1
|
Dementieva NV, Dysin AP, Shcherbakov YS, Nikitkina EV, Musidray AA, Petrova AV, Mitrofanova OV, Plemyashov KV, Azovtseva AI, Griffin DK, Romanov MN. Risk of Sperm Disorders and Impaired Fertility in Frozen-Thawed Bull Semen: A Genome-Wide Association Study. Animals (Basel) 2024; 14:251. [PMID: 38254422 PMCID: PMC10812825 DOI: 10.3390/ani14020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Cryopreservation is a widely used method of semen conservation in animal breeding programs. This process, however, can have a detrimental effect on sperm quality, especially in terms of its morphology. The resultant sperm disorders raise the risk of reduced sperm fertilizing ability, which poses a serious threat to the long-term efficacy of livestock reproduction and breeding. Understanding the genetic factors underlying these effects is critical for maintaining sperm quality during cryopreservation, and for animal fertility in general. In this regard, we performed a genome-wide association study to identify genomic regions associated with various cryopreservation sperm abnormalities in Holstein cattle, using single nucleotide polymorphism (SNP) markers via a high-density genotyping assay. Our analysis revealed a significant association of specific SNPs and candidate genes with absence of acrosomes, damaged cell necks and tails, as well as wrinkled acrosomes and decreased motility of cryopreserved sperm. As a result, we identified candidate genes such as POU6F2, LPCAT4, DPYD, SLC39A12 and CACNB2, as well as microRNAs (bta-mir-137 and bta-mir-2420) that may play a critical role in sperm morphology and disorders. These findings provide crucial information on the molecular mechanisms underlying acrosome integrity, motility, head abnormalities and damaged cell necks and tails of sperm after cryopreservation. Further studies with larger sample sizes, genome-wide coverage and functional validation are needed to explore causal variants in more detail, thereby elucidating the mechanisms mediating these effects. Overall, our results contribute to the understanding of genetic architecture in cryopreserved semen quality and disorders in bulls, laying the foundation for improved animal reproduction and breeding.
Collapse
Affiliation(s)
- Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Elena V. Nikitkina
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Artem A. Musidray
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Anna V. Petrova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Olga V. Mitrofanova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Kirill V. Plemyashov
- Federal State Budgetary Educational Institution of Higher Education “St. Petersburg State University of Veterinary Medicine”, 196084 St. Petersburg, Russia;
| | - Anastasiia I. Azovtseva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | | | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Moscow Oblast, Russia
| |
Collapse
|
2
|
Acharyya A, Das J, Hasan KN. Rhythmicity in testicular melatonin and its correlation with the dynamics of spermatogenic cells in an annual reproductive cycle of Clarias batrachus under natural photo-thermal conditions. Theriogenology 2023; 208:15-27. [PMID: 37290144 DOI: 10.1016/j.theriogenology.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Melatonin, the pineal hormone, is synthesized and secreted rhythmically in accordance with various environmental cues especially photo-thermal conditions. The reproductive physiology of seasonal breeders is synchronized with the surroundings by melatonin as a neuroendocrine mediator to acts as an important factor in fish reproduction. However, the data on the participation of melatonin in male reproduction and the putative interaction with the process of spermatogenesis in fish is scarce till date. So, major objectives of the current study are to determine for the first time, the relationship, if any, between seasonal levels of melatonin and testicular development and maturation of the germ cells, and also the involvements of specific meteorological parameters in spermatogenesis under natural photo-thermal conditions. We measured the concentration of circulatory and testicular melatonin; value of gonadosomatic index (GSI), relative percentages of different developing spermatogenic cells, area and perimeter (size and shape) of seminiferous lobules along with the level/duration of rainfall, water temperature and day length in six reproductive phases throughout an annual cycle in adult male catfish (Clarias batrachus). Intra-testicular and serum melatonin concentration showed a similar seasonal pattern with a peak during "functional maturity" phase and trough during "slow spermatogenesis" phase. Correlation as well as regression analyses also supported this positive relationship. Interestingly, intra-testicular melatonin also showed a significant positive correlation with GSI and relative percentage as well as lobular size of mature stages (spermatid and spermatozoa) of germ cells in an annual cycle. Furthermore, meteorological factors exhibited as critical cues to regulate the dynamics (in %) of spermatogenic cells and the level of testicular melatonin throughout the annual gonadal cycle. Our results corroborated by principal component (PC) analysis and showed very clearly that active "functional maturity" state is characterized by GSI, testicular melatonin, relative abundance and lobular size of mature spermatogenic stages as key internal oscillators; and studied environmental variables as the external clues for the regulation of spawning process. Collectively, the present data revealed that there is a relationship between melatonin levels and testicular growth and development of germ cells in Clarias batrachus under natural photo-thermal conditions.
Collapse
Affiliation(s)
- Akash Acharyya
- Department of Zoology, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Joydeep Das
- Department of Zoology, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Kazi Nurul Hasan
- Department of Zoology, Sidho-Kanho-Birsha University, Purulia, 723104, India.
| |
Collapse
|
3
|
Singh A, Lal B, Kumar P, Parhar IS, Millar RP. Role of Neurokinin B in gametogenesis and steroidogenesis of freshwater catfish, Clarias batrachus. Cell Tissue Res 2023; 393:377-391. [PMID: 37278825 DOI: 10.1007/s00441-023-03788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
Neurokinin B (NKB), a recently discovered neuropeptide, plays a crucial role in regulating the kiss-GnRH neurons in vertebrate's brain. NKB is also characterized in gonadal tissues; however, its role in gonads is poorly understood. Therefore, in the present study, the effects of NKB on gonadal steroidogenesis and gametogenesis through in vivo and in vitro approaches using NKB antagonist MRK-08 were evaluated. The results suggest that the NKB antagonist decreases the development of advanced ovarian follicles and germ cells in the testis. In addition, MRK-08 further reduces the production of 17β-estradiol in the ovary and testosterone in the testis under both in vivo and in vitro conditions in a dose-dependent manner. Furthermore, the in vitro MRK-08 treatment of gonadal explants attenuated the expression of steroidogenic marker proteins, i.e., StAR, 3β-HSD, and 17β-HSD dose-dependently. Moreover, the MAP kinase proteins, pERK1/2 & ERK1/2 and pAkt & Akt were also downregulated by MRK-08. Thus, the study suggests that NKB downregulates steroidogenesis by modulating the expressions of steroidogenic marker proteins involving ERK1/2 & pERK1/2 and Akt/pAkt signalling pathways. NKB also appears to regulate gametogenesis by regulating gonadal steroidogenesis in the catfish.
Collapse
Affiliation(s)
- Ankur Singh
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Bechan Lal
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India.
| | - Pankaj Kumar
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar, Arunachal Pradesh, India
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Sunway Campus, Malaysia
| | - Robert P Millar
- Centre for Neuroendocrinology, Department of Immunology, University of Pretoria, Pretoria and Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| |
Collapse
|
4
|
Priyam M, Gupta SK, Sarkar B, Naskar S, Kumar N, Foysal MJ, Sharma TR. Variation in immuno-reproductive milieu of testis in Clarias magur from pre-spawning to spawning phase: An indication towards non-canonical role of immune elements in testes. J Reprod Immunol 2022; 154:103757. [PMID: 36335659 DOI: 10.1016/j.jri.2022.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Immune mechanisms are major players in ensuring the normal functioning of testicular functions. However, apart from their role in active defence against pathogens, prior studies have also suggested a possibility for reproduction-related (non-immune) functions of certain immune elements. This study employs a comparative transcriptomics approach followed by network analysis for tracking the variation in the immuno-reproductive milieu of Clarias magur testis in spawning versus pre-spawning phase. The results show a significant modulation of both reproduction and immune-relevant genes in spawning versus pre-spawning phase. The functional enrichment of the upregulated reproduction-relevant gene network also shows immune-related biological processes which indicates a probability of involvement of these candidates in spermatogenesis-related events for switching from pre-spawning to spawning phase. The upregulated immune network is highly dense with 40 hubs, 10 cluster sub-networks and 142 functionally enriched pathways in comparison to its downregulated counterpart with only 5 hubs, 1 cluster and 1 enriched pathway. These findings indicate that the synchronisation in modulation of both reproductive and immune-related factors is critical for progression of testicular events guiding the switch from pre-spawning to spawning phase. The reproductive phase-dependent variation in plasma sex steroid levels and the selected genes for quantitative PCR also corroborated this hypothesis. The study also serves as a preliminary screening step for probable immune candidates that may be involved in reproductive functions of testis in addition to defence.
Collapse
Affiliation(s)
- Manisha Priyam
- ICAR, Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand 834010, India
| | - Sanjay K Gupta
- ICAR, Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand 834010, India.
| | - Biplab Sarkar
- ICAR, Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand 834010, India
| | - Soumen Naskar
- ICAR, Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand 834010, India
| | - Neeraj Kumar
- ICAR, National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune 413115, India
| | - Md Javed Foysal
- School of Molecular and Life Sciences Curtin University, WA 6845 Australia
| | - T R Sharma
- ICAR, Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand 834010, India
| |
Collapse
|
5
|
Seasonal expression and distribution of kisspeptin1 (kiss1) in the ovary and testis of freshwater catfish, Clarias batrachus: A putative role in steroidogenesis. Acta Histochem 2021; 123:151766. [PMID: 34384940 DOI: 10.1016/j.acthis.2021.151766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
The central role of kisspeptin (kiss) in mammalian reproduction is well established; however, its intra-gonadal role is poorly addressed. Moreover, studies investigating intra-gonadal role of kiss in fish reproduction are scanty, contradictory and inconclusive. The expression of kiss1 mRNA has been detected in the fish brain, and functionally attributed to the regulation of reproduction, feeding and behavior. The kiss1 mRNA has also been demonstrated in tissues other than the brain in some studies, but its cellular distribution and role at the tissue level have not been adequately addressed in fish. Therefore, an attempt was made in the present study to localize kiss1 in gonadal cells of the freshwater catfish, Clarias batrachus. This study reports the presence of kiss1 in the theca cells and granulosa cells of the ovarian oocytes and interstitial cells in the testis of the catfish. The role of kiss1 in the ovary and testis of the catfish was also investigated using kiss1 receptor (kiss1r) antagonist (p234). The p234 treatment decreased the production of 17β-estradiol in ovary and testosterone in the testis by lowering the activities of 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase under both, in vivo as well as in vitro conditions. The p234 treatment also arrested the progression of oogenesis, as evident from the low number of advancing/advanced oocytes in the treated ovary in comparison to the control ovary. It also reduced the area and perimeter of the seminiferous tubules in the treated catfish testis. Thus, our findings suggest that kiss is involved in the regulation of gonadal steroidogenesis, independent of known endocrine/ autocrine/ paracine regulators, and thereby it accelerates gametogenic processes in the freshwater catfish.
Collapse
|
6
|
Gametogenic and steroidogenic action of kisspeptin-10 in the Asian catfish, Clarias batrachus: Putative underlying mechanistic cascade. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110642. [PMID: 34197962 DOI: 10.1016/j.cbpb.2021.110642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Unlike mammals, two kisspeptins genes encoding, kiss1 and kiss2 are detected in fishes with highly varied and contradictory difference in their reproductive activities. The present study was undertaken to examine the direct action of kisspeptin-10 and its role in gonadal activities in the gonadally quiescent Asian catfish using native mammalian kisspeptin decapeptide (KP-10) involving in vivo and in vitro approaches. The in vivo KP-10 treatment caused precocious onset of gametogenesis and its rapid progression, as was evident from the appearance of advanced stages of ovarian follicles in ovary, and advanced germ cells (spermatocytes/ spermatids) in the testis of the treated Clarias batrachus in comparison to the control gonads. It also elevated the steroid levels in gonads of the catfish in vivo and in vitro conditions. Simultaneously, it increased the expressions of key steroidogenic enzymes like 3β-HSD, 17β-HSD, and StAR protein, responsible for transfer of cholesterol from outer to inner membrane of the mitochondria of steroidogenic cells. Concurrently, it augmented the activities of 3β-HSD and 17β-HSD in the ovarian explants. The expressions of MAPK component (pERK1/2 and ERK1/2) were also up-regulated by KP-10 in gonadal explants. Thus, the data suggest that kisspeptin-10 stimulates gametogenesis by enhancing gonadal steroid production. The study also describes the putative mechanistic cascade of steroidogenic actions of kisspeptin-10 in the catfish so much so in teleost fish. The study also suggests that, kisspeptin may act locally to regulate gonadal activities in an autocrine/paracine manner, independent of known extra-gonadal factors in the catfish.
Collapse
|
7
|
Tenugu S, Pranoty A, Mamta SK, Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes - A review. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Transcriptomic and metabolomic insights into the variety of sperm storage in oviduct of egg layers. Poult Sci 2021; 100:101087. [PMID: 33887680 PMCID: PMC8082553 DOI: 10.1016/j.psj.2021.101087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/26/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022] Open
Abstract
In birds, the sperm storage tubules (SST) are dispersed in uterovaginal junction (UVJ) and highly correlated with differential capacity of sperm storage (SS) in and among species with unspecified mechanisms. Here, the SS duration of 252 egg layer breeders was evaluated in 5 rounds with 3 phenotypic traits to screen high- and low-SS individuals, respectively, followed with transcriptome of UVJ tissues and metabolome of serum (high-SS vs. low-SS) to decipher the candidate genes and biochemical markers correlated with differential SS capacity. Histological characterization suggested slightly higher density of SST in UVJ (high-SS vs. low-SS). Transcriptome analyses identified 596 differentially expressed genes (336 upregulated vs. 260 downregulated), which were mainly enriched in gene ontology terms of homeostasis, steroid and lipid metabolism and hormone activity, and 12 significant pathways (P < 0.05) represented by calcium, steroid, and lipid metabolism. Immunohistochemical staining of GNAQ, ST6GAL1, ADFP, and PCNA showed similar distribution in UVJ tissues between 2 groups. Several candidates (HSD11B2, DIO2, AQP3, GNAQ, NANS, ST6GAL1) combined with 4 (11β-prostaglandin F2α, prostaglandin B1, 7α-hydroxytestosterone, and N-acetylneuraminic acid) of 40 differential metabolites enriched in serum metabolome were considered as regulators and biomarkers of SS duration in egg layer breeders. The integrated transcriptome and metabolome analyses of chicken breeder hens will provide novel insights for exploration and improvement of differential SS capacity in birds.
Collapse
|
9
|
Xie Y, Hu J, Zhang X, Li C, Zuo Y, Xie S, Zhang Z, Zhu S. Neuropeptide Y Induces Cardiomyocyte Hypertrophy via Attenuating miR-29a-3p in Neonatal Rat Cardiomyocytes. Protein Pept Lett 2021; 27:878-887. [PMID: 32297569 DOI: 10.2174/0929866527666200416144459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Neuropeptide Y (NPY) has been well known to induce Cardiomyocyte Hypertrophy (CH), which is possibly caused by disruption of cardiac cell energy balance. As mitochondria is losely related to energy metabolism, in this study, we investigated the changes in mitochondrial Dynamics-related protein (Drp1) expression under the action of NPY. miRNA-29a, a endogenous noncoding small molecule RNA which is involved in many cardiac diseases, by using a bioinformatics tool, we found a potential binding site of miRNA-29a on the Drp1 mRNA, and suggesting that miRNA-29a might play a regulatory role. OBJECTIVE To investigate the role of miR-29a-3p in the process of NPY-induced CH, and further explore it's predicted relationship with Drp1. METHODS The expression levels of miR-29a-3p and Atrial Natriuretic Peptide (ANP) were performed by the method of fluorescence quantitative PCR, in addition, expression of Drp1 in treated and control groups were performed by western blot analysis.] Results: We found NPY leads to the CH and up-regulation of ANP expression levels. We also found significant up-regulation of Drp1 expression and down-regulation of miR-29a-3p expression in NPY-treated cells. The decrease in miR-29a-3p expression may lead the increase expression level of Drp1. We found that the expression of ANP increased after NPY treatment. When Drp1 protein was silenced, the high expression of ANP was inhibited. CONCLUSION In this study, we found up-regulation of Drp1 in cells treated with NPY. Drp1 mRNA is a predicted target for miR-29a-3p, and the expression of Drp1 was attenuated by miR-29a-3p. Therefore, NPY leads to down-regulation of miR-29a-3p expression, up-regulation of Drp1 expression, and NPY leads to CH. Correspondingly, miR-29a-3p can counteract the effects of NPY. This may be a new way, which could be used in diagnosis and treatment plan for CH.
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Jun Hu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Xincai Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Chunxiao Li
- Department of Forensic Expertise, De'an Hospital, Changzhou, Jiangsu 213000, China
| | - Yuanyi Zuo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Shining Xie
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhixiang Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Shaohua Zhu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
10
|
Hatef A, Unniappan S. Metabolic hormones and the regulation of spermatogenesis in fishes. Theriogenology 2019; 134:121-128. [PMID: 31167155 DOI: 10.1016/j.theriogenology.2019.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 02/08/2023]
Abstract
Metabolic hormones play essential regulatory roles in many biological processes, including morphogenesis, growth, and reproduction through the maintenance of energy balance. Various metabolic hormones originally discovered in mammals, including ghrelin, leptin, and nesfatin-1 have been identified and characterized in fish. However, physiological roles of these metabolic hormones in regulating reproduction are largely unknown in fishes, especially in males. While the information available is restricted, this review attempts to summarize the main findings on the roles of metabolic peptides on the reproductive system in male fishes with an emphasis on testicular development and spermatogenesis. Specifically, the primary goal is to review the physiological interactions between hormones that regulate reproduction and hormones that regulate metabolism as a critical determinant of testicular function. A brief introduction to the localization of metabolic hormones in fish testis is also provided. Besides, the consequences of fasting and food deprivation on testicular development and sperm quality will be discussed with a focus on interactions between metabolic and reproductive hormones.
Collapse
Affiliation(s)
- Azadeh Hatef
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
11
|
Chen T, Wong MKH, Chan BCB, Wong AOL. Mechanisms for Temperature Modulation of Feeding in Goldfish and Implications on Seasonal Changes in Feeding Behavior and Food Intake. Front Endocrinol (Lausanne) 2019; 10:133. [PMID: 30899246 PMCID: PMC6416165 DOI: 10.3389/fendo.2019.00133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 11/22/2022] Open
Abstract
In fish models, seasonal change in feeding is under the influence of water temperature. However, the effects of temperature on appetite control can vary among fish species and the mechanisms involved have not been fully characterized. Using goldfish (Carassius auratus) as a model, seasonal changes in feeding behavior and food intake were examined in cyprinid species. In our study, foraging activity and food consumption in goldfish were found to be reduced with positive correlation to the gradual drop in water temperature occurring during the transition from summer (28.4 ± 2.2°C) to winter (15.1 ± 2.6°C). In goldfish with a 4-week acclimation at 28°C, their foraging activity and food consumption were notably higher than their counterparts with similar acclimation at 15°C. When compared to the group at 28°C during summer, the attenuation in feeding responses at 15°C during the winter also occurred with parallel rises of leptin I and II mRNA levels in the liver. Meanwhile, a drop in orexin mRNA along with concurrent elevations of CCK, MCH, POMC, CART, and leptin receptor (LepR) transcript expression could be noted in brain areas involved in feeding control. In short-term study, goldfish acclimated at 28°C were exposed to 15°C for 24 h and the treatment was effective in reducing foraging activity and food intake. The opposite was true in reciprocal experiment with a rise in water temperature to 28°C for goldfish acclimated at 15°C. In parallel time-course study with lowering of water temperature from 28 to 15°C, short-term exposure (6-12 h) of goldfish to 15°C could also increase leptin I and II mRNA levels in the liver. Similar to our seasonality study, transcript level of orexin was reduced along with up-regulation of CCK, MCH, POMC, CART, and LepR gene expression in different brain areas. Our results, as a whole, suggest that temperature-driven regulation of leptin output from the liver in conjunction with parallel modulations of orexigenic/anorexigenic signals and leptin responsiveness in the brain may contribute to the seasonal changes of feeding behavior and food intake observed in goldfish.
Collapse
|
12
|
London S, Volkoff H. Cloning and effects of fasting on the brain expression levels of appetite-regulators and reproductive hormones in glass catfish (Kryptopterus vitreolus). Comp Biochem Physiol A Mol Integr Physiol 2018; 228:94-102. [PMID: 30453036 DOI: 10.1016/j.cbpa.2018.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
The regulation of feeding is a complex process that involves coordination between various signals. Feeding hormones can be described as orexigenic (stimulate food intake, e.g. orexin and neuropeptide Y - NPY) or anorexigenic (inhibit food intake, e.g. cocaine and amphetamine regulated transcript - CART). Reproduction and energy homeostasis are closely linked, as factors that affect appetite have also been shown to influence reproductive hormones and behaviors. Gonadotropin-releasing hormone (GnRH) is one of the most influential factors controlling reproduction. Although our understanding of the endocrine regulation of feeding and reproduction in fish is progressing, many gaps still remain, particularly in catfish. Glass catfish (Kryptopterus vitreolus) are freshwater fish known for their natural transparency. In this study, we isolated cDNA encoding reproductive hormones (GnRH1, GnRH2) and appetite regulators (orexin, NPY, and CART) from glass catfish and examined their distribution in various tissues. All peptides had wide distributions across various brain and peripheral tissues, except CART, which was only present in brain. In order to assess whether limited energy supply affects these peptides, we examined the effects of fasting on their brain mRNA expression levels. Fasting increased the expression of both the orexigenic (i.e. orexin and NPY) and anorexigenic (i.e. CART) hormones, and decreased expression levels of GnRH1, but did not affect GnRH2. Overall, our results suggest that fasting affects the expression of peptides involved in both feeding and reproduction, and provides new insights on the endocrine mechanisms that regulate feeding and reproduction in catfish.
Collapse
Affiliation(s)
- Sydney London
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John, NL A1B 3X9, Canada
| | - Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John, NL A1B 3X9, Canada.
| |
Collapse
|
13
|
Fokidis HB, Ma C, Radin B, Prior NH, Adomat HH, Guns ES, Soma KK. Neuropeptide Y and orexin immunoreactivity in the sparrow brain coincide with seasonal changes in energy balance and steroids. J Comp Neurol 2018; 527:347-361. [DOI: 10.1002/cne.24535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
| | - Chunqi Ma
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
| | - Benjamin Radin
- Department of Biology; Rollins College; Winter Park Florida
| | - Nora H. Prior
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
- Program in Neuroscience and Cognitive Neuroscience; University of Maryland; College Park Maryland
| | - Hans H. Adomat
- The Prostate Centre; Vancouver General Hospital; Vancouver British Columbia Canada
| | - Emma S. Guns
- The Prostate Centre; Vancouver General Hospital; Vancouver British Columbia Canada
- Department of Urological Sciences; University of British Columbia; Vancouver British Columbia Canada
| | - Kiran K. Soma
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
- Graduate Program in Neuroscience; University of British Columbia; Vancouver British Columbia Canada
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|