1
|
Galhano ML, Jácome F, Huynh JY, Dias-Neto M. Circulating biomarkers in acute aortic dissection versus acute myocardial infarction: a systematic review. THE JOURNAL OF CARDIOVASCULAR SURGERY 2024; 65:383-389. [PMID: 38860700 DOI: 10.23736/s0021-9509.24.13062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
INTRODUCTION This systematic review aimed to discuss the current knowledge of possibly useful circulatory biomarkers (other than D-dimers) in the diagnosis of patients with an acute aortic dissection (AAD), to distinguish these patients from patients with Acute Myocardial Infarction (AMI). EVIDENCE ACQUISITION This study followed the PRISMA guidelines. The databases PubMed, EMBASE and Scopus were systematically searched from inception to May 2023. Studies were included if they presented measurements of biomarker(s) in the blood/plasma/serum samples from adult patients with AAD versus AMI. Articles were excluded if aortic dissection was subacute or chronic (>14 days), if they lack a control group (AMI), or if they were animal studies, revisions, or editorials. The main outcome was the identification of biomarkers that exhibited diagnostic potential to differentiate patients with AAD versus AMI. EVIDENCE SYNTHESIS The research query resulted in 1342 articles after the removal of duplicates, from which seven were included in the systematic review. The biomarkers identified included general blood assessment, metabolomics, products of the degradation of fibrin, extracellular matrix markers and an ischemia-associated molecule. Most studies lack diagnostic validity such as sensitivity and specificity. In six studies, the concentration of a total of six biomarkers showed significative differences between AAD and AMI group. CONCLUSIONS A great heterogeneity of molecules has been studied as putative diagnostic markers of AAD versus AMI. Studies of better quality are needed, presenting the diagnostic validity of the molecules under analysis and the putative synergic diagnostic value of the molecules identified so far.
Collapse
Affiliation(s)
- Maria L Galhano
- UnIC@RISE-Health, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal -
| | - Filipa Jácome
- Department of Angiology and Vascular Surgery, Local Unit of Health of São João, Porto, Portugal
| | - Jennifer Y Huynh
- Amsterdam Cardiovascular Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Marina Dias-Neto
- UnIC@RISE-Health, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Angiology and Vascular Surgery, Local Unit of Health of São João, Porto, Portugal
| |
Collapse
|
2
|
Guillot A, Toussaint K, Ebersold L, ElBtaouri H, Thiebault E, Issad T, Peiretti F, Maurice P, Sartelet H, Bennasroune A, Martiny L, Dauchez M, Duca L, Durlach V, Romier B, Baud S, Blaise S. Sialic acids cleavage induced by elastin-derived peptides impairs the interaction between insulin and its receptor in adipocytes 3T3-L1. J Physiol Biochem 2024; 80:363-379. [PMID: 38393636 DOI: 10.1007/s13105-024-01010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
The insulin receptor (IR) plays an important role in insulin signal transduction, the defect of which is believed to be the root cause of type 2 diabetes. In 3T3-L1 adipocytes as in other cell types, the mature IR is a heterotetrameric cell surface glycoprotein composed of two α subunits and two β subunits. Our objective in our study, is to understand how the desialylation of N-glycan chains, induced by elastin-derived peptides, plays a major role in the function of the IR. Using the 3T3-L1 adipocyte line, we show that removal of the sialic acid from N-glycan chains (N893 and N908), induced by the elastin receptor complex (ERC) and elastin derived-peptides (EDPs), leads to a decrease in the autophosphorylation activity of the insulin receptor. We demonstrate by molecular dynamics approaches that the absence of sialic acids on one of these two sites is sufficient to generate local and general modifications of the structure of the IR. Biochemical approaches highlight a decrease in the interaction between insulin and its receptor when ERC sialidase activity is induced by EDPs. Therefore, desialylation by EDPs is synonymous with a decrease of IR sensitivity in adipocytes and could thus be a potential source of insulin resistance associated with diabetic conditions.
Collapse
Affiliation(s)
- Alexandre Guillot
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
| | - Kevin Toussaint
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
| | - Lucrece Ebersold
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
| | - Hassan ElBtaouri
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
| | - Emilie Thiebault
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
| | - Tarik Issad
- Université Paris Cité, Institut Cochin, CNRS, INSERM, 24 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Franck Peiretti
- INSERM, INRAE, C2VN, Aix Marseille University, 27 Bd Jean Moulin, 13385, Marseille, France
| | - Pascal Maurice
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
| | - Hervé Sartelet
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
| | - Amar Bennasroune
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
| | - Laurent Martiny
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
| | - Manuel Dauchez
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
- P3M, Multi-Scale Molecular Modeling Platform, Université de Reims Champagne Ardenne, 51100, Reims, France
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
| | - Vincent Durlach
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
- Cardiovascular and Thoracic Division, University Hospital of Reims, 51100, Reims, France
| | - Béatrice Romier
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
| | - Stéphanie Baud
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France
- P3M, Multi-Scale Molecular Modeling Platform, Université de Reims Champagne Ardenne, 51100, Reims, France
| | - Sébastien Blaise
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, UFR SEN, chemin des Rouliers, 51100, Reims, France.
| |
Collapse
|
3
|
Wang Y, Xue F, Cheng W, Zhao Q, Song N, Shi Z, Liu H, Li Y, Tang Q, Liu Q, Wang Y, Zhang F, Jiang X. Design and Synthesis of Novel Ultralong-Acting Peptides as EDP-EBP Interaction Inhibitors for Pulmonary Fibrosis Treatment. J Med Chem 2024; 67:6624-6637. [PMID: 38588467 DOI: 10.1021/acs.jmedchem.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.
Collapse
Affiliation(s)
- Yixiang Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
- The First School of Clinical Medicine & The First Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fanghan Xue
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Wei Cheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Qian Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Nazi Song
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Zihan Shi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Han Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Qinglin Tang
- Shenzhen Turier Biotech. Co. Ltd, Shenzhen 518000, China
| | - Qi Liu
- Shenzhen Turier Biotech. Co. Ltd, Shenzhen 518000, China
| | - Yiqing Wang
- The First School of Clinical Medicine & The First Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application & Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fangfang Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xianxing Jiang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
4
|
Jia T, Tang H, Qin T, Zhang Y, Huang Y, Xun Z, Liu B, Zhang Z, Xu H, Zhao C. FRET-Based Host-Guest Supramolecular Probe for On-Site and Broad-Spectrum Detection of Pyrethroids in the Environment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3773-3782. [PMID: 38329040 DOI: 10.1021/acs.jafc.3c05231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The massive use of pyrethroid pesticides in agriculture has brought growing concerns about food safety due to their several harmful effects on human health, especially through the accumulation of the food chain. To date, most of the available analytical methods for pyrethroids still suffer from insufficient detection universality, complicated sample pretreatment, and detection processes, which severely limit their practical applications. Herein, a novel Förster resonance energy transfer (FRET)-assisted host-guest supramolecular nanoassembly is reported, for the first time, successfully realizing ratiometric fluorescent detection of pyrethroids in real samples through the indicator displacement assay (IDA) mechanism. This method is capable of detecting a broad spectrum of pyrethroids, including bifenthrin, cyfluthrin, cypermethrin, deltamethrin, etofenprox, fenvalerate, and permethrin, with ultrahigh detection sensitivity, great selectivity, high anti-interference ability, and, in particular, distinct emission color response from red to green. Such a large chromatic response makes this method available for fast and on-site detection of pyrethroids in real samples with the aid of several simple portable analytical apparatuses.
Collapse
Affiliation(s)
- Tianhao Jia
- National Key Laboratory of Green Pesticide, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haoyao Tang
- National Key Laboratory of Green Pesticide, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Tianyi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Yirui Zhang
- National Key Laboratory of Green Pesticide, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yueran Huang
- Guangzhou Higher Education Mega Center, School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhiqing Xun
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, Guangdong 511447, China
| | - Bin Liu
- College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Brahma D, Sarkar T, Kaushik R, Sarangi AN, Gupta AN. Structural rearrangement of elastin under oxidative stress. Colloids Surf B Biointerfaces 2024; 233:113663. [PMID: 38008014 DOI: 10.1016/j.colsurfb.2023.113663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Reactive oxygen species (ROS) are key elements in several physiological processes. A high level of ROS leads to oxidative stress that damages biomolecules and is linked to many diseases like type-2 diabetes, cancer, inflammation, and many more. Here, our in-vitro study aimed to gauge the effect of ROS on the structural rearrangement of elastin through metal-catalyzed oxidation (MCO) at physiological temperature through laser light scattering, UV-vis, FTIR, and FESEM imaging. Light scattering data show a decrease in the hydrodynamic radius of elastin upon oxidation for the first hour. The rate of size reduction of ROS-treated elastin and the rate for self-assembly of bare elastin in the first two hours is found to be almost the same. However, the rate of association of ROS-treated is one order slower than the bare elastin after one hour. UV-vis absorption shows a blue shift accompanied by increased absorption, followed by a redshift and broadening of peak. FTIR data reveal changes in the secondary structures for both bare and oxidized elastin with time. While bare elastin coacervation increases unordered structure, the corresponding case of oxidized elastin saw a rise in β-sheet. FESEM images show the morphological changes occurring with time. Thus, we conclude that oxidative stress leads to structural rearrangement of the protein through interaction with the polar and hydrophobic domains, followed by aggregation. This study might be helpful for therapeutics focusing on preventing elastin degradation against aging.
Collapse
Affiliation(s)
- Debdip Brahma
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tamal Sarkar
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rupal Kaushik
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Akshay Narayan Sarangi
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
6
|
Nannan L, Gsell W, Belderbos S, Gallet C, Wouters J, Brassart-Pasco S, Himmelreich U, Brassart B. A multimodal imaging study to highlight elastin-derived peptide pro-tumoral effect in a pancreatic xenograft model. Br J Cancer 2023; 128:2000-2012. [PMID: 37002342 PMCID: PMC10206107 DOI: 10.1038/s41416-023-02242-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is highly malignant with a very poor prognosis due to its silent development and metastatic profile with a 5-year survival rate below 10%. PDAC is characterised by an abundant desmoplastic stroma modulation that influences cancer development by extracellular matrix/cell interactions. Elastin is a key element of the extracellular matrix. Elastin degradation products (EDPs) regulate numerous biological processes such as cell proliferation, migration and invasion. The aim of the present study was to characterise for the first time the effect of two EDPs with consensus sequences "GxxPG" and "GxPGxGxG" (VG-6 and AG-9) on PDAC development. The ribosomal protein SA (RPSA) has been discovered recently, acting as a new receptor of EDPs on the surface of tumour cells, contributing to poor prognosis. METHODS Six week-old female Swiss nude nu/nu (Nu(Ico)-Foxn1nu) mice were subcutaneously injected with human PDAC MIA PaCa-2/eGFP-FLuc+ cells, transduced with a purpose-made lentiviral vector, encoding green fluorescent protein (GFP) and Photinus pyralis (firefly) luciferase (FLuc). Animals were treated three times per week with AG-9 (n = 4), VG-6 (n = 5) or PBS (n = 5). The influence of EDP on PDAC was examined by multimodal imaging (bioluminescence imaging (BLI), fluorescence imaging (FLI) and magnetic resonance imaging (MRI). Tumour volumes were also measured using a caliper. Finally, immunohistology was performed at the end of the in vivo study. RESULTS After in vitro validation of MIA PaCa-2 cells by optical imaging, we demonstrated that EDPs exacerbate tumour growth in the PDAC mouse model. While VG-6 stimulated tumour growth to some extent, AG-9 had greater impact on tumour growth. We showed that the expression of the RPSA correlates with a possible effect of EDPs in the PDAC model. Multimodal imaging allowed for longitudinal in vivo follow-up of tumour development. In all groups, we showed mature vessels ending in close vicinity of the tumour, except for the AG-9 group where mature vessels are penetrating the tumour reflecting an increase of vascularisation. CONCLUSIONS Our results suggest that AG-9 strongly increases PDAC progression through an increase in tumour vascularisation.
Collapse
Affiliation(s)
- Lise Nannan
- KU Leuven, Department of Imaging and Pathology/Biomedical MRI, Leuven, Belgium
- CNRS UMR 7369 Matrice Extracellulaire et Dynamique Cellulaire, Reims, France
- Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
| | - Willy Gsell
- KU Leuven, Department of Imaging and Pathology/Biomedical MRI, Leuven, Belgium
| | - Sarah Belderbos
- KU Leuven, Department of Imaging and Pathology/Biomedical MRI, Leuven, Belgium
| | - Célia Gallet
- CNRS UMR 7369 Matrice Extracellulaire et Dynamique Cellulaire, Reims, France
- Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
| | - Jens Wouters
- KU Leuven, Department of Imaging and Pathology/Biomedical MRI, Leuven, Belgium
| | - Sylvie Brassart-Pasco
- CNRS UMR 7369 Matrice Extracellulaire et Dynamique Cellulaire, Reims, France
- Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
| | - Uwe Himmelreich
- KU Leuven, Department of Imaging and Pathology/Biomedical MRI, Leuven, Belgium
| | - Bertrand Brassart
- CNRS UMR 7369 Matrice Extracellulaire et Dynamique Cellulaire, Reims, France.
- Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
| |
Collapse
|
7
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
8
|
Wu N, Xing M, Chen Y, Zhang C, Li Y, Song P, Xu Q, Liu H, Huang H. Improving the productivity of malic acid by alleviating oxidative stress during Aspergillus niger fermentation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:151. [PMID: 36581946 PMCID: PMC9801644 DOI: 10.1186/s13068-022-02250-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND As an attractive platform chemical, malic acid has been commonly used in the food, feed and pharmaceutical field. Microbial fermentation of biobased sources to produce malic acid has attracted great attention because it is sustainable and environment-friendly. However, most studies mainly focus on improving yield and ignore shortening fermentation time. A long fermentation period means high cost, and hinders the industrial applications of microbial fermentation. Stresses, especially oxidative stress generated during fermentation, inhibit microbial growth and production, and prolong fermentation period. Previous studies have shown that polypeptides could effectively relieve stresses, but the underlying mechanisms were poorly understood. RESULTS In this study, polypeptides (especially elastin peptide) addition improves the productivity of malic acid in A. niger, resulting in shortening of fermentation time from 120 to 108 h. Transcriptome and biochemical analyses demonstrated that both antioxidant enzyme-mediated oxidative stress defense system, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and nonenzymatic antioxidant system, such as glutathione, were enhanced in the presence of elastin peptide, suggesting elastin peptide relieving oxidative stresses is involved in many pathways. In order to further investigate the relationship between oxidative stress defense and malic acid productivity, we overexpressed three enzymes (Sod1, CAT, Tps1) related to oxidation resistance in A. niger, respectively, and these resulting strains display varying degree of improvement in malic acid productivity. Especially, the strain overexpressing the Sod1 gene achieved a malate titer of 91.85 ± 2.58 g/L in 96 h, corresponding to a productivity of 0.96 g/L/h, which performs better than elastin peptide addition. CONCLUSIONS Our investigation provides an excellent reference for alleviating the stress of the fungal fermentation process and improving fermentation efficiency.
Collapse
Affiliation(s)
- Na Wu
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China ,grid.260474.30000 0001 0089 5711College of Life Sciences, Nanjing Normal University, Nanjing, 210046 China
| | - Mingyan Xing
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Yaru Chen
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Chi Zhang
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Yingfeng Li
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China ,grid.260474.30000 0001 0089 5711College of Life Sciences, Nanjing Normal University, Nanjing, 210046 China
| | - Ping Song
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Qing Xu
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Hao Liu
- grid.413109.e0000 0000 9735 6249Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457 China
| | - He Huang
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China ,grid.412022.70000 0000 9389 5210College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| |
Collapse
|
9
|
Tsomidis I, Notas G, Xidakis C, Voumvouraki A, Samonakis DN, Koulentaki M, Kouroumalis E. Enzymes of Fibrosis in Chronic Liver Disease. Biomedicines 2022; 10:biomedicines10123179. [PMID: 36551935 PMCID: PMC9776355 DOI: 10.3390/biomedicines10123179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: Liver fibrosis has been extensively studied at the cellular and molecular level, but very few data exist on the final enzymatic stages of collagen synthesis (prolyl hydroxylase, PH) and degradation (matrix metalloproteinases, MMPs), particularly in primary biliary cholangitis (PBC). Aim: We studied enzyme activities in liver tissue from patients with chronic liver diseases and compared them to normal livers. Patients: Eighteen patients with PBC of early and late stages (Ludwig’s classification) and seven on treatment with ursodeoxycholate (UDCA) were studied and compared to 34 patients with alcoholic liver disease (ALD), 25 patients with chronic viral liver disease and five normal biopsies. Sera were available from a total of 140 patients. Methods: The tritiated water released from the tritiated proline was measured in PH assessment. 14C intact and heat-denatured collagen substrates were used to measure collagenase and gelatinases, respectively. 3H Elastin was the substrate for elastase. In serum, ELISAs were used for MMP-1, TIMP-1, and TIMP-2 measurements while MMP-2 and MMP-9 were estimated by zymography. Results: PH was significantly increased in early and late PBC. Collagenase was reduced only in the late stages (p < 0.01), where the ratio PH/collagenase was increased. UDCA treatment restored values to almost normal. Gelatinases were reduced in late stages (p < 0.05). In contrast to PBC and ALD fibrosis, collagen synthesis is not increased in viral fibrosis. The balance shifted towards collagen deposition due to reduced degradation. Interestingly, gelatinolytic activity is not impaired in ALD. Elastase was similar to controls in all diseases studied. TIMP-1 was reduced in early PBC and viral and alcoholic hepatitis and cirrhosis (p < 0.001). Conclusions: (1) There is evidence that collagen synthesis increases in the early stages of PBC, but the collagenolytic mechanism may compensate for the increased synthesis. (2) In viral disease, fibrosis may be due to decreased degradation rather than increased synthesis. (3) The final biochemical stages of liver fibrosis may be quantitatively different according to underlying etiology.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Chalkidiki, Greece
- Laboratory of Gastroenterology and Hepatology, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
| | - Costas Xidakis
- Laboratory of Gastroenterology and Hepatology, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Chalkidiki, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology, PAGNI University Hospital, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
| | - Mairi Koulentaki
- Department of Gastroenterology, PAGNI University Hospital, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
- Department of Gastroenterology, PAGNI University Hospital, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
- Correspondence:
| |
Collapse
|
10
|
Lima LF, Sousa MGDC, Rodrigues GR, de Oliveira KBS, Pereira AM, da Costa A, Machado R, Franco OL, Dias SC. Elastin-like Polypeptides in Development of Nanomaterials for Application in the Medical Field. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.874790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are biopolymers formed by amino acid sequences derived from tropoelastin. These biomolecules can be soluble below critical temperatures, forming aggregates at higher temperatures, which makes them an interesting source for the design of different nanobiomaterials. These nanobiomaterials can be obtained from heterologous expression in several organisms such as bacteria, fungi, and plants. Thanks to the many advantages of ELPs, they have been used in the biomedical field to develop nanoparticles, nanofibers, and nanocomposites. These nanostructures can be used in multiple applications such as drug delivery systems, treatments of type 2 diabetes, cardiovascular diseases, tissue repair, and cancer therapy. Thus, this review aims to shed some light on the main advances in elastin-like-based nanomaterials, their possible expression forms, and importance to the medical field.
Collapse
|
11
|
Kim SH, Monticone RE, McGraw KR, Wang M. Age-associated proinflammatory elastic fiber remodeling in large arteries. Mech Ageing Dev 2021; 196:111490. [PMID: 33839189 PMCID: PMC8154723 DOI: 10.1016/j.mad.2021.111490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Elastic fibers are the main components of the extracellular matrix of the large arterial wall. Elastic fiber remodeling is an intricate process of synthesis and degradation of the core elastin protein and microfibrils accompanied by the assembly and disassembly of accessory proteins. Age-related morphological, structural, and functional proinflammatory remodeling within the elastic fiber has a profound effect upon the integrity, elasticity, calcification, amyloidosis, and stiffness of the large arterial wall. An age-associated increase in arterial stiffness is a major risk factor for the pathogenesis of diseases of the large arteries such as hypertensive and atherosclerotic vasculopathy. This mini review is an update on the key molecular, cellular, functional, and structural mechanisms of elastic fiber proinflammatory remodeling in large arteries with aging. Targeting structural and functional integrity of the elastic fiber may be an effective approach to impede proinflammatory arterial remodeling with advancing age.
Collapse
Affiliation(s)
- Soo Hyuk Kim
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Robert E Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Kimberly R McGraw
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
12
|
Boraldi F, Moscarelli P, Lofaro FD, Sabia C, Quaglino D. The mineralization process of insoluble elastin fibrillar structures: Ionic environment vs degradation. Int J Biol Macromol 2020; 149:693-706. [DOI: 10.1016/j.ijbiomac.2020.01.250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/17/2023]
|
13
|
Characterization of cathepsin S exosites that govern its elastolytic activity. Biochem J 2020; 477:227-242. [DOI: 10.1042/bcj20190847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
We have previously determined that the elastolytic activities of cathepsins (Cat) K and V require two exosites sharing the same structural localization on both enzymes. The structural features involved in the elastolytic activity of CatS have not yet been identified. We first mutated the analogous CatK and V putative exosites of CatS into the elastolytically inactive CatL counterparts. The modification of the exosite 1 did not affect the elastase activity of CatS whilst mutation of the Y118 of exosite 2 decreased the cleavage of elastin by ∼70% without affecting the degradation of other macromolecular substrates (gelatin, thyroglobulin). T06, an ectosteric inhibitor that disrupt the elastolytic activity of CatK, blocked ∼80% of the elastolytic activity of CatS without blocking the cleavage of gelatin and thyroglobulin. Docking studies showed that T06 preferentially interacts with a binding site located on the Right domain of the enzyme, outside of the active site. The structural examination of this binding site showed that the loop spanning the L174N175G176K177 residues of CatS is considerably different from that of CatL. Mutation of this loop into the CatL-like equivalent decreased elastin degradation by ∼70% and adding the Y118 mutation brought down the loss of elastolysis to ∼80%. In addition, the Y118 mutation selectively reduced the cleavage of the basement membrane component laminin by ∼50%. In summary, our data show that the degradation of elastin by CatS requires two exosites where one of them is distinct from those of CatK and V whilst the cleavage of laminin requires only one exosite.
Collapse
|
14
|
The role of elastin-derived peptides in human physiology and diseases. Matrix Biol 2019; 84:81-96. [PMID: 31295577 DOI: 10.1016/j.matbio.2019.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
Once considered as inert, the extracellular matrix recently revealed to be biologically active. Elastin is one of the most important components of the extracellular matrix. Many vital organs including arteries, lungs and skin contain high amounts of elastin to assure their correct function. Physiologically, the organism contains a determined quantity of elastin from the early development which may remain physiologically constant due to its very long half-life and very low turnover. Taking into consideration the continuously ongoing challenges during life, there is a physiological degradation of elastin into elastin-derived peptides which is accentuated in several disease states such as obstructive pulmonary diseases, atherosclerosis and aortic aneurysm. These elastin-derived peptides have been shown to have various biological effects mediated through their interaction with their cognate receptor called elastin receptor complex eliciting several signal transduction pathways. In this review, we will describe the production and the biological effects of elastin-derived peptides in physiology and pathology.
Collapse
|
15
|
Wight TN. A role for proteoglycans in vascular disease. Matrix Biol 2018; 71-72:396-420. [PMID: 29499356 PMCID: PMC6110991 DOI: 10.1016/j.matbio.2018.02.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022]
Abstract
The content of proteoglycans (PGs) is low in the extracellular matrix (ECM) of vascular tissue, but increases dramatically in all phases of vascular disease. Early studies demonstrated that glycosaminoglycans (GAGs) including chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS) and heparan sulfate (HS) accumulate in vascular lesions in both humans and in animal models in areas of the vasculature that are susceptible to disease initiation (such as at branch points) and are frequently coincident with lipid deposits. Later studies showed the GAGs were covalently attached to specific types of core proteins that accumulate in vascular lesions. These molecules include versican (CSPG), biglycan and decorin (DS/CSPGs), lumican and fibromodulin (KSPGs) and perlecan (HSPG), although other types of PGs are present, but in lesser quantities. While the overall molecular design of these macromolecules is similar, there is tremendous structural diversity among the different PG families creating multiple forms that have selective roles in critical events that form the basis of vascular disease. PGs interact with a variety of different molecules involved in disease pathogenesis. For example, PGs bind and trap serum components that accumulate in vascular lesions such as lipoproteins, amyloid, calcium, and clotting factors. PGs interact with other ECM components and regulate, in part, ECM assembly and turnover. PGs interact with cells within the lesion and alter the phenotypes of both resident cells and cells that invade the lesion from the circulation. A number of therapeutic strategies have been developed to target specific PGs involved in key pathways that promote vascular disease. This review will provide a historical perspective of this field of research and then highlight some of the evidence that defines the involvement of PGs and their roles in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, United States.
| |
Collapse
|
16
|
Seidl SE, Pessolano LG, Bishop CA, Best M, Rich CB, Stone PJ, Schreiber BM. Toll-like receptor 2 activation and serum amyloid A regulate smooth muscle cell extracellular matrix. PLoS One 2017; 12:e0171711. [PMID: 28257481 PMCID: PMC5336220 DOI: 10.1371/journal.pone.0171711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/24/2017] [Indexed: 11/19/2022] Open
Abstract
Smooth muscle cells contribute to extracellular matrix remodeling during atherogenesis. De-differentiated, synthetic smooth muscle cells are involved in processes of migration, proliferation and changes in expression of extracellular matrix components, all of which contribute to loss of homeostasis accompanying atherogenesis. Elevated levels of acute phase proteins, including serum amyloid A (SAA), are associated with an increased risk for atherosclerosis. Although infection with periodontal and respiratory pathogens via activation of inflammatory cell Toll-like receptor (TLR)2 has been linked to vascular disease, little is known about smooth muscle cell TLR2 in atherosclerosis. This study addresses the role of SAA and TLR2 activation on smooth muscle cell matrix gene expression and insoluble elastin accumulation. Cultured rat aortic smooth muscle cells were treated with SAA or TLR2 agonists and the effect on expression of matrix metallopeptidase 9 (MMP9) and tropoelastin studied. SAA up-regulated MMP9 expression. Tropoelastin is an MMP9 substrate and decreased tropoelastin levels in SAA-treated cells supported the concept of extracellular matrix remodeling. Interestingly, SAA-induced down-regulation of tropoelastin was not only evident at the protein level but at the level of gene transcription as well. Contributions of proteasomes, nuclear factor κ B and CCAAT/enhancer binding protein β on regulation of MMP9 vs. tropoleastin expression were revealed. Effects on Mmp9 and Eln mRNA expression persisted with long-term SAA treatment, resulting in decreased insoluble elastin accumulation. Interestingly, the SAA effects were TLR2-dependent and TLR2 activation by bacterial ligands also induced MMP9 expression and decreased tropoelastin expression. These data reveal a novel mechanism whereby SAA and/or infection induce changes in vascular elastin consistent with atherosclerosis.
Collapse
Affiliation(s)
- Stephanie E. Seidl
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lawrence G. Pessolano
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christopher A. Bishop
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael Best
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Celeste B. Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Phillip J. Stone
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara M. Schreiber
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
A characteristic feature of liver cirrhosis is the accumulation of large amounts of connective tissue with the prevailing content of type I collagen. Elastin is a minor connective tissue component in normal liver but it is actively synthesized by hepatic stellate cells and portal fibroblasts in diseased liver. The accumulation of elastic fibers in later stages of liver fibrosis may contribute to the decreasing reversibility of the disease with advancing time. Elastin is formed by polymerization of tropoelastin monomers. It is an amorphous protein highly resistant to the action of proteases that forms the core of elastic fibers. Microfibrils surrounding the core are composed of fibrillins that bind a number of proteins involved in fiber formation. They include microfibril-associated glycoproteins (MAGPs), microfibrillar-associated proteins (MFAPs) and fibulins. Lysyl oxidase (LOX) and lysyl oxidase-like proteins (LOXLs) are responsible for tropoelastin cross-linking and polymerization. TGF-β complexes attached to microfibrils release this cytokine and influence the behavior of the cells in the neighborhood. The role of TGF-β as the main profibrotic cytokine in the liver is well-known and the release of the cytokines of TGF-β superfamily from their storage in elastic fibers may affect the course of fibrosis. Elastic fibers are often studied in the tissues where they provide elasticity and resilience but their role is no longer viewed as purely mechanical. Tropoelastin, elastin polymer and elastin peptides resulting from partial elastin degradation influence fibroblastic and inflammatory cells as well as angiogenesis. A similar role may be performed by elastin in the liver. This article reviews the results of the research of liver elastic fibers on the background of the present knowledge of elastin biochemistry and physiology. The regulation of liver elastin synthesis and degradation may be important for the outcome of liver fibrosis.
Collapse
Affiliation(s)
- Jiří Kanta
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague Hradec Kralove, Czechia
| |
Collapse
|
18
|
Li H, Huang Y, Yu Y, Wang Y, Li G. Recognition-induced covalent capturing and labeling as a general strategy for protein detection. Biosens Bioelectron 2016; 80:560-565. [DOI: 10.1016/j.bios.2016.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/23/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
|