, we showed that DPP-IV is co-localized with CD31 (an endothelial cell marker) in the neovessels within the human atherosclerotic plaques. These characteristics of DPP-IV may predispose patients with coronary artery disease (CAD) to plaque rupture and thus to myocardial infarction. The goal of this investigation was to determine whether genetic alterations in DPP-IV predispose to plaque vulnerability and myocardial infarction (MI). METHODS Between Aug 2004, and March 2007, blood samples of patients (age <60) with angiographically documented CAD were collected. Demographic, clinical, risk factor, and angiographic data were recorded. Eight hundred and seventy five patients of European ancestry with angiographic CAD were divided into those with MI (n=421) and those without (n=454). A genome-wide association study was performed using the Affymetrix 6.0 chip to identify loci that predispose to MI. In the current study we only focused on DPP4 gene to assess the association of single nucleotide polymorphisms (SNPs) in the DPP-IV gene and risk of MI in patients with CAD. For genotyped SNPs, association was tested by logistic regression with significance level of 0.05. Plasma DPP-IV level was measured using a commercial ELISA kit. RESULTS Average patients' age at diagnosis of CAD was 46.8years for MI group and 50.8 in the non MI group. There was no difference in distribution of traditional risk factors between the two groups. We identified one SNP (rs3788979) that was significantly related to angiographic CAD with MI, vs. without MI (OR: 1.36, p=0.03). The association of the identified SNP to MI risk was not attenuated after adjustment for traditional risk factors. The SNP was associated with lower levels of plasma DPP-IV (p=0.005). Moreover, CAD patients with the major alleles (GG) and no MI had highest plasma DPP-IV levels. (481.6, p=0.002). CONCLUSIONS A polymorphism in the DPP-IV gene in patients with known CAD may increase the risk of MI. This SNP is associated with decreased plasma DPP4 level in patients with MI.
Collapse
Affiliation(s)
- Nima Aghili
- Tufts Medical Center, Department of Cardiovascular Disease, 800 Washington St., Boston, MA, United States.
| | | | | | | | | | | |
Collapse
|
13
|
Matić IZ, Ðorđić M, Grozdanić N, Damjanović A, Kolundžija B, Erić-Nikolić A, Džodić R, Šašić M, Nikolić S, Dobrosavljević D, Rašković S, Andrejević S, Gavrilović D, Cordero OJ, Juranić ZD. Serum activity of DPPIV and its expression on lymphocytes in patients with melanoma and in people with vitiligo. BMC Immunol 2012; 13:48. [PMID: 22908963 PMCID: PMC3464610 DOI: 10.1186/1471-2172-13-48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/16/2012] [Indexed: 02/07/2023] Open
Abstract
Background Dipeptidyl peptidase IV, a multifunctional serine protease, is implicated in regulation of malignant transformation, promotion and further progression of cancer, exerting tumor-suppressing or even completely opposite - tumor-promoting activities. The aim of present research was to determine the serum DPPIV activity, as well as the percentages of CD26+ lymphocytes, CD26+ overall white blood cells and the mean fluorescence intensity of CD26 expression on lymphocytes in patients with melanoma, people with vitiligo and in healthy controls. Methods The activity of DPPIV in serum was determined by colorimetric test. Expression of DPPIV (as CD26) on immunocompetent peripheral white blood cells was done using flow cytometry analysis. Results Data from our study show for the first time statistically significant decrease: in the serum DPPIV activity, in the percentage of CD26+ overall white blood cells and in the percentage of lymphocytes in patients with melanoma in comparison to healthy control people. In addition, significantly lower serum DPPIV activity was found in the group of patients with melanoma in relation to people with vitiligo too. Conclusion This study indicates the need for exploring the cause and the importance of the disturbances in the serum DPPIV activity and in the CD26 expression on immunocompetent cells in complex molecular mechanisms underlying the development and progression of melanoma.
Collapse
Affiliation(s)
- Ivana Z Matić
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Petrova M, Prokopenko S, Pronina E, Mozheyko E. Response letter to the manuscript “Diminution of hemoglobin-derived hemorphin: An underlying risk factor for cognitive deficit in diabetes” for Journal of the Neurological Sciences. J Neurol Sci 2012. [DOI: 10.1016/j.jns.2012.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Song CZ, Wang QW, Song CC. Diminution of hemoglobin-derived hemorphin: An underlying risk factor for cognitive deficit in diabetes. J Neurol Sci 2012; 317:157-8; author reply 159. [DOI: 10.1016/j.jns.2012.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/05/2012] [Indexed: 11/28/2022]
|
16
|
Erić-Nikolić A, Matić IZ, Dorđević M, Milovanović Z, Marković I, Džodić R, Inić M, Srdić-Rajić T, Jevrić M, Gavrilović D, Cordero OJ, Juranić ZD. Serum DPPIV activity and CD26 expression on lymphocytes in patients with benign or malignant breast tumors. Immunobiology 2011; 216:942-6. [PMID: 21281985 DOI: 10.1016/j.imbio.2011.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/21/2010] [Accepted: 01/04/2011] [Indexed: 12/12/2022]
Abstract
The aim of this work was to determine serum DPPIV activity as well as the percentage of CD26+ white blood cells and of CD26+ lymphocytes and the mean fluorescence intensity (MFI) of CD26 expression on lymphocytes in groups of patients with benign or malignant breast tumors and in healthy control people. Serum DPPIV activity was determined by colorimetric test, while CD26+ cells were counted using flow cytometer. Results of this study show that there is no statistically significant difference in serum DPPIV activity between examined groups of patients and healthy controls. However, two times higher frequency of patients with breast cancers had the enhanced DPPIV enzymatic activity in comparison to controls. Significant decrease in the percentage of CD26+ total white blood cells was found in the group of breast cancer patients and in patients with benign breast tumors compared to that found for healthy people. Although there was decrease in the percentage of lymphocytes in patients with breast tumors it was not statistically significant. The MFI of CD26 expression on these cells was significantly lower for cancer patients in comparison to healthy controls. In conclusion, this work showed the enhanced frequency of breast cancer patients with higher serum DPPIV activity. Decreased percentage of CD26+ white blood cells and decreased CD26 expression on lymphocytes are also characteristics of this group of patients. Determination of the clinical outcome of analyzed patients, 1 and 2 years after the surgical resection of the tumor, would clarify potential prognostic values of examined parameters for breast cancer.
Collapse
|
17
|
Gomes I, Dale CS, Casten K, Geigner MA, Gozzo FC, Ferro ES, Heimann AS, Devi LA. Hemoglobin-derived peptides as novel type of bioactive signaling molecules. AAPS JOURNAL 2010; 12:658-69. [PMID: 20811967 DOI: 10.1208/s12248-010-9217-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/22/2010] [Indexed: 01/08/2023]
Abstract
Most bioactive peptides are generated by proteolytic cleavage of large precursor proteins followed by storage in secretory vesicles from where they are released upon cell stimulation. Examples of such bioactive peptides include peptide neurotransmitters, classical neuropeptides, and peptide hormones. In the last decade, it has become apparent that the breakdown of cytosolic proteins can generate peptides that have biological activity. A case in point and the focus of this review are hemoglobin-derived peptides. In vertebrates, hemoglobin (Hb) consists of a tetramer of two α- and two β-globin chains each containing a prosthetic heme group, and is primarily involved in oxygen delivery to tissues and in redox reactions (Schechter Blood 112:3927-3938, 2008). The presence of α- and/or β-globin chain in tissues besides red blood cells including rodent and human brain and peripheral tissues (Liu et al. Proc Natl Acad Sci USA 96:6643-6647, 1999; Newton et al. J Biol Chem 281:5668-5676, 2006; Wride et al. Mol Vis 9:360-396, 2003; Setton-Avruj Exp Neurol 203:568-578, 2007; Ohyagi et al. Brain Res 635:323-327, 1994; Schelshorn et al. J Cereb Blood Flow Metab 29:585-595, 2009; Richter et al. J Comp Neurol 515:538-547, 2009) suggests that globins and/or derived peptidic fragments might play additional physiological functions in different tissues. In support of this hypothesis, a number of Hb-derived peptides have been identified and shown to have diverse functions (Ivanov et al. Biopoly 43:171-188, 1997; Karelin et al. Neurochem Res 24:1117-1124, 1999). Modern mass spectrometric analyses have helped in the identification of additional Hb peptides (Newton et al. J Biol Chem 281:5668-5676, 2006; Setton-Avruj Exp Neurol 203:568-578, 2007; Gomes et al. FASEB J 23:3020-3029, 2009); the molecular targets for these are only recently beginning to be revealed. Here, we review the status of the Hb peptide field and highlight recent reports on the identification of a molecular target for a novel set of Hb peptides, hemopressins, and the implication of these peptides to normal cell function and disease. The potential therapeutic applications for these Hb-derived hemopressin peptides will also be discussed.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Feron D, Piot JM, Fruitier-Arnaudin I. Proteolytic degradation by cathepsin D of glycated hemoglobin from diabetes patients gives rise to hemorphin-7 peptides. Peptides 2010; 31:956-61. [PMID: 20206221 DOI: 10.1016/j.peptides.2010.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/29/2022]
Abstract
Previous studies showed a significantly reduced level of hemorphins in the serum of diabetes patients. In order to elucidate the biochemical mechanisms responsible for this anomaly, the influence of hemoglobin glycation on hemorphin generation was studied. The glycation of hemoglobin occurs in the blood of diabetes patients and this could modify its enzymatic digestion and the resulting proteolytic products. Several samples of hemoglobin were obtained from the blood of type 1 diabetes patients (n=8) and normal healthy control subjects (n=2). The glycated hemoglobin samples were classified on the basis of their HbA1c values expressed as a percentage of total hemoglobin. Four solutions of glycated hemoglobin characterized by HbA1c values of 6%, 9.1%, 10.7% and 12.1% were treated with cathepsin D and the hemorphins obtained following the proteolysis were compared to controls. It was found that hemorphins were produced whatever the level of glycation of hemoglobin and also that the degree of glycation had no effect on the quantity of hemorphins released. Thus the alteration of hemoglobin does not seem to be the essential reason for the decrease in hemorphin concentrations in the sera of diabetic patients.
Collapse
Affiliation(s)
- Delphine Feron
- University of La Rochelle, UMR-CNRS 6250, LIENSS, Team MAB, La Rochelle F-17042, France
| | | | | |
Collapse
|
19
|
Dejouvencel T, Féron D, Rossignol P, Sapoval M, Kauffmann C, Piot JM, Michel JB, Fruitier-Arnaudin I, Meilhac O. Hemorphin 7 reflects hemoglobin proteolysis in abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 2009; 30:269-75. [PMID: 19910633 DOI: 10.1161/atvbaha.109.198309] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In human abdominal aortic aneurysm, the accumulation of blood-derived cells and proteases within the mural thrombus plays a pivotal role in the evolution toward vessel wall rupture. We sought to identify peptides released from abdominal aortic aneurysm specimens, characterized by an intraluminal thrombus. METHODS AND RESULTS Intraluminal thrombus samples were analyzed by differential proteomics, using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. A 1309-Da peptide was detected in larger amounts in the newly formed luminal thrombus layer relative to older layers. It was identified as being LVVYPWTQRF (known as LVV-Hemorphin 7), a peptide generated from hemoglobin by cathepsin D. By immunohistochemical analysis, we showed that Hemorphin 7 (H7) colocalizes with cathepsin D and cathepsin G in the luminal layer of the intraluminal thrombus. In vitro, cathepsin G was able to generate H7 peptides at pH 7.4, whereas cathepsin D was only active in acidic conditions. Finally, H7 peptides were shown to be increased 3- to 4-fold in sera of abdominal aortic aneurysm patients relative to controls, and their levels were positively correlated with the volume of the thrombus. CONCLUSIONS Our results suggest that circulating H7 peptides may reflect proteolysis of hemoglobin in the aneurysmal intraluminal thrombus and may be used as a biological marker of pathological vascular remodeling.
Collapse
|