1
|
Tringali G, Lavanco G, Castelli V, Pizzolanti G, Kuchar M, Currò D, Cannizzaro C, Brancato A. Cannabidiol tempers alcohol intake and neuroendocrine and behavioural correlates in alcohol binge drinking adolescent rats. Focus on calcitonin gene-related peptide's brain levels. Phytother Res 2023; 37:4870-4884. [PMID: 37525534 DOI: 10.1002/ptr.7972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
Alcohol binge drinking is common among adolescents and may challenge the signalling systems that process affective stimuli, including calcitonin gene-related peptide (CGRP) signalling. Here, we employed a rat model of adolescent binge drinking to evaluate reward-, social- and aversion-related behaviour, glucocorticoid output and CGRP levels in affect-related brain regions. As a potential rescue, the effect of the phytocannabinoid cannabidiol was explored. Adolescent male rats underwent the intermittent 20% alcohol two-bottle choice paradigm; at the binge day (BD) and the 24 h withdrawal day (WD), we assessed CGRP expression in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), amygdala, hypothalamus and brainstem; in addition, we evaluated sucrose preference, social motivation and drive, nociceptive response, and serum corticosterone levels. Cannabidiol (40 mg/kg, i.p.) was administered before each drinking session, and its effect was measured on the above-mentioned readouts. At BD and WD, rats displayed decreased CGRP expression in mPFC, NAc and amygdala; increased CGRP levels in the brainstem; increased response to rewarding- and nociceptive stimuli and decreased social drive; reduced serum corticosterone levels. Cannabidiol reduced alcohol consumption and preference; normalised the abnormal corticolimbic CGRP expression, and the reward and aversion-related hyper-responsivity, as well as glucocorticoid levels in alcohol binge-like drinking rats. Overall, CGRP can represent both a mediator and a target of alcohol binge-like drinking and provides a further piece in the intricate puzzle of alcohol-induced behavioural and neuroendocrine sequelae. CBD shows promising effects in limiting adolescent alcohol binge drinking and rebalancing the bio-behavioural abnormalities.
Collapse
Affiliation(s)
- Giuseppe Tringali
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Gianluca Lavanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe Pizzolanti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Diego Currò
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Brancato A, Castelli V, Cannizzaro C, Tringali G. Adolescent binge-like alcohol exposure dysregulates NPY and CGRP in rats: Behavioural and immunochemical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110699. [PMID: 36565980 DOI: 10.1016/j.pnpbp.2022.110699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Alcohol binge drinking during adolescence impacts affective behaviour, possibly impinging on developing neural substrates processing affective states, including calcitonin gene-related peptide (CGRP) and neuropeptide Y (NPY). Here, we modelled binge-like alcohol exposure in adolescence, by administering 3.5 g/kg alcohol per os, within 1 h, to male adolescent rats every other day, from postnatal day 35 to 54. The effects on positive and negative affective behaviour during abstinence were explored including: consummatory behaviour and weight gain; social behaviour in the modified social interaction test; thermal nociception in the tail-flick test; psychosocial stress coping in the resident-intruder paradigm. Moreover, CGRP and NPY levels were evaluated in functionally relevant brain regions. Our data shows that binge-like intermittent alcohol administration during adolescence decreased weight gain, social preference and motivation, nociception, and active psychosocial stress coping during abstinence. In addition, intermittent alcohol-exposed rats displayed increased expression of CGRP and NPY in the prefrontal cortex and nucleus accumbens; decreased NPY levels in the amygdala; opposite changes in CGRP levels in the hypothalamus and brainstem. Overall, our data shows that adolescent binge-like alcohol exposure, through the allostatic load of alternate intoxication and withdrawal, produces long-term consequences in sensory and affective processes and dysregulated complementary neuropeptidergic systems. Thus, neuropeptide-targeted interventions hold promising potential for addressing negative affect during prolonged withdrawal in young subjects.
Collapse
Affiliation(s)
- Anna Brancato
- University of Palermo, Dept. of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", piazza delle Cliniche 2, 90127 Palermo, Italy.
| | - Valentina Castelli
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, 90127 Palermo, Italy
| | - Carla Cannizzaro
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, 90127 Palermo, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
3
|
Tringali G, Currò D, Navarra P. Perampanel inhibits calcitonin gene-related peptide release from rat brainstem in vitro. J Headache Pain 2018; 19:107. [PMID: 30419806 PMCID: PMC6755590 DOI: 10.1186/s10194-018-0940-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Background Perampanel is a novel antiepileptic drug acting via non-competitive antagonism on glutamatergic AMPA receptors, and the subsequent inhibition of ion calcium influx. Since it was recently postulated that the antagonists of glutamate receptors might play a role in the treatment of migraine, in this study we investigated the putative anti-migraine activity of perampanel in an in vitro animal model involving the static incubation of rat brainstem explants and the subsequent measurement of immune-reactive calcitonin gene-related peptide released into the incubation medium. Methods Acute rat brainstem explants were incubated in plain medium or in medium containing graded concentrations of perampanel. The release into the medium was assessed by radioimmunoassay either under baseline conditions or after stimulation by such secretagogues as high K+ concentrations, veratridine or capsaicin. Results We found that: 1) under baseline conditions perampanel, given in the range 0.01–100 μM, inhibited in a concentration-dependent manner calcitonin gene-related peptide’s release compared to controls; the decrease was statistically significant as from 10 μM; 2) a significant and consistent increase in calcitonin gene-related peptide’s secretion was induced by all depolarizing stimuli after 1 h of incubation; 3) under these conditions, calcitonin gene-related peptide’s release stimulated by 56 mM KCl was significantly reduced by perampanel from 0.1 μM onward, whereas secretion stimulated by veratridine was significantly reduced as from 1 μM; 4) on the contrary, perampanel had no effect on capsaicin-induced calcitonin gene-related peptide’s release up to 100 μM. Conclusions Here we provided preliminary in vitro evidence suggesting that perampanel might control pain transmission under conditions of activated trigeminal system, in a preclinical model mimicking the pathophysiology of human migraine.
Collapse
Affiliation(s)
- Giuseppe Tringali
- Institute of Pharmacology, Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma - Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Diego Currò
- Institute of Pharmacology, Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma - Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Pierluigi Navarra
- Institute of Pharmacology, Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma - Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| |
Collapse
|
4
|
Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediators Inflamm 2017; 2017:5048616. [PMID: 28154473 PMCID: PMC5244030 DOI: 10.1155/2017/5048616] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.
Collapse
|
5
|
Greco M, Capuano A, Navarra P, Tringali G. Lacosamide inhibits calcitonin gene-related peptide production and release at trigeminal level in the rat. Eur J Pain 2016; 20:959-66. [DOI: 10.1002/ejp.820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2015] [Indexed: 01/08/2023]
Affiliation(s)
- M.C. Greco
- Institute of Pharmacology; Catholic University School of Medicine; Rome Italy
| | - A. Capuano
- Division of Neurology; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
| | - P. Navarra
- Institute of Pharmacology; Catholic University School of Medicine; Rome Italy
| | - G. Tringali
- Institute of Pharmacology; Catholic University School of Medicine; Rome Italy
| |
Collapse
|
6
|
Greco MC, Navarra P, Tringali G. The analgesic agent tapentadol inhibits calcitonin gene-related peptide release from isolated rat brainstem via a serotonergic mechanism. Life Sci 2015; 145:161-5. [PMID: 26706288 DOI: 10.1016/j.lfs.2015.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/23/2015] [Accepted: 12/14/2015] [Indexed: 12/26/2022]
Abstract
AIMS In this study we tested the hypothesis that tapentadol inhibits GGRP release from the rat brainstem through a mechanism mediated by the inhibition of NA reuptake; as a second alternative hypothesis, we investigated whether tapentadol inhibits GGRP release via the inhibition of 5-HT reuptake. METHODS Rat brainstems were explanted and incubated in short-term experiments. CGRP released in the incubation medium was taken as a marker of CGRP release from the central terminals of trigeminal neurons within the brainstem. CGRP levels were measured by radioimmunoassay under basal conditions or in the presence of tapentadol; NA, 5-HT, clonidine, yohimbine and ondansetron were used as pharmacological tools to investigate the action mechanism of tapentadol. RESULTS The α2-antagonist yohimbine failed to counteract the effects of tapentadol. Moreover, neither NA nor the α2-agonist clonidine per se inhibited K(+)-stimulated CGRP release, thereby indicating that the effects of tapentadol are nor mediated through the block of NA reuptake. Further experiments showed that 5-HT and tramadol, which inhibits both NA and 5-HT reuptake, significantly reduced K(+)-stimulated CGRP release. Moreover, the 5-HT3 antagonist ondansetron was able to counteract the effects of tapentadol in this system. SIGNIFICANCE This study provided pharmacological evidence that tapentadol inhibits stimulated CGRP release from the rat brainstem in vitro through a mechanism involving an increase in 5-HT levels in the system and the subsequent activation of 5-HT3 receptors.
Collapse
Affiliation(s)
| | - Pierluigi Navarra
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy.
| | - Giuseppe Tringali
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy
| |
Collapse
|
7
|
Capuano A, Greco MC, Navarra P, Tringali G. Correlation between algogenic effects of calcitonin-gene-related peptide (CGRP) and activation of trigeminal vascular system, in an in vivo experimental model of nitroglycerin-induced sensitization. Eur J Pharmacol 2014; 740:97-102. [PMID: 24998872 DOI: 10.1016/j.ejphar.2014.06.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/03/2023]
Abstract
The neural mechanism(s) underlying migraine remain poorly defined at present; preclinical and clinical studies show an involvement of CGRP in this disorder. However current evidence pointed out that CGRP does not exert an algogenic action per se, but it is able to mediate migraine pain only if the trigeminal-vascular system is sensitized. The present study was addressed to investigate CGRP-evoked behavior in nitric oxide (NO) sensitized rats, using an experimental model of nitroglycerin induced sensitization of trigeminal system, looking at neuropeptide release from different cerebral areas after the intra-peritoneal (i.p.) administration of NO-donors. CGRP injected into the rat whisker pad did not induce significant changes in face rubbing behavior compared to controls. On the contrary, CGRP injected in animals pre-treated with 10mg/kg nitroglycerin significantly increased the time spent in face rubbing. Nitroglycerin pre-treated animals did not show any rubbing behavior after locally injected saline. Furthermore, the i.p. treatment with nitroglycerin produced an increase of CGRP levels in brainstem and trigeminal ganglia, but not in the hypothalamus and hippocampus. The absolute amounts of CGRP produced in the brainstem were lower compared to those in the trigeminal ganglion; however, after nitroglycerin stimulation the percentage increase was higher in the brainstem. In conclusion, findings presented in this study suggest that CGRP induces a painful behavior in rats only after sensitization of trigeminal system; thus supporting the concept that a genetic as well as acquired predisposition to trigemino- vascular activation represents the neurobiological basis of CGRP nociceptive effects in migraineurs.
Collapse
Affiliation(s)
- Alessandro Capuano
- Division of Neurology, Bambino Gesù Children׳s Hospital, IRCCS, Rome, Italy.
| | | | - Pierluigi Navarra
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| | - Giuseppe Tringali
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| |
Collapse
|
8
|
Greco MC, Lisi L, Currò D, Navarra P, Tringali G. Tapentadol inhibits calcitonin gene-related peptide release from rat brainstem in vitro. Peptides 2014; 56:8-13. [PMID: 24662320 DOI: 10.1016/j.peptides.2014.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/28/2014] [Accepted: 03/10/2014] [Indexed: 12/25/2022]
Abstract
We have previously developed an in vitro model of rat brainstem explants. The latter release sizable amounts of calcitonin gene-related peptide (CGRP); basal release can be stimulated by such secretagogues as high KCl concentrations, veratridine or capsaicine. In this paradigm we investigated the activity of the analgesic agent tapentadol; the effects of tapentadol were compared to those of a classical opioid receptor agonist, morphine, and the selective noradrenaline reuptake inhibitor reboxetine. Morphine inhibited basal CGRP release, with statistical significance from 1 nM onward and maximal (-44%) inhibition at 100 μM. Morphine also inhibited K(+)-stimulated peptide release, with a significant effect from 1 μM and maximal (-39%) decrease at 100 μM, but failed to inhibit release stimulated by 10 μM capsaicin. At variance, reboxetine had no effect on baseline CGRP outflow, but was able to inhibit both K(+)-stimulated [significant inhibition from 1 μM onward and maximal (-37%) decrease at 100 μM], and capsaicin-stimulated release [significant effect from 1 μM and maximal (-31%) decrease at 100 μM]. Likewise, tapentadol had no effect on baseline CGRP release up to 100 μM, but decreased secretion stimulated by 56 mM KCl or capsaicin, with significant effects from 0.1 and 1 μM respectively; maximal inhibition over 56 mM KCl and capsaicin stimuli was -29% and -31%, respectively. Naloxone antagonized the effect of morphine, but not those of reboxetine and tapentadol, on K(+)-stimulated CGRP secretion. In conclusion the present study provides consistent pharmacological evidence that tapentadol acts as a noradrenaline reuptake inhibitor agent in this experimental model.
Collapse
Affiliation(s)
| | - Lucia Lisi
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy.
| | - Diego Currò
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy.
| | - Pierluigi Navarra
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy.
| | - Giuseppe Tringali
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy.
| |
Collapse
|
9
|
Release of CGRP from mouse brainstem slices indicates central inhibitory effect of triptans and kynurenate. J Headache Pain 2014; 15:7. [PMID: 24506953 PMCID: PMC3922191 DOI: 10.1186/1129-2377-15-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/01/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND CGRP is contained in a substantial proportion of unmyelinated trigeminal neurons innervating intracranial tissues. Previously, we have described a hemisected rodent scull preparation and later the intact trigeminal ganglion to measure stimulated CGRP release from trigeminal afferents. METHODS Here, we establish a preparation for examining CGRP release from central trigeminal terminals using single fresh slices of the mouse medullary brainstem. RESULTS Basal and stimulated amount of CGRP substantially exceeded the detection level. Experiments were designed as matched pairs of at least six brainstem slices per animal. Stimulation with high potassium induced calcium-dependent and reversible CGRP release. Capsaicin stimulation of TRPV1 provoked concentration-dependent CGRP release. The anti-migraine drug naratriptan did not inhibit capsaicin-induced CGRP release from peripheral terminals but inhibited the release from brainstem slices. The glutamate antagonist kynurenate showed a similar pattern of site-specific inhibition of CGRP release. CONCLUSIONS As observed earlier for other drugs used in the treatment of migraine this indicates that the central terminals in the spinal trigeminal nucleus may be the main site of action. The preparation allows evaluating the trigeminal brainstem as a pharmacological site of action.
Collapse
|
10
|
Morell M, Camprubí-Robles M, Culler MD, de Lecea L, Delgado M. Cortistatin attenuates inflammatory pain via spinal and peripheral actions. Neurobiol Dis 2013; 63:141-54. [PMID: 24333694 DOI: 10.1016/j.nbd.2013.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 12/01/2022] Open
Abstract
Clinical pain, as a consequence of inflammation or injury of peripheral organs (inflammatory pain) or nerve injury (neuropathic pain), represents a serious public health issue. Treatment of pain-related suffering requires knowledge of how pain signals are initially interpreted and subsequently transmitted and perpetuated. To limit duration and intensity of pain, inhibitory signals participate in pain perception. Cortistatin is a cyclic-neuropeptide that exerts potent inhibitory actions on cortical neurons and immune cells. Here, we found that cortistatin is a natural analgesic component of the peripheral nociceptive system produced by peptidergic nociceptive neurons of the dorsal root ganglia in response to inflammatory and noxious stimuli. Moreover, cortistatin is produced by GABAergic interneurons of deep layers of dorsal horn of spinal cord. By using cortistatin-deficient mice, we demonstrated that endogenous cortistatin critically tunes pain perception in physiological and pathological states. Furthermore, peripheral and spinal injection of cortistatin potently reduced nocifensive behavior, heat hyperalgesia and tactile allodynia in experimental models of clinical pain evoked by chronic inflammation, surgery and arthritis. The analgesic effects of cortistatin were independent of its anti-inflammatory activity and directly exerted on peripheral and central nociceptive terminals via Gαi-coupled somatostatin-receptors (mainly sstr2) and blocking intracellular signaling that drives neuronal plasticity including protein kinase A-, calcium- and Akt/ERK-mediated release of nociceptive peptides. Moreover, cortistatin could modulate, through its binding to ghrelin-receptor (GHSR1), pain-induced sensitization of secondary neurons in spinal cord. Therefore, cortistatin emerges as an anti-inflammatory factor with potent analgesic effects that offers a new approach to clinical pain therapy, especially in inflammatory states.
Collapse
Affiliation(s)
- María Morell
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, 18016 Granada, Spain
| | - María Camprubí-Robles
- Institute of Molecular and Cell Biology, Miguel Hernandez University, 03202 Alicante, Spain
| | | | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, 18016 Granada, Spain.
| |
Collapse
|
11
|
Morell M, Souza-Moreira L, Caro M, O'Valle F, Forte-Lago I, de Lecea L, Gonzalez-Rey E, Delgado M. Analgesic Effect of the Neuropeptide Cortistatin in Murine Models of Arthritic Inflammatory Pain. ACTA ACUST UNITED AC 2013; 65:1390-401. [DOI: 10.1002/art.37877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 01/15/2013] [Indexed: 11/08/2022]
|
12
|
Different responses of galanin and calcitonin gene-related peptide to capsaicin stimulation on dorsal root ganglion neurons in vitro. ACTA ACUST UNITED AC 2013; 184:68-74. [PMID: 23499803 DOI: 10.1016/j.regpep.2013.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 02/08/2013] [Accepted: 03/03/2013] [Indexed: 11/20/2022]
Abstract
Both galanin (Gal) and calcitonin gene-related peptide (CGRP) are sensory neuropeptides which expressed in dorsal root ganglion (DRG) neurons and are involved in nociceptive processing. Capsaicin (CAP) influences nociceptive processing via influencing the expression of sensory neuropeptides in primary sensory neurons. However, little is known about the alterations of Gal and CGRP expression at the same condition stimulated by CAP. In the present study, primary cultured DRG neurons were used to determine the different responses of Gal and CGRP to CAP stimulation. DRG neurons were cultured for 48 hours and then exposed to CAP (2 μmol/L), capsazepine (CPZ) (2 μmol/L) plus CAP (2 μmol/L), or extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor PD98059 (10 μmol/L) plus CAP (2 μmol/L) for an additional 24hours. The DRG neurons were continuously exposed to culture media as a control. After that, the levels of Gal mRNA and CGRP mRNA of DRG neurons were determined using real time-PCR analysis. Gal and CGRP expression in situ was detected by an immunofluorescent labeling technique. The levels of phosphorylated-ERK1/2 (pERK1/2) protein were detected using a Western blot assay. The results showed that CAP evoked increases of Gal and its mRNA and decreases of CGRP and its mRNA in DRG neurons. Administration of either CPZ or PD98059 blocked the effects of CAP. These data indicate that Gal and CGRP shared different responses to CAP stimulation. Gal and CGRP may have different effects in nociceptive processing during neurogenic inflammation.
Collapse
|
13
|
Tringali G, Greco MC, Lisi L, Pozzoli G, Navarra P. Cortistatin modulates the expression and release of corticotrophin releasing hormone in rat brain. Comparison with somatostatin and octreotide. Peptides 2012; 34:353-9. [PMID: 22342595 DOI: 10.1016/j.peptides.2012.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 12/19/2022]
Abstract
Cortistatin (CST) is an endogenous neuropeptide characterized by remarkable structural and functional resemblance to somatostatin (SST), both peptides sharing the ability to bind and activate all five SST receptor subtypes. Evidence is also available showing that CST exerts biological activities independently from SST, perhaps via the activation of specific receptors that remain to be fully characterized at present. Here we have investigated the effects of CST on the gene expression and release of corticotrophin releasing hormone (CRH) from rat hypothalamic and hippocampal explants; moreover, we compared the effects of CST with those of SST and octreotide (OCT) in these models. We found that: (i) CST inhibits the expression and release of CRH from rat hypothalamic and hippocampal explants under basal conditions as well as after CRH stimulation by well known secretagogues; (ii) SST does not modify basal CRH secretion from the hypothalamus or the hippocampus, while it is able to reduce KCl-stimulated CRH release from both brain areas; (iii) OCT inhibits both basal and KCl-induced CRH secretion from rat hypothalamic explants, while it has no effect on CRH release from the hippocampus, either under basal conditions or after stimulation by high K(+) concentrations; (iv) at variance with CST; SST and OCT have not effect whatsoever on veratridine-induced CRH release from the hypothalamus. In conclusion the present findings provide in vitro evidence in support of the hypothesis that CST plays a role in the regulation of endocrine adaptive responses to stress.
Collapse
Affiliation(s)
- Giuseppe Tringali
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | |
Collapse
|
14
|
Tringali G, Greco MC, Capuano A, Guerriero G, Currò D, Navarra P. Flupirtine inhibits calcitonin-gene related peptide release from rat brainstem in vitro. Neurosci Lett 2012; 506:332-5. [DOI: 10.1016/j.neulet.2011.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 12/18/2022]
|
15
|
Markovics A, Szoke É, Sándor K, Börzsei R, Bagoly T, Kemény Á, Elekes K, Pintér E, Szolcsányi J, Helyes Z. Comparison of the anti-inflammatory and anti-nociceptive effects of cortistatin-14 and somatostatin-14 in distinct in vitro and in vivo model systems. J Mol Neurosci 2011; 46:40-50. [PMID: 21695504 DOI: 10.1007/s12031-011-9577-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
We showed that somatostatin (SST) exerts anti-inflammatory and anti-nociceptive effects through somatostatin receptor subtypes 4 and 1 (sst(4)/sst(1)). Since cortistatin (CST) is a structurally similar peptide, we aimed at comparing the sst(1)- and sst(4)-binding and activating abilities, as well as the effects of SST-14 and CST-14 on inflammatory and nociceptive processes. CST-14 concentration-dependently displaced radiolabeled SST-14 binding, induced similar sst(1) and sst(4)-activation with a less potency, and exerted significantly greater inhibitory effect on endotoxin-stimulated interleukin (IL)-1β production of murine peritoneal macrophages. Capsaicin-induced calcitonin gene-related peptide release from peripheral sensory nerve terminals of isolated rat tracheae was significantly decreased by 2 μM CST and 100 nM SST, but concentration-response correlation was not found. Mustard oil-evoked acute neurogenic plasma protein extravasation in the rat hindpaw skin, carrageenan-induced mouse paw edema, mechanical hyperalgesia, and IL-1β, tumor necrosis factor-α production, as well as mild heat injury-evoked thermal hyperalgesia were similarly attenuated by both peptides. In the latter case, i.pl. and i.p. injections exerted equal inhibitory actions. CST-14 and SST-14 similarly diminish both acute neurogenic and cellular inflammatory processes, as well as mechanical and heat hyperalgesia, in which their inhibitory effect on sensory nerve endings is likely to be involved. However, CST-14 exerts remarkably greater inhibition on cytokine production.
Collapse
Affiliation(s)
- Adrienn Markovics
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti str. 12, 7624, Pécs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|