1
|
Wang C, Wang S, Ma X, Yao X, Zhan K, Wang Z, He D, Zuo W, Han S, Zhao G, Cao B, Zhao J, Bian X, Wang J. P-selectin Facilitates SARS-CoV-2 Spike 1 Subunit Attachment to Vesicular Endothelium and Platelets. ACS Infect Dis 2024; 10:2656-2667. [PMID: 38912949 DOI: 10.1021/acsinfecdis.3c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
SARS-CoV-2 infection starts from the association of its spike 1 (S1) subunit with sensitive cells. Vesicular endothelial cells and platelets are among the cell types that bind SARS-CoV-2, but the effectors that mediate viral attachment on the cell membrane have not been fully elucidated. Herein, we show that P-selectin (SELP), a biomarker for endothelial dysfunction and platelet activation, can facilitate the attachment of SARS-CoV-2 S1. Since we observe colocalization of SELP with S1 in the lung tissues of COVID-19 patients, we perform molecular biology experiments on human umbilical vein endothelial cells (HUVECs) to confirm the intermolecular interaction between SELP and S1. SELP overexpression increases S1 recruitment to HUVECs and enhances SARS-CoV-2 spike pseudovirion infection. The opposite results are determined after SELP downregulation. As S1 causes endothelial inflammatory responses in a dose-dependent manner, by activating the interleukin (IL)-17 signaling pathway, SELP-induced S1 recruitment may contribute to the development of a "cytokine storm" after viral infection. Furthermore, SELP also promotes the attachment of S1 to the platelet membrane. Employment of PSI-697, a small inhibitor of SELP, markedly decreases S1 adhesion to both HUVECs and platelets. In addition to the role of membrane SELP in facilitating S1 attachment, we also discover that soluble SELP is a prognostic factor for severe COVID-19 through a meta-analysis. In this study, we identify SELP as an adhesive site for the SARS-CoV-2 S1, thus providing a potential drug target for COVID-19 treatment.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shaobo Wang
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaohong Yao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kegang Zhan
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Di He
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
| | - Wenting Zuo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Songling Han
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Gaomei Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Cao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
- New Cornerstone Science Laboratory, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jinghong Zhao
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiuwu Bian
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
2
|
Wei Y, Liu Z, Zhang M, Zhu X, Niu Q. Inhibition of ACE2-S Protein Interaction by a Short Functional Peptide with a Boomerang Structure. Molecules 2024; 29:3022. [PMID: 38998974 PMCID: PMC11242946 DOI: 10.3390/molecules29133022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Considering the high evolutionary rate and great harmfulness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is imperative to develop new pharmacological antagonists. Human angiotensin-converting enzyme-2 (ACE2) functions as a primary receptor for the spike protein (S protein) of SARS-CoV-2. Thus, a novel functional peptide, KYPAY (K5), with a boomerang structure, was developed to inhibit the interaction between ACE2 and the S protein by attaching to the ACE2 ligand-binding domain (LBD). The inhibition property of K5 was evaluated via molecular simulations, cell experiments, and adsorption kinetics analysis. The molecular simulations showed that K5 had a high affinity for ACE2 but a low affinity for the cell membrane. The umbrella sampling (US) simulations revealed a significant enhancement in the binding potential of this functional peptide to ACE2. The fluorescence microscopy and cytotoxicity experiments showed that K5 effectively prevented the interaction between ACE2 and the S protein without causing any noticeable harm to cells. Further flow cytometry research indicated that K5 successfully hindered the interaction between ACE2 and the S protein, resulting in 78% inhibition at a concentration of 100 μM. This work offers an innovative perspective on the development of functional peptides for the prevention and therapy of SARS-CoV-2.
Collapse
Affiliation(s)
- Yuping Wei
- School of Life Science, Nanyang Normal University, Nanyang 473061, China; (Y.W.); (Z.L.); (X.Z.)
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang 473061, China;
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ziyang Liu
- School of Life Science, Nanyang Normal University, Nanyang 473061, China; (Y.W.); (Z.L.); (X.Z.)
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang 473061, China;
| | - Man Zhang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang 473061, China;
- Department of Oncology, Nanyang First People’s Hospital, Nanyang 473002, China
| | - Xingyan Zhu
- School of Life Science, Nanyang Normal University, Nanyang 473061, China; (Y.W.); (Z.L.); (X.Z.)
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang 473061, China;
| | - Qiuhong Niu
- School of Life Science, Nanyang Normal University, Nanyang 473061, China; (Y.W.); (Z.L.); (X.Z.)
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang 473061, China;
| |
Collapse
|
3
|
Quagliata M, Stincarelli MA, Papini AM, Giannecchini S, Rovero P. Antiviral Activity against SARS-CoV-2 of Conformationally Constrained Helical Peptides Derived from Angiotensin-Converting Enzyme 2. ACS OMEGA 2023; 8:22665-22672. [PMID: 37387789 PMCID: PMC10275481 DOI: 10.1021/acsomega.3c01436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023]
Abstract
Despite the availability of vaccines, COVID-19 continues to be aggressive, especially in immunocompromised individuals. Therefore, the development of a specific therapeutic agent with antiviral activity against SARS-CoV-2 is necessary. The infection pathway starts when the receptor binding domain of the viral spike protein interacts with the angiotensin converting enzyme 2 (ACE2), which acts as a host receptor for the RBD expressed on the host cell surface. In this scenario, ACE2 analogs binding to the RBD and preventing the cell entry can be promising antiviral agents. Most of the ACE2 residues involved in the interaction belong to the α1 helix, more specifically to the minimal fragment ACE2(24-42). In order to increase the stability of the secondary structure and thus antiviral activity, we designed different triazole-stapled analogs, changing the position and the number of bridges. The peptide called P3, which has the triazole-containing bridge in the positions 36-40, showed promising antiviral activity at micromolar concentrations assessed by plaque reduction assay. On the other hand, the double-stapled peptide P4 lost the activity, showing that excessive rigidity disfavors the interaction with the RBD.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental
Research Unit of Peptide and Protein Chemistry and Biology, Department
of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | | | - Anna Maria Papini
- Interdepartmental
Research Unit of Peptide and Protein Chemistry and Biology, Department
of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Simone Giannecchini
- Department
of Experimental and Clinical Medicine, University
of Florence, 50134 Florence, Italy
| | - Paolo Rovero
- Interdepartmental
Research Unit of Peptide and Protein Chemistry and Biology, Department
of NeuroFarBa, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Bugatti K, Sartori A, Battistini L, Coppa C, Vanhulle E, Noppen S, Provinciael B, Naesens L, Stevaert A, Contini A, Vermeire K, Zanardi F. Novel Polymyxin-Inspired Peptidomimetics Targeting the SARS-CoV-2 Spike:hACE2 Interface. Int J Mol Sci 2023; 24:8765. [PMID: 37240111 PMCID: PMC10218303 DOI: 10.3390/ijms24108765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Though the bulk of the COVID-19 pandemic is behind, the search for effective and safe anti-SARS-CoV-2 drugs continues to be relevant. A highly pursued approach for antiviral drug development involves targeting the viral spike (S) protein of SARS-CoV-2 to prevent its attachment to the cellular receptor ACE2. Here, we exploited the core structure of polymyxin B, a naturally occurring antibiotic, to design and synthesize unprecedented peptidomimetics (PMs), intended to target contemporarily two defined, non-overlapping regions of the S receptor-binding domain (RBD). Monomers 1, 2, and 8, and heterodimers 7 and 10 bound to the S-RBD with micromolar affinity in cell-free surface plasmon resonance assays (KD ranging from 2.31 μM to 2.78 μM for dimers and 8.56 μM to 10.12 μM for monomers). Although the PMs were not able to fully protect cell cultures from infection with authentic live SARS-CoV-2, dimer 10 exerted a minimal but detectable inhibition of SARS-CoV-2 entry in U87.ACE2+ and A549.ACE2.TMPRSS2+ cells. These results validated a previous modeling study and provided the first proof-of-feasibility of using medium-sized heterodimeric PMs for targeting the S-RBD. Thus, heterodimers 7 and 10 may serve as a lead for the development of optimized compounds, which are structurally related to polymyxin, with improved S-RBD affinity and anti-SARS-CoV-2 potential.
Collapse
Affiliation(s)
- Kelly Bugatti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| | - Andrea Sartori
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| | - Lucia Battistini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| | - Crescenzo Coppa
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy;
| | - Emiel Vanhulle
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Sam Noppen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Becky Provinciael
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy;
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Franca Zanardi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| |
Collapse
|
5
|
Wang CK. The 2022 Kazuhiko Tatemoto Prize: ACE2-derived peptides for COVID-19 treatment. Peptides 2023; 162:170964. [PMID: 36738828 DOI: 10.1016/j.peptides.2023.170964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Conan K Wang
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4069, Qld, Australia.
| |
Collapse
|
6
|
Liu X, Jiang L, Li L, Lu F, Liu F. Bionics design of affinity peptide inhibitors for SARS-CoV-2 RBD to block SARS-CoV-2 RBD-ACE2 interactions. Heliyon 2023; 9:e12890. [PMID: 36686609 PMCID: PMC9836997 DOI: 10.1016/j.heliyon.2023.e12890] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), has already posed serious threats and impacts on the health of the population and the country's economy. Therefore, it is of great theoretical significance and practical application value to better understand the process of COVID-19 infection and develop effective therapeutic drugs. It is known that the receptor-binding structural domain (SARS-CoV-2 RBD) on the spike protein of the novel coronavirus directly mediates its interaction with the host receptor angiotensin-converting enzyme 2 (ACE2), and thus blocking SARS-CoV-2 RBD-ACE2 interaction is capable of inhibiting SARS-CoV-2 infection. Firstly, the interaction mechanism between SARS-CoV-2RBD-ACE2 was explored using molecular dynamics simulation (MD) coupled with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculation method. The results of energy analysis showed that the key residues R403, R408, K417, and Y505 of SARS-CoV-2 RBD and the key residues D30, E37, D38, and Y41 of ACE2 were identified. Therefore, according to the hotspot residues of ACE2 and their distribution, a short peptide library of high-affinity SARS-CoV-2 RBD was constructed. And by using molecular docking virtual screening, six short peptides including DDFEDY, DEFEDY, DEYEDY, DFVEDY, DFHEDY, and DSFEDY with high affinity for SARS-CoV-2 RBD were identified. The results of MD simulation further confirmed that DDFEDY, DEYEDY, and DFVEDY are expected to be effective inhibitors. Finally, the allergenicity, toxicity and solubility properties of the three peptide inhibitors were validated.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, PR China,College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, PR China,College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Li Li
- College of Marine and Environmental Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, PR China,College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, PR China,College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China,Corresponding author. Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, PR China.
| |
Collapse
|
7
|
Zhao G, Jia C, Zhu C, Fang M, Li C, Chen Y, He Y, Han S, He Y, Gao J, Wang T, Wang C, Wang J. γ-Core Guided Antibiotic Design Based on Human Enteric Defensin 5. MEMBRANES 2022; 13:51. [PMID: 36676858 PMCID: PMC9862697 DOI: 10.3390/membranes13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
An increase in the number of infections caused by resistant bacteria worldwide necessitates the development of alternatives to antibiotics. Human defensin (HD) 5 is an innate immune peptide with broad-spectrum antibacterial activity, but its complicated structure makes its preparation difficult. Herein, we truncated the HD5 structure by extracting the highly conserved γ-core motif. A structure-activity study showed that this motif was ineffective in killing bacteria in the absence of specific spatial conformation. Notably, after the introduction of two intramolecular disulfide bonds, its antibacterial activity was markedly improved. Glu and Ser residues were then replaced with Arg to create the derivative RC18, which exhibited stronger potency than HD5, particularly against methicillin-resistant S. aureus (MRSA). Mechanistically, RC18 bound to lipid A and lipoteichoic acid at higher affinities than HD5. Furthermore, RC18 was more efficient than HD5 in penetrating the bacterial membranes. Molecular dynamics simulation revealed that five Arg residues, Arg1, Arg7, Arg9, Arg15, and Arg18, mediated most of the polar interactions of RC18 with the phospholipid head groups during membrane penetration. In vivo experiments indicated that RC18 decreased MRSA colonization and dramatically improved the survival of infected mice, thus demonstrating that RC18 is a promising drug candidate to treat MRSA infections.
Collapse
Affiliation(s)
- Gaomei Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Changsheng Jia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Minchao Fang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chenwenya Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yingjuan He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Songling Han
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yongwu He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jining Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Tao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
8
|
Parra ALC, Bezerra LP, Shawar DE, Neto NAS, Mesquita FP, da Silva GO, Souza PFN. Synthetic antiviral peptides: a new way to develop targeted antiviral drugs. Future Virol 2022. [DOI: 10.2217/fvl-2021-0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global concern over emerging and re-emerging viral infections has spurred the search for novel antiviral agents. Peptides with antiviral activity stand out, by overcoming limitations of the current drugs utilized, due to their biocompatibility, specificity and effectiveness. Synthetic peptides have been shown to be viable alternatives to natural peptides due to several difficulties of using of the latter in clinical trials. Various platforms have been utilized by researchers to predict the most effective peptide sequences against HIV, influenza, dengue, MERS and SARS. Synthetic peptides are already employed in the treatment of HIV infection. The novelty of this study is to discuss, for the first time, the potential of synthetic peptides as antiviral molecules. We conclude that synthetic peptides can act as new weapons against viral threats to humans.
Collapse
Affiliation(s)
- Aura LC Parra
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Leandro P Bezerra
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Dur E Shawar
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Nilton AS Neto
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Felipe P Mesquita
- Drug Research & Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Rodolfo Teófilo, 1000, Fortaleza, Brazil
| | - Gabrielly O da Silva
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Pedro FN Souza
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
- Drug Research & Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Rodolfo Teófilo, 1000, Fortaleza, Brazil
| |
Collapse
|
9
|
Souza PF, vanTilburg M, Mesquita FP, Amaral JL, Lima LB, Montenegro RC, Lopes FE, Martins RX, Vieira L, Farias DF, Monteiro-Moreira ACO, Freitas CD, Bezerra AS, Guedes MIF, Castelo-Branco D, Oliveira JT. Neutralizing Effect of Synthetic Peptides toward SARS-CoV-2. ACS OMEGA 2022; 7:16222-16234. [PMID: 35530749 PMCID: PMC9063117 DOI: 10.1021/acsomega.2c02203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The outbreak caused by SARS-CoV-2 has taken many lives worldwide. Although vaccination has started, the development of drugs to either alleviate or abolish symptoms of COVID-19 is still necessary. Here, four synthetic peptides were assayed regarding their ability to protect Vero E6 cells from SARS-CoV-2 infection and their toxicity to human cells and zebrafish embryos. All peptides had some ability to protect cells from infection by SARS-CoV-2 with the D614G mutation. Molecular docking predicted the ability of all peptides to interact with and induce conformational alterations in the spike protein containing the D614G mutation. PepKAA was the most effective peptide, by having the highest docking score regarding the spike protein and reducing the SARS-CoV-2 plaque number by 50% (EC50) at a concentration of 0.15 mg mL-1. Additionally, all peptides had no toxicity to three lines of human cells as well as to zebrafish larvae and embryos. Thus, these peptides have potential activity against SARS-CoV-2, making them promising to develop new drugs to inhibit cell infection by SARS-CoV-2.
Collapse
Affiliation(s)
- Pedro F.N. Souza
- Department
of Biochemistry and Molecular Biology, Federal
University of Ceará, Av Mister Hull, S/n—Pici, P.O. Box 60440-593, Fortaleza, Ceará 60020-181, Brazil
- Drug
Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Rua Coronel Nunes de Melo 100,
P.O. Box 60430-275, Fortaleza, Ceará 60020-181, Brazil
| | - Maurício
F. vanTilburg
- Biotechnology
and Molecular Biology Laboratory, Renorbio, State University of Ceará, Av. Dr. Silas Munguba, 1700—Itaperi, P.O.
Box 60714-903, Fortaleza, Ceará 60020-181, Brazil
| | - Felipe P. Mesquita
- Drug
Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Rua Coronel Nunes de Melo 100,
P.O. Box 60430-275, Fortaleza, Ceará 60020-181, Brazil
| | - Jackson L. Amaral
- Department
of Biochemistry and Molecular Biology, Federal
University of Ceará, Av Mister Hull, S/n—Pici, P.O. Box 60440-593, Fortaleza, Ceará 60020-181, Brazil
| | - Luina B. Lima
- Drug
Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Rua Coronel Nunes de Melo 100,
P.O. Box 60430-275, Fortaleza, Ceará 60020-181, Brazil
| | - Raquel C. Montenegro
- Drug
Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Rua Coronel Nunes de Melo 100,
P.O. Box 60430-275, Fortaleza, Ceará 60020-181, Brazil
| | - Francisco E.S. Lopes
- Department
of Biochemistry and Molecular Biology, Federal
University of Ceará, Av Mister Hull, S/n—Pici, P.O. Box 60440-593, Fortaleza, Ceará 60020-181, Brazil
| | - Rafael X. Martins
- Laboratory
for Risk Assessment of Novel Technologies (LabRisk), Department of
Molecular Biology, Federal University of
Paraiba, Campus I Lot. Cidade Universitaria, P.O. Box 58051-900, João Pessoa, Paraíba 58051-900, Brazil
| | - Leonardo Vieira
- Laboratory
for Risk Assessment of Novel Technologies (LabRisk), Department of
Molecular Biology, Federal University of
Paraiba, Campus I Lot. Cidade Universitaria, P.O. Box 58051-900, João Pessoa, Paraíba 58051-900, Brazil
| | - Davi F. Farias
- Laboratory
for Risk Assessment of Novel Technologies (LabRisk), Department of
Molecular Biology, Federal University of
Paraiba, Campus I Lot. Cidade Universitaria, P.O. Box 58051-900, João Pessoa, Paraíba 58051-900, Brazil
| | - Ana C. O. Monteiro-Moreira
- School
of Pharmacy, University of Fortaleza, Av. Washington Soares, 1321, Edson Queiroz, P.O. Box 60811-905, Fortaleza, Fortaleza, Ceará 60811-690, Brazil
| | - Cleverson D.T. Freitas
- Department
of Biochemistry and Molecular Biology, Federal
University of Ceará, Av Mister Hull, S/n—Pici, P.O. Box 60440-593, Fortaleza, Ceará 60020-181, Brazil
| | - Arnaldo S. Bezerra
- Biotechnology
and Molecular Biology Laboratory, Renorbio, State University of Ceará, Av. Dr. Silas Munguba, 1700—Itaperi, P.O.
Box 60714-903, Fortaleza, Ceará 60020-181, Brazil
| | - Maria I. F. Guedes
- Biotechnology
and Molecular Biology Laboratory, Renorbio, State University of Ceará, Av. Dr. Silas Munguba, 1700—Itaperi, P.O.
Box 60714-903, Fortaleza, Ceará 60020-181, Brazil
| | - Débora
S.C.M. Castelo-Branco
- Department
of Pathology and Legal Medicine, Federal
University of Ceará, Rodolfo Teófilo, P.O. Box 60010-681, Fortaleza, Ceará 60020-181, Brazil
| | - Jose T.A. Oliveira
- Department
of Biochemistry and Molecular Biology, Federal
University of Ceará, Av Mister Hull, S/n—Pici, P.O. Box 60440-593, Fortaleza, Ceará 60020-181, Brazil
| |
Collapse
|
10
|
Sarto C, Florez-Rueda S, Arrar M, Hackenberger CPR, Lauster D, Di Lella S. Atomistic insight into the essential binding event of ACE2-derived peptides to the SARS-CoV-2 spike protein. Biol Chem 2022; 403:615-624. [PMID: 35357791 DOI: 10.1515/hsz-2021-0426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/21/2022] [Indexed: 01/13/2023]
Abstract
The pathogenic agent of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters into human cells through the interaction between the receptor binding domain (RBD) of its spike glycoprotein and the angiotensin-converting enzyme 2 (ACE2) receptor. Efforts have been made towards finding antivirals that block this interaction, therefore preventing infection. Here, we determined the binding affinity of ACE2-derived peptides to the RBD of SARS-CoV-2 experimentally and performed MD simulations in order to understand key characteristics of their interaction. One of the peptides, p6, binds to the RBD of SARS-CoV-2 with nM affinity. Although the ACE2-derived peptides retain conformational flexibility when bound to SARS-CoV-2 RBD, we identified residues T27 and K353 as critical anchors mediating the interaction. New ACE2-derived peptides were developed based on the p6-RBD interface analysis and expecting the native conformation of the ACE2 to be maintained. Furthermore, we found a correlation between the helicity in trifluoroethanol and the binding affinity to RBD of the new peptides. Under the hypothesis that the conservation of peptide secondary structure is decisive to the binding affinity, we developed a cyclized version of p6 which had more helicity than p6 and approximately half of its K D value.
Collapse
Affiliation(s)
- Carolina Sarto
- Instituto de Química Biológica - Ciencias Exactas y Naturales - Conicet/Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 4° Piso, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Sebastián Florez-Rueda
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, D-13125 Berlin, Germany
| | - Mehrnoosh Arrar
- Instituto de Cálculo - Conicet/Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, Pabellón II, 2° Piso, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Christian P R Hackenberger
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, D-13125 Berlin, Germany
| | - Daniel Lauster
- Institut für Biochemie und Chemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany
| | - Santiago Di Lella
- Instituto de Química Biológica - Ciencias Exactas y Naturales - Conicet/Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 4° Piso, C1428EGA Ciudad de Buenos Aires, Argentina
| |
Collapse
|
11
|
Yang F, Liu L, Neuenschwander PF, Idell S, Vankayalapati R, Jain KG, Du K, Ji H, Yi G. Phage Display-Derived Peptide for the Specific Binding of SARS-CoV-2. ACS OMEGA 2022; 7:3203-3211. [PMID: 35128233 PMCID: PMC8751651 DOI: 10.1021/acsomega.1c04873] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/06/2021] [Indexed: 05/10/2023]
Abstract
Beginning from the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic swept all over the world and is still afflicting the whole global population. Given that the vaccine-manufacturing ability is limited and the virus can evolve quickly, vaccination alone may not be able to end the pandemic, thus developing fast and accurate diagnoses and effective therapeutics will always be unmet needs. Phage display peptide library has been used in screening antigen-specific peptides for the invention of novel mimic receptors/ligands. Here, we report that a 12-mer phage display peptide library has been screened against the SARS-CoV-2 receptor-binding domain (RBD), and five of the screened peptides show binding ability with the RBD protein by the enzyme-linked immune sorbent assay. The surface plasmon resonance assay further demonstrates that peptide no. 1 can specifically bind to SARS-CoV-2 RBD with a binding affinity constant (K d) of 5.8 μM. Transmission electron microscopy coupled with a magnetic bead assay further confirms that the screened peptide can specifically bind the inactivated SARS-CoV-2 virus. This SARS-CoV-2-specific peptide holds great promise as a new bioreceptor/ligand for the rapid and accurate detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Fan Yang
- Department
of Pulmonary Immunology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| | - Li Liu
- Department
of Microsystems Engineering, Rochester Institute
of Technology, Rochester, New York 14623-5603, United States
- Department
of Mechanical Engineering, Rochester Institute
of Technology, Rochester, New York 14623-5603, United States
| | - Pierre Fernand Neuenschwander
- Department
of Cellular and Molecular Biology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| | - Steven Idell
- Department
of Cellular and Molecular Biology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| | - Ramakrishna Vankayalapati
- Department
of Pulmonary Immunology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| | - Krishan Gopal Jain
- Department
of Cellular and Molecular Biology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| | - Ke Du
- Department
of Microsystems Engineering, Rochester Institute
of Technology, Rochester, New York 14623-5603, United States
- Department
of Mechanical Engineering, Rochester Institute
of Technology, Rochester, New York 14623-5603, United States
| | - Honglong Ji
- Department
of Cellular and Molecular Biology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| | - Guohua Yi
- Department
of Pulmonary Immunology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| |
Collapse
|
12
|
A Collection of Designed Peptides to Target SARS-CoV-2 Spike RBD-ACE2 Interaction. Int J Mol Sci 2021; 22:ijms222111627. [PMID: 34769056 PMCID: PMC8584250 DOI: 10.3390/ijms222111627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) is the receptor used by SARS-CoV and SARS-CoV-2 coronaviruses to attach to cells via the receptor-binding domain (RBD) of their viral spike protein. Since the start of the COVID-19 pandemic, several structures of protein complexes involving ACE2 and RBD as well as monoclonal antibodies and nanobodies have become available. We have leveraged the structural data to design peptides to target the interaction between the RBD of SARS-CoV-2 and ACE2 and SARS-CoV and ACE2, as contrasting exemplar, as well as the dimerization surface of ACE2 monomers. The peptides were modelled using our original method: PiPreD that uses native elements of the interaction between the targeted protein and cognate partner(s) that are subsequently included in the designed peptides. These peptides recapitulate stretches of residues present in the native interface plus novel and highly diverse conformations surrogating key interactions at the interface. To facilitate the access to this information we have created a freely available and dedicated web-based repository, PepI-Covid19 database, providing convenient access to this wealth of information to the scientific community with the view of maximizing its potential impact in the development of novel therapeutic and diagnostic agents.
Collapse
|