1
|
Xie Y, Shi X, Xiao K, Zhou L, Shu T, Du H, Yang J, Hu G. Sequences analysis and pituitary actions of tachykinins in Chinese sturgeon (Acipenser sinensis). Gene 2023:147592. [PMID: 37356741 DOI: 10.1016/j.gene.2023.147592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Tachykinins belong to a large, evolutionarily conserved family of brain/gut peptides that are involved in a variety of physiological functions in mammals, such as reproductive regulation. However, little information was available about tachykinins in ancient fish lineage. In the present study, we firstly identified three tachykinin genes (named tac1, tac3 and tac4) and three neurokinin receptors (named nk1r, nk2r and nk3r) from Chinese sturgeon brain and pituitary. Sequence analysis showed that tac1 encoded substance P (SP) and neurokinin A (NKA), tac3 encoded neurokinin B (NKB) and NKB-related peptide (NKBRP), and tac4 encoded hemokin 1 (HK-1) and hemokin 2 (HK-2), respectively. The luciferase reporter assay results showed that NK1R preferentially selected asSP, NK2R preferentially selected asNKA, and NK3R preferentially selected asNKB. Tissue expression analysis showed that the three tac genes were highly detected in the telencephalon and hypothalamus, whereas nkr genes were widely expressed in peripheral tissues. Spatio-temporal expression analysis showed that all three tac genes were highly expressed in unknown sex individuals. Intraperitoneal injection experiments showed that both asSP and asNKB could stimulate luteinizing hormone (LH) release in Chinese sturgeon serum. At the transcriptional level, asSP and asNKB could significantly reduce pituitary follicle-stimulating hormone beta (fshβ) mRNA expression, but induce pituitary growth hormone (gh) mRNA expression. In addition, estradiol (E2) could stimulate tac3 mRNA expression in hypothalamus. Taken together, this study provided information on the tachykinin family in Chinese sturgeon and demonstrates that asNKB and asSP could be involved in reproductive and growth regulation in pituitary.
Collapse
Affiliation(s)
- Yunyi Xie
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Xuetao Shi
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Lingling Zhou
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Tingting Shu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Hejun Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Guangfu Hu
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| |
Collapse
|
3
|
Uhlman D, Nguyen T, Grignol G, Merchenthaler I, Dudas B. Substance P appears to affect growth via growth hormone-releasing hormone (GHRH) neurons in the human hypothalamus. Brain Struct Funct 2019; 224:2079-2085. [DOI: 10.1007/s00429-019-01890-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
|
4
|
Caicedo D, Devesa P, Arce VM, Requena J, Devesa J. Chronic limb-threatening ischemia could benefit from growth hormone therapy for wound healing and limb salvage. Ther Adv Cardiovasc Dis 2018; 12:53-72. [PMID: 29271292 PMCID: PMC5772430 DOI: 10.1177/1753944717745494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/12/2017] [Indexed: 01/20/2023] Open
Abstract
Revascularization for chronic limb-threatening ischemia (CLTI) is necessary to alleviate symptoms and wound healing. When it fails or is not possible, there are few alternatives to avoid limb amputation in these patients. Although experimental studies with stem cells and growth factors have shown promise, clinical trials have demonstrated inconsistent results because CLTI patients generally need arteriogenesis rather than angiogenesis. Moreover, in addition to the perfusion of the limb, there is the need to improve the neuropathic response for wound healing, especially in diabetic patients. Growth hormone (GH) is a pleiotropic hormone capable of boosting the aforementioned processes and adds special benefits for the redox balance. This hormone has the potential to mitigate symptoms in ischemic patients with no other options and improves the cardiovascular complications associated with the disease. Here, we discuss the pros and cons of using GH in such patients, focus on its effects on peripheral arteries, and analyze the possible benefits of treating CLTI with this hormone.
Collapse
Affiliation(s)
- Diego Caicedo
- Scientific Direction, Medical Center Foltra. Travesía Montouto, 24; 15710-Teo, A Coruña, 15886, Spain
| | - Pablo Devesa
- Scientific Direction, Medical Center Foltra. Travesía Montouto, 24; 15710-Teo, A Coruña, 15886, Spain
| | - Víctor M. Arce
- Scientific Direction, Medical Center Foltra. Travesía Montouto, 24; 15710-Teo, A Coruña, 15886, Spain
| | - Julia Requena
- Scientific Direction, Medical Center Foltra. Travesía Montouto, 24; 15710-Teo, A Coruña, 15886, Spain
| | - Jesús Devesa
- Scientific Direction, Medical Center Foltra. Travesía Montouto, 24; 15710-Teo, A Coruña, 15886, Spain
| |
Collapse
|
5
|
Zhang L, Cao J, Wang Z, Dong Y, Chen Y. Melatonin modulates monochromatic light-induced GHRH expression in the hypothalamus and GH secretion in chicks. Acta Histochem 2016; 118:286-92. [PMID: 26948666 DOI: 10.1016/j.acthis.2016.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
To study the mechanism by which monochromatic lights affect the growth of broilers, a total of 192 newly hatched broilers, including the intact, sham-operated and pinealectomy groups, were exposed to white light (WL), red light (RL), green light (GL) and blue light (BL) using a light-emitting diode (LED) system for 2 weeks. The results showed that the GHRH-ir neurons were distributed in the infundibular nucleus (IN) of the chick hypothalamus. The mRNA and protein levels of GHRH in the hypothalamus and the plasma GH concentrations in the chicks exposed to GL were increased by 6.83-31.36%, 8.71-34.52% and 6.76-9.19% compared to those in the chicks exposed to WL (P=0.022-0.001), RL (P=0.002-0.000) and BL (P=0.290-0.017) in the intact group, respectively. The plasma melatonin concentrations showed a positive correlation with the expression of GHRH (r=0.960) and the plasma GH concentrations (r=0.993) after the various monochromatic light treatments. After pinealectomy, however, these parameters decreased and there were no significant differences between GL and the other monochromatic light treatments. These findings suggest that melatonin plays a critical role in GL illumination-enhanced GHRH expression in the hypothalamus and plasma GH concentrations in young broilers.
Collapse
|
7
|
Zhang Y, Zhu Z, Xu Q, Chen G. Association of polymorphisms of exon 2 of the growth hormone gene with production performance in Huoyan goose. Int J Mol Sci 2014; 15:670-83. [PMID: 24402125 PMCID: PMC3907831 DOI: 10.3390/ijms15010670] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/25/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022] Open
Abstract
Primers based on the cDNA sequence of the goose growth hormone (GH) gene in GenBank were designed to amplify exon 2 of the GH gene in Huoyan goose. A total of 552 individuals were brooded in one batch and raised in Liaoning and Jiangsu Provinces, China. Single nucleotide polymorphisms (SNPs) of exon 2 in the GH gene were detected by the polymerase chain reaction (single strand conformation polymorphism method). Homozygotes were subsequently cloned, sequenced and analyzed. Two SNP mutations were detected, and 10 genotypes (referred to as AA, BB, CC, DD, AB, AC, AD, BC, BD and CD) were obtained. Allele D was predominant, and the frequencies of the 10 genotypes fit the Hardy-Weinberg equilibrium in the male, female and whole populations according to the chi-square test. Based on SNP types, the 10 genotypes were combined into three main genotypes. Multiple comparisons were carried out between different genotypes and production traits when the geese were 10 weeks old. Some indices of production performance were significantly (p < 0.05) associated with the genotype. Particularly, geese with genotype AB or BB were highly productive. Thus, these genotypes may serve as selection markers for production traits in Huoyan geese.
Collapse
Affiliation(s)
- Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Zhen Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|