1
|
Marco HG, Glendinning S, Ventura T, Gäde G. The gonadotropin-releasing hormone (GnRH) superfamily across Pancrustacea/Tetraconata: A role in metabolism? Mol Cell Endocrinol 2024; 590:112238. [PMID: 38616035 DOI: 10.1016/j.mce.2024.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Susan Glendinning
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Tomer Ventura
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
2
|
Nichols R, Pittala K, Leander M, Maynard B, Nikolaou P, Marciniak P. The myosuppressin structure-activity relationship for cardiac contractility and its receptor interactions support the presence of a ligand-directed signaling pathway in heart. Peptides 2021; 146:170641. [PMID: 34453985 DOI: 10.1016/j.peptides.2021.170641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
The structural conservation and activity of the myosuppressin cardioinhibitory peptide across species suggests it plays an important role in physiology, yet much remains unknown regarding its signaling. We previously reported Drosophila melanogaster myosuppressin (dromyosuppressin, DMS; TDVDHVFLRF-NH2) decreases cardiac contractility through a G protein-coupled receptor, DMS-R2. Our study showed the DMS N-terminus amino acids influence its structure-activity relationship (SAR), yet how they act is not established. We predicted myosuppressin N-terminal amino acids played a role in signaling. Here, we tested our hypothesis in the beetle, Zophobas atratus, using a semi-isolated heart bioassay to explore SAR in a different Order and focus on cardiac signaling. We generated a series of myosuppressin truncated analogs by removing the N-terminal residue and measuring the activity of each structure on cardiac contractility. While DVDHVFLRF-NH2 decreased cardiac contractility, we found VDHVFLRF-NH2, DHVFLRF-NH2, and HVFLRF-NH2 increased activity. In contrast, VFLRF- NH2 decreased activity and FLRF-NH2 was inactive. Next, we analyzed molecular docking data and found the active truncated analogs interacted with the 3-6 lock in DMS-R2, the myosuppressin cardiac receptor, disrupting the salt bridge between H114 and E369, and K289 and Q372. Further, the docking results showed the inhibitory effect on contractility may be associated with contact to Y78, while the analogs that increased contractility lacked this interaction. The data from our study demonstrated N-terminal amino acids played a role in myosuppressin activity and signaling suggesting the cardiac receptor can be targeted by biased agonists. Our myosuppressin cardiac contractility data and predicted receptor interactions describe the presence of functional selectivity in a ligand-directed signaling pathway in heart.
Collapse
Affiliation(s)
- R Nichols
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - K Pittala
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Undergraduate Honors Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - M Leander
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - B Maynard
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - P Nikolaou
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| | - P Marciniak
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
3
|
Marciniak P, Witek W, Szymczak M, Pacholska-Bogalska J, Chowański S, Kuczer M, Rosiński G. FMRFamide-Related Peptides Signaling Is Involved in the Regulation of Muscle Contractions in Two Tenebrionid Beetles. Front Physiol 2020; 11:456. [PMID: 32477164 PMCID: PMC7235380 DOI: 10.3389/fphys.2020.00456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Peptidergic signaling regulates various physiological processes in insects. Neuropeptides are important messenger molecules that act as neurotransmitters, neuromodulators or hormones. Neuropeptides with myotropic properties in insects are known as FMRFamide-like peptides (FaLPs). Here, we describe the myotropic effects of the endogenous FaLPs in the regulation of contractile activity of the heart, ejaculatory duct, oviduct and the hindgut in two beetle species, Tenebrio molitor and Zophobas atratus. A putative receptor was identified in silico in both species. Using RT-PCR these putative FaLPs receptors were found in the various tissues of both beetles, including visceral organs. Analysis of the amino acid sequence of the receptor indicated that it is similar to other insect FaLPs receptors and belongs to G-protein coupled receptors. A synthetic FaLP (NSNFLRFa) found as the bioanalogue of both species demonstrated concentration-dependent and organ-specific myoactive properties. The peptide had species–specific cardioactivity, in that it stimulated Z. atratus heart contractions, while slightly inhibiting that of T. molitor and had mainly myostimulatory effect on the examined visceral organs of both beetle species, with the lowest activity in the ejaculatory duct of these beetles. The peptide was the most active in the hindgut of both species, but only at high concentration of 10–5 M. The results suggest that FaLPs are potent modulators of endogenous contractile activity of the visceral muscles in beetles and may indirectly affect various physiological processes.
Collapse
Affiliation(s)
- Paweł Marciniak
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| | - Wojciech Witek
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| | - Monika Szymczak
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| | | | - Szymon Chowański
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wrocław, Wrocław, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Abdulganiyyu IA, Sani MA, Separovic F, Marco H, Jackson GE. Phote-HrTH (Phormia terraenovae Hypertrehalosaemic Hormone), the Metabolic Hormone of the Fruit Fly: Solution Structure and Receptor Binding Model. Aust J Chem 2020. [DOI: 10.1071/ch19461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fruit flies are a widely distributed pest insect that pose a significant threat to food security. Flight is essential for the dispersal of the adult flies to find new food sources and ideal breeding spots. The supply of metabolic fuel to power the flight muscles of insects is regulated by adipokinetic hormones (AKHs). The fruit fly, Drosophila melanogaster, has the same AKH that is present in the blowfly, Phormia terraenovae; this AKH has the code-name Phote-HrTH. Binding of the AKH to the extra-cellular binding site of a G protein-coupled receptor causes its activation. In this paper, the structure of Phote-HrTH in sodium dodecyl sulfate (SDS) micelle solution was determined using NMR restrained molecular dynamics. The peptide was found to bind to the micelle and be fairly rigid, with an S2 order parameter of 0.96. The translated protein sequence of the AKH receptor from the fruit fly, D. melanogaster, Drome-AKHR, was used to construct two models of the receptor. It is proposed that these two models represent the active and inactive state of the receptor. The model based on the crystal structure of the β-2 adrenergic receptor was found to bind Phote-HrTH with a binding constant of −102kJmol−1, while the other model, based on the crystal structure of rhodopsin, did not bind the peptide. Under molecular dynamic simulation, in a palmitoyloleoylphosphatidylcholine (POPC) membrane, the receptor complex changed from an inactive to an active state. The identification and characterisation of the ligand binding site of Drome-AKHR provide novel information of ligand–receptor interaction, which could lead to the development of species-specific control substances to use discriminately against the fruit fly.
Collapse
|
5
|
Jackson GE, Pavadai E, Gäde G, Andersen NH. The adipokinetic hormones and their cognate receptor from the desert locust, Schistocerca gregaria: solution structure of endogenous peptides and models of their binding to the receptor. PeerJ 2019; 7:e7514. [PMID: 31531269 PMCID: PMC6718158 DOI: 10.7717/peerj.7514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Neuropeptides exert their activity through binding to G protein-coupled receptors (GPCRs). GPCRs are well-known drug targets in the pharmaceutical industry and are currently discussed as targets to control pest insects. Here, we investigate the neuropeptide adipokinetic hormone (AKH) system of the desert locust Schistocerca gregaria. The desert locust is known for its high reproduction, and for forming devastating swarms consisting of billions of individual insects. It is also known that S. gregaria produces three different AKHs as ligands but has only one AKH receptor (AKHR). The AKH system is known to be essential for metabolic regulation, which is necessary for reproduction and flight activity. Methods Nuclear magnetic resonance techniques (NMR) in a dodecylphosphocholin (DPC) micelle solution were used to determine the structure of the three AKHs. The primary sequence of the S. gregaria AKHR was used to construct a 3D molecular model. Next, the three AKHs were individually docked to the receptor, and dynamic simulation of the whole ligand–receptor complex in a model membrane was performed. Results Although the three endogenous AKHs of S. gregaria have quite different amino acids sequences and chain length (two octa- and one decapeptide), NMR experiments assigned a turn structure in DPC micelle solution for all. The GPCR-ModSim program identified human kappa opioid receptor to be the best template after which the S. gregaria AKHR was modeled. All three AKHs were found to have the same binding site on this receptor, interact with similar residues of the receptor and have comparable binding constants. Molecular switches were also identified; the movement of the receptor could be visually shown when ligands (AKHs) were docked and the receptor was activated. Conclusions The study proposes a model of binding of the three endogenous ligands to the one existing AKHR in the desert locust and paves the way to use such a model for the design of peptide analogs and finally, peptide mimetics, in the search for novel species-specific insecticides based on receptor–ligand interaction.
Collapse
Affiliation(s)
- Graham E Jackson
- Department of Chemistry, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Elumalai Pavadai
- Department of Chemistry, University of Cape Town, Cape Town, Western Cape, South Africa.,Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Leprince J, Bagnol D, Bureau R, Fukusumi S, Granata R, Hinuma S, Larhammar D, Primeaux S, Sopkova-de Oliveiras Santos J, Tsutsui K, Ukena K, Vaudry H. The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24. Br J Pharmacol 2017; 174:3573-3607. [PMID: 28613414 DOI: 10.1111/bph.13907] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022] Open
Abstract
The RFamide neuropeptide 26RFa was first isolated from the brain of the European green frog on the basis of cross-reactivity with antibodies raised against bovine neuropeptide FF (NPFF). 26RFa and its N-terminally extended form glutamine RF-amide peptide (QRFP) have been identified as cognate ligands of the former orphan receptor GPR103, now renamed glutamine RF-amide peptide receptor (QRFP receptor). The 26RFa/QRFP precursor has been characterized in various mammalian and non-mammalian species. In the brain of mammals, including humans, 26RFa/QRFP mRNA is almost exclusively expressed in hypothalamic nuclei. The 26RFa/QRFP transcript is also present in various organs especially in endocrine glands. While humans express only one QRFP receptor, two isoforms are present in rodents. The QRFP receptor genes are widely expressed in the CNS and in peripheral tissues, notably in bone, heart, kidney, pancreas and testis. Structure-activity relationship studies have led to the identification of low MW peptidergic agonists and antagonists of QRFP receptor. Concurrently, several selective non-peptidic antagonists have been designed from high-throughput screening hit optimization. Consistent with the widespread distribution of QRFP receptor mRNA and 26RFa binding sites, 26RFa/QRFP exerts a large range of biological activities, notably in the control of energy homeostasis, bone formation and nociception that are mediated by QRFP receptor or NPFF2. The present report reviews the current knowledge concerning the 26RFa/QRFP-QRFP receptor system and discusses the potential use of selective QRFP receptor ligands for therapeutic applications.
Collapse
Affiliation(s)
- Jérôme Leprince
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| | - Didier Bagnol
- CNS Drug Discovery, Arena Pharmaceuticals Inc., San Diego, CA, USA
| | - Ronan Bureau
- Normandy Centre for Studies and Research on Medicines (CERMN), Normandy University, Caen, France
| | - Shoji Fukusumi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Shuji Hinuma
- Department of Food and Nutrition, Faculty of Human Life Science, Senri Kinran University, Suita-City, Osaka, Japan
| | - Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Uppsala, Sweden
| | - Stefany Primeaux
- Department of Physiology, Joint Diabetes, Endocrinology & Metabolism Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science, Tokyo, Japan
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hubert Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| |
Collapse
|
7
|
Jackson GE, Pavadai E, Gäde G, Timol Z, Andersen NH. Interaction of the red pigment-concentrating hormone of the crustacean Daphnia pulex, with its cognate receptor, Dappu-RPCHR: A nuclear magnetic resonance and modeling study. Int J Biol Macromol 2017; 106:969-978. [PMID: 28837848 DOI: 10.1016/j.ijbiomac.2017.08.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 11/17/2022]
Abstract
The primary sequence of the red pigment-concentrating hormone (RPCH) receptor of the water flea, Daphnia pulex, was used in homology modeling to construct the first 3D model of a crustacean G-protein coupled receptor, Dappu-RPCHR. This receptor was found to belong to the class A subfamily of GPCRs with a disulfide bridge between Cys72 and Cys150 and an ionic lock between Arg97 and Thr224 and Thr220. NMR restrained molecular dynamics was used to determine the structure of an agonist, Dappu-RPCH, in a membrane-mimicking environment. The agonist was found to be flexible but has two main conformations in solution, both having β-turns. Docking of the predominant structure was used to find a binding pocket on the receptor. The pocket's spatial location was similar to that of the AKH receptor of Anopheles gambiae. The binding affinity was -69kcalmol-1 with the N-terminus of Dappu-RPCH inserted between helices 4 and 6, and the C-terminus interacting with extra-cellular loop, ECL2. Upon binding, H-bonding to the peptide may activate the receptor. This development of the first Dappu-RPCH/Dappu-RPCHR model could be useful for understanding ligand-receptor interactions in crustaceans.
Collapse
Affiliation(s)
- Graham E Jackson
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa.
| | - Elumalai Pavadai
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa; Current address, Department of Physics, Florida International University, Miami, 33199, FL, United States
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Zaheer Timol
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Niels H Andersen
- Chemistry Department, University of Washington, Seattle, WA, 98195, United States
| |
Collapse
|
8
|
Ons S. Neuropeptides in the regulation of Rhodnius prolixus physiology. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:77-92. [PMID: 27210592 DOI: 10.1016/j.jinsphys.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
In the kissing bug Rhodnius prolixus, events such as diuresis, antidiuresis, development and reproduction are triggered by blood feeding. Hence, these events can be accurately timed, facilitating physiological experiments. This, combined with its relatively big size, makes R. prolixus an excellent model in insect neuroendocrinological studies. The importance of R. prolixus as a Chagas' disease vector as much as an insect model has motivated the sequencing of its genome in recent years, facilitating genetic and molecular studies. Most crucial physiological processes are regulated by the neuroendocrine system, composed of neuropeptides and their receptors. The identification and characterization of neuropeptides and their receptors could be the first step to find targets for new insecticides. The sequences of 41 neuropeptide precursor genes and the receptors for most of them were identified in the R. prolixus genome. Functional information about many of these molecules was obtained, whereas many neuroendocrine systems are still unstudied in this model species. This review addresses the knowledge available to date regarding the structure, distribution, expression and physiological effects of neuropeptides in R. prolixus, and points to future directions in this research field.
Collapse
Affiliation(s)
- Sheila Ons
- Laboratory of Insects Neurobiology, National Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 1459, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Traverso L, Sierra I, Sterkel M, Francini F, Ons S. Neuropeptidomics in Triatoma infestans. Comparative transcriptomic analysis among triatomines. ACTA ACUST UNITED AC 2016; 110:83-98. [PMID: 27993629 DOI: 10.1016/j.jphysparis.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/02/2023]
Abstract
Chagas' disease, affecting up to 6-7 million people worldwide, is transmitted to humans through the feces of triatomine kissing bugs. From these, Rhodnius prolixus, Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis are important vectors distributed throughout the Latin American subcontinent. Resistance to pyrethroids has been developed by some triatomine populations, especially T. infestans, obstructing their control. Given their role in the regulation of physiological processes, neuroendocrine-derived factors have been proposed as a source of molecular targets for new-generation insecticides. However, the involvement of neuropeptides in insecticide metabolism and resistance in insects has been poorly studied. In the present work, the sequences of 20 neuropeptide precursor genes in T. infestans, 16 in T. dimidiata, and 13 in T. pallidipennis detected in transcriptomic databases are reported, and a comparative analysis in triatomines is presented. A total of 59 neuropeptides were validated by liquid chromatography-tandem mass spectrometry in brain and nervous ganglia from T. infestans, revealing the existence of differential post-translational modifications, extended and truncated forms. The results suggest a high sequence conservation in some neuropeptide systems in triatomines, whereas remarkable differences occur in several others within the core domains. Comparisons of the basal expression levels for several neuropeptide precursor genes between pyrethroid sensitive and resistant population of T. infestans are also presented here, in order to introduce a proof of concept to test the involvement of neuropeptides in insecticide resistance. From the precursors tested, NVP and ITG peptides are significantly higher expressed in the resistant population. To our knowledge, this is the first report to associate differential neuropeptide expression with insecticide resistance. The information provided here contributes to creating conditions to widely extend functional and genetic studies involving neuropeptides in triatomines.
Collapse
Affiliation(s)
- Lucila Traverso
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina
| | - Ivana Sierra
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina
| | - Marcos Sterkel
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco D. Prédio do CCS, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Flavio Francini
- Center of Experimental and Applied Endocrinology, CONICET-CCT La Plata, National University of La Plata, 60 and 120 Street, CP: 1900, La Plata, Argentina
| | - Sheila Ons
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina.
| |
Collapse
|