1
|
Goto T, Hagihara M, Irie S, Abe T, Kiyonari H, Miyamichi K. Dietary availability acutely influences puberty onset via a hypothalamic neural circuit. Neuron 2025; 113:1036-1050.e5. [PMID: 39999843 DOI: 10.1016/j.neuron.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/21/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Reproduction poses a substantial burden, especially for mammalian females. Puberty onset serves as a vital checkpoint, regulated based on the body's energy state, to prevent inappropriate reproductive activity under malnutrition. However, the neural basis of this puberty checkpoint remains poorly understood. Here, we demonstrate that peripubertal malnutrition in female mice reduces the synchronous activity episodes of arcuate kisspeptin neurons, which are critical regulators of the gonadotropin axis. Improved dietary availability increased the frequency of this pulsatile activity, facilitating puberty onset. Using a viral-genetic approach, we show that the activity of agouti-related protein neurons in the arcuate nucleus, a hunger center, can bidirectionally regulate the pulsatile activity of kisspeptin neurons and follicular maturation in the ovaries. Collectively, a neural circuit connecting feeding to reproductive centers acts as an adjuster of the frequency of pulsatile kisspeptin neuron activity based on dietary availability, contributing to the neural basis of the puberty checkpoint.
Collapse
Affiliation(s)
- Teppei Goto
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| | - Mitsue Hagihara
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Satsuki Irie
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
2
|
Xu J, Wang B, Ao H. Corticosterone effects induced by stress and immunity and inflammation: mechanisms of communication. Front Endocrinol (Lausanne) 2025; 16:1448750. [PMID: 40182637 PMCID: PMC11965140 DOI: 10.3389/fendo.2025.1448750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The body instinctively responds to external stimuli by increasing energy metabolism and initiating immune responses upon receiving stress signals. Corticosterone (CORT), a glucocorticoid (GC) that regulates secretion along the hypothalamic-pituitary-adrenal (HPA) axis, mediates neurotransmission and humoral regulation. Due to the widespread expression of glucocorticoid receptors (GR), the effects of CORT are almost ubiquitous in various tissue cells. Therefore, on the one hand, CORT is a molecular signal that activates the body's immune system during stress and on the other hand, due to the chemical properties of GCs, the anti-inflammatory properties of CORT act as stabilizers to control the body's response to stress. Inflammation is a manifestation of immune activation. CORT plays dual roles in this process by both promoting inflammation and exerting anti-inflammatory effects in immune regulation. As a stress hormone, CORT levels fluctuate with the degree and duration of stress, determining its effects and the immune changes it induces. The immune system is essential for the body to resist diseases and maintain homeostasis, with immune imbalance being a key factor in the development of various diseases. Therefore, understanding the role of CORT and its mechanisms of action on immunity is crucial. This review addresses this important issue and summarizes the interactions between CORT and the immune system.
Collapse
Affiliation(s)
- Jingyu Xu
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojuan Wang
- Department of Reproductive Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haiqing Ao
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Areloegbe SE, Obong NN, Badejogbin OC, Oniyide AA, Ajadi IO, Atuma CL, Ajadi MB, Adelekan OE, Olaniyi KS. Probiotics ameliorates hypothalamic amenorrhea in a rat model of PCOS. Metab Brain Dis 2025; 40:145. [PMID: 40072661 DOI: 10.1007/s11011-025-01573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrinometabolic disorder affecting women of reproductive age, characterized by hormonal imbalances, irregular menstrual cycles, and often, infertility. Hypothalamic amenorrhea, a condition marked by the cessation of menstruation due to disruptions in the hypothalamic-pituitary-gonadal axis, is a frequent manifestation in PCOS. Probiotics, beneficial microorganisms known for improving metabolic health, have shown promise in restoring hormonal balance and enhancing fertility. In this study, we hypothesize that probiotics would ameliorate hypothalamic amenorrhea by modulating hypothalamic kisspeptin and reducing inflammation in a rat model of PCOS. METHODS Eight (8)-week-old female Wistar rats were grouped into four with n = 5. Letrozole administration (1 mg/kg, p.o.) for 21 days induced PCOS, thereafter the animals were treated with probiotics (3 × 109 CFU, p.o.), while control animals received distilled water. The treatment lasted for six weeks. RESULTS Reduced insulin sensitivity, hyperinsulinemia, ovarian dysfunction with evidence of disrupted steroid hormone levels (testosterone/17β-Estradiol) and cystic follicles as well as hypothalamic lipid accumulation, elevated inflammatory markers (NF-kB/TNF-α) and antioxidant depletion (GSH/NrF2), which are accompanied by decreased level of kisspeptin. Nonetheless, administration of probiotics reversed these pathological alterations by enhancement of hypothalamic kisspeptin and suppression of inflammatory response. CONCLUSIONS Altogether, the present results demonstrate that probiotics significantly ameliorated hypothalamic amenorrhea by mitigating hypothalamic lipid accumulation, suppressed inflammation, and replenished antioxidants. Crucially, probiotics enhanced hypothalamic kisspeptin levels, a key regulator of reproductive function, highlighting their potential as a therapeutic strategy for restoring ovarian function in PCOS.
Collapse
Affiliation(s)
- Stephanie E Areloegbe
- Cardio/Endo-Metabolic and Epigenetics Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Nsisong N Obong
- Cardio/Endo-Metabolic and Epigenetics Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Olabimpe C Badejogbin
- Department of Physiology, Benjamin Carson College of Medicine, Babcock University, Ilishan, 121003, Nigeria
| | - Adesola A Oniyide
- Cardio/Endo-Metabolic and Epigenetics Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Isaac O Ajadi
- Department of Physiology, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, 210214, Ogbomoso, Nigeria
| | - Chukwubueze L Atuma
- Cardio/Endo-Metabolic and Epigenetics Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Mary B Ajadi
- Department of Chemical Pathology, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, 210214, Nigeria
| | - Oluseyi E Adelekan
- Department of Obstetrics and Gynaecology, General Hospital Gbagada, Lagos State, Ikeja, Nigeria
| | - Kehinde S Olaniyi
- Cardio/Endo-Metabolic and Epigenetics Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria.
| |
Collapse
|
4
|
Bhagwat S, Asadi L, McCarthy R, Ferreira J, Li P, Li E, Spivak S, Gaydon A, Reddy V, Armstrong C, Morrill SR, Zhou H, Lewis AL, Lewis WG, Santi CM. Bacterial Vaginosis Toxins Impair Sperm Capacitation and Fertilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640991. [PMID: 40093112 PMCID: PMC11908240 DOI: 10.1101/2025.03.01.640991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Study question What effect do toxins produced by bacterial vaginosis (BV) bacteria have on sperm function? Summary answer Bacterial vaginosis toxins dysregulate sperm capacitation and intracellular calcium homeostasis and impair the ability of sperm to fertilize oocytes. What is known already In bacterial vaginosis, which is linked to infertility, overgrowth of Prevotella and Gardnerella in the vagina is accompanied by elevated concentrations of the toxins lipopolysaccharide (LPS) and vaginolysin (VLY). Study design size duration This was a laboratory study in which human semen samples were collected from consenting healthy donors with normal semen parameters. Mouse sperm samples were obtained from the caudal epididymis. Participants/materials setting methods Motile mouse and human sperm were isolated via swim-up and treated under non-capacitating or capacitating conditions. LPS from Escherichia coli was commercially available. VLY was produced by cloning the Gardnerella VLY protein in the ClearColi expression system. Mouse sperm were pre-incubated in in vitro fertilization medium with LPS or VLY and then co-cultured with ovulated cumulus-oocyte complexes. The effects of LPS and VLY on sperm motility and hyperactivation were assessed with computer-assisted sperm analysis. Effects on viability were assessed by Hoechst staining. Acrosomal exocytosis was assessed in sperm from transgenic Acr-eGFP mice and in human sperm stained with Pisum sativum agglutinin FITC. Intracellular calcium dynamics were assessed by staining sperm with the calcium-sensitive dye Fluo-4 AM and fluorescent imaging several sperm at the single-cell level. The effects of LPS on sperm from CatSper knock-out mice were assessed. Additionally, sperm were treated with a toll-like receptor 4 antagonist and further exposed to LPS. Main results and the role of chance Exposure of mouse sperm to LPS or VLY significantly decreased in vitro fertilization ( P < 0.05). Under capacitating conditions, both toxins initially increased mouse and human sperm hyperactivation, then significantly decreased sperm motility ( P < 0.05), hyperactivation ( P < 0.05), and acrosomal exocytosis ( P < 0.01). These changes were accompanied by a rapid and irreversible increase in intracellular calcium concentration. Effects of LPS, but not VLY, were prevented by polymyxin-B, which aggregates LPS. The LPS-induced intracellular calcium increase required external calcium but not the calcium channel CatSper and was inhibited by the Toll-like receptor 4 antagonist. Limitations reasons for caution First, the commercially available LPS we used was isolated from Escherichia coli , rather than from the BV-associated bacteria Prevotella bivia . Second, we did not quantify the absolute sperm intracellular calcium concentration before or after LPS or VLY treatment. Third, all of our experiments were in vitro . Wider implications of the findings These studies suggest that BV-associated toxins contribute to infertility by, in part, impairing sperm capacitation and reducing their fertilizing ability. Study funding/competing interests This work was supported by the National Institutes of Health (grant #R01 HD069631). The authors declare that they have no conflict of interest.
Collapse
|
5
|
Bruinjé TC, LeBlanc SJ. Invited Review: Inflammation and Health in the Transition Period Influence Reproductive Function in Dairy Cows. Animals (Basel) 2025; 15:633. [PMID: 40075916 PMCID: PMC11898178 DOI: 10.3390/ani15050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
In the early postpartum period, dairy cows undergo significant adaptations in Ca and lipid metabolism, immune function, and inflammatory processes. Concurrent exposure to endotoxins from the uterus, gastrointestinal tract, or mammary gland increases the risk of disease and reproductive problems. Metabolic and inflammatory imbalances during this phase can have both immediate and long-term effects on reproductive health. Associations between metabolic disorders and reproductive outcomes are often confounded by immune activation and systemic inflammation. However, optimal markers, thresholds, and durations for identifying maladaptation and predicting adverse health or reproductive outcomes remain unclear. This narrative review examines key physiological changes during the transition period, including hypocalcemia, lipid mobilization, immune activation, systemic inflammation, and uterine disease. We discuss how these events may affect the dominant follicle, corpus luteum, oocyte, and uterus, potentially leading to prolonged anovulation, reduced estrus expression, impaired response to synchronization protocols, lower progesterone concentrations, and compromised fertility. Understanding these mechanisms will support the development of strategies to monitor, prevent, and mitigate the impacts of transition-related maladaptation on reproductive performance. Such advancements can enhance the health and fertility of high-producing dairy cows.
Collapse
Affiliation(s)
- Tony C. Bruinjé
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Stephen J. LeBlanc
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
6
|
Yang L, Liu T, Liao Y, Ren Y, Zheng Z, Zhang M, Yu Y, Liu C, Wang C, Chen T, Zhang L, Zheng D, Zhao H, Ni Z, Liu X. Potential therapeutic application and mechanism of gut microbiota-derived extracellular vesicles in polycystic ovary syndrome. Biomed Pharmacother 2024; 180:117504. [PMID: 39341079 DOI: 10.1016/j.biopha.2024.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder affecting women of reproductive age. The syndrome is characterized by androgen excess, ovarian dysfunction, insulin resistance (IR) and obesity, with an elevated risk of developing long-term complications, including cardiovascular disease and type 2 diabetes mellitus (T2D). The gut microbiota plays a role in the pathogenesis of PCOS by influencing the host's endocrine, metabolic and inflammatory state, as well as the gut-brain axis. Gut microbiota-derived extracellular vesicles (GMEVs) are lipid bilayer nanoparticles secreted by the gut microbiota and contain a variety of components, including proteins, lipids and nucleic acids. They serve as signaling molecules, facilitating bacterial-bacterial and bacterial-host communications. Bacterial extracellular vesicles (BEVs) affect host cells through the delivery of bioactive substances and physical interaction through membrane components, thereby participating in the regulation of metabolic, immune, and other cellular processes. Furthermore, BEVs, which are distinguished by low toxicity, high biocompatibility and stability, and the capacity to cross biological barriers, present a promising avenue for the development of novel drug delivery systems. The isolation and characterization of BEVs also facilitate the investigation of disease-specific biomarkers. Consequently, BEVs have immense potential for a range of medical research applications, including disease diagnosis and treatment. This article discusses the potential therapeutic effects and mechanisms of GMEVs in the treatment of PCOS.
Collapse
Affiliation(s)
- Liangliang Yang
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Tingxiu Liu
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yan Liao
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yuehan Ren
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zheng Zheng
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingyue Zhang
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yue Yu
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chang Liu
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chaoying Wang
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Tong Chen
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Lili Zhang
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Dongxue Zheng
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haidan Zhao
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Zhexin Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Xinmin Liu
- Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
7
|
León-Ahumada YZ, Herrera-Covarrubias D, García LI, Toledo-Cárdenas R, Rojas-Durán F, Manzo J, Coria-Avila GA. Pubertal stress in male rats: Effects on juvenile play behavior and adult sexual partner preference. Physiol Behav 2024; 284:114649. [PMID: 39069113 DOI: 10.1016/j.physbeh.2024.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/06/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Puberty is a period of brain organization impacting the expression of social and sexual behaviors. Here, we assessed the effects of an acute pubertal stressor (immune challenge) on the expression of juvenile play (short-term) and sexual partner preference (long-term) in male rats. Juvenile play was assessed over ten trials at postnatal days (PND) (31-40) with age- and sex-matched conspecifics, and at PND35 males received a single injection of lipopolysaccharide (LPS, 1.5 mg/kg i.p.) or saline. Then, sexual partner preference was assessed at PND 60, 64, and 68, in a three-compartment chamber with a sexually receptive female and a male as potential partners simultaneously. The results confirmed that a single injection of LPS during puberty induced sickness signs indicative of an immune challenge. However, juvenile play was not affected by LPS treatment during the following days (PND36-40), nor was sexual behavior and partner preference for females in adulthood. These findings highlight that, while other studies have shown that LPS-induced immunological stress during puberty affects behavior and neuroendocrine responses, it does not affect juvenile play and sexual behavior in male rats. This suggests a remarkable resilience of these behavioral systems for adaptation to stressful experiences mediated by immune challenges during critical periods of development. These behaviors, however, might be affected by other types of stress.
Collapse
Affiliation(s)
| | | | - Luis I García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | | |
Collapse
|
8
|
Bruinjé TC, Morrison EI, Ribeiro ES, Renaud DL, LeBlanc SJ. Progesterone profiles in postpartum dairy cows with inflammatory disorders. J Dairy Sci 2024; 107:7153-7164. [PMID: 38754832 DOI: 10.3168/jds.2023-24604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024]
Abstract
The objective of this prospective cohort study was to determine if progesterone (P4) profiles differed between dairy cows with or without inflammatory disorders early postpartum. A total of 708 cows from 2 commercial herds were enrolled 3 wk before parturition and examined for clinical health disorders (difficult calving, retained placenta, metritis, displaced abomasum, mastitis, or lameness) until 5 wk postpartum. Serum haptoglobin (Hp) was measured in blood at 2 and 6 DIM (range ±2 d); metritis was assessed at 4, 8, 11, and 15 DIM; and purulent vaginal discharge and endometritis (≥6% PMN in endometrial cytology sampled by cytobrush) were assessed at 35 ± 3 DIM. As Hp ≥0.8 g/L or endometritis were associated with ovarian dysfunction in previous studies, cows with serum Hp ≥0.8 g/L at either time point and endometritis, regardless of clinical disease, were classified as the cohort with inflammatory disorders (INFLAM; n = 139). Clinically healthy cows without difficult calving, with singleton birth, with Hp <0.8 g/L at both sampling times, without endometritis or purulent vaginal discharge, and BCS ≥3.00 (1 to 5 scale) were classified as healthy (n = 133). Cows with only one of the 2 conditions (high Hp or endometritis) were excluded. Cohorts had serum P4 measured twice weekly from 35 to 70 DIM (±3 d), and the first detected luteal phase (LP) during the sampling period was defined as the period from onset of luteal activity (P4 increase to ≥1 ng/mL) until decline of P4 to <1 ng/mL. The odds of prolonged LP (≥21 d long), average LP length, peak P4, and time to P4 decline (hazard rate) were analyzed using multivariable mixed logistic, linear, or Cox proportional hazard regression models including INFLAM status, parity, sampling day (when applicable), and herd as a random effect considering the covariates of season, milk yield at first DHIA test, and DIM at onset of cyclicity or LP length (when applicable). Cows with INFLAM had greater odds of prolonged LP (LSM ± SEM; 67% vs. 37% ± 7%), greater average LP length (17 vs. 15 ± 2 d), lesser P4 at d 4 (4.6 vs. 5.5 ± 0.3 ng/mL) and d 7 (6.0 vs. 7.7 ± 0.3 ng/mL) of the LP, and lesser peak P4 (6.9 vs. 8.2 ± 0.3 ng/mL) during the LP than healthy cows. Status of INFLAM was associated with time to P4 decline in multiparous but not primiparous cows; the LP of INFLAM multiparous cows was less likely to have luteolysis (P4 decline) by d 14 (adjusted hazard ratio [AHR] and 95% CI: 0.54; 0.31 to 0.94) or by d 21 (AHR: 0.32; 0.12 to 0.84) than in healthy multiparous cows. In conclusion, postpartum cows with markers of systemic inflammation at wk 1 and uterine inflammation at wk 5 had altered luteal function (prolonged LP and lower P4 concentrations) before first breeding, which is a possible pathway linking postpartum health disorders and reduced fertility.
Collapse
Affiliation(s)
- Tony C Bruinjé
- Department of Population Medicine, University of Guelph, Canada N1G 2W1
| | - Emma I Morrison
- Department of Population Medicine, University of Guelph, Canada N1G 2W1
| | - Eduardo S Ribeiro
- Department of Animal Biosciences, University of Guelph, Canada N1G 2W1
| | - David L Renaud
- Department of Population Medicine, University of Guelph, Canada N1G 2W1
| | - Stephen J LeBlanc
- Department of Population Medicine, University of Guelph, Canada N1G 2W1.
| |
Collapse
|
9
|
Magata F, Kikuzawa M, Bollwein H, Matsuda F, Haneda S. Lipopolysaccharide-binding protein in follicular fluid is associated with the follicular inflammatory status and granulosa cell steroidogenesis in dairy cows. J Reprod Dev 2024; 70:169-176. [PMID: 38644218 PMCID: PMC11153122 DOI: 10.1262/jrd.2023-104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/22/2024] [Indexed: 04/23/2024] Open
Abstract
Metabolic stress and subsequent hepatic dysfunction in high-producing dairy cows are associated with inflammatory diseases and declining fertility. Lipopolysaccharide (LPS)-binding protein (LBP) is produced by hepatocytes and controls the immune response, suggesting that it is involved in the pathophysiology of inflammation-related attenuation of reproductive functions during metabolic stress. This study investigated the effect of LBP on the inflammatory status, oocyte quality, and steroidogenesis in the follicular microenvironment of dairy cows. Using bovine ovaries obtained from a slaughterhouse, follicular fluid and granulosa cells were collected from large follicles to evaluate the follicular status of metabolism, inflammation, and steroidogenesis. Cumulus-oocyte complexes were aspirated from small follicles and subjected to in vitro embryo production. The results showed that follicular fluid LBP concentrations were significantly higher in cows with fatty livers and hepatitis than in those with healthy livers. Follicular fluid LBP and LPS concentrations were negatively correlated, whereas LPS concentration showed a positive correlation with the concentrations of non-esterified fatty acids (NEFA) and β-hydroxybutyric acid in follicular fluid. The blastulation rate of oocytes after in vitro fertilization was impaired in cows in which coexisting large follicles had high NEFA levels. Follicular fluid NEFA concentration was negatively correlated with granulosa cell expression of the estradiol (E2) synthesis-related gene (CYP19A1). Follicular fluid LBP concentration was positively correlated with follicular fluid E2 concentration and granulosa cell CYP19A1 expression. In conclusion, follicular fluid LBP may be associated with favorable conditions in the follicular microenvironment, including low LPS levels and high E2 production by granulosa cells.
Collapse
Affiliation(s)
- Fumie Magata
- Department of Veterinary Medical Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Misato Kikuzawa
- Department of Veterinary Medical Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Fuko Matsuda
- Department of Veterinary Medical Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shingo Haneda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|
10
|
Pasamba EC, Orda MA, Villanueva BHA, Tsai PW, Tayo LL. Transcriptomic Analysis of Hub Genes Reveals Associated Inflammatory Pathways in Estrogen-Dependent Gynecological Diseases. BIOLOGY 2024; 13:397. [PMID: 38927277 PMCID: PMC11201105 DOI: 10.3390/biology13060397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Gynecological diseases are triggered by aberrant molecular pathways that alter gene expression, hormonal balance, and cellular signaling pathways, which may lead to long-term physiological consequences. This study was able to identify highly preserved modules and key hub genes that are mainly associated with gynecological diseases, represented by endometriosis (EM), ovarian cancer (OC), cervical cancer (CC), and endometrial cancer (EC), through the weighted gene co-expression network analysis (WGCNA) of microarray datasets sourced from the Gene Expression Omnibus (GEO) database. Five highly preserved modules were observed across the EM (GSE51981), OC (GSE63885), CC (GSE63514), and EC (GSE17025) datasets. The functional annotation and pathway enrichment analysis revealed that the highly preserved modules were heavily involved in several inflammatory pathways that are associated with transcription dysregulation, such as NF-kB signaling, JAK-STAT signaling, MAPK-ERK signaling, and mTOR signaling pathways. Furthermore, the results also include pathways that are relevant in gynecological disease prognosis through viral infections. Mutations in the ESR1 gene that encodes for ERα, which were shown to also affect signaling pathways involved in inflammation, further indicate its importance in gynecological disease prognosis. Potential drugs were screened through the Drug Repurposing Encyclopedia (DRE) based on the up-and downregulated hub genes, wherein a bacterial ribosomal subunit inhibitor and a benzodiazepine receptor agonist were the top candidates. Other drug candidates include a dihydrofolate reductase inhibitor, glucocorticoid receptor agonists, cholinergic receptor agonists, selective serotonin reuptake inhibitors, sterol demethylase inhibitors, a bacterial antifolate, and serotonin receptor antagonist drugs which have known anti-inflammatory effects, demonstrating that the gene network highlights specific inflammatory pathways as a therapeutic avenue in designing drug candidates for gynecological diseases.
Collapse
Affiliation(s)
- Elaine C. Pasamba
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Marco A. Orda
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Brian Harvey Avanceña Villanueva
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Lemmuel L. Tayo
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| |
Collapse
|
11
|
Magata F, Kuroki C, Sakono T, Matsuda F. Lipopolysaccharide impairs the in vitro growth, steroidogenesis, and maturation of oocyte-cumulus-granulosa cell complexes derived from bovine early antral follicles. Theriogenology 2024; 215:187-194. [PMID: 38086312 DOI: 10.1016/j.theriogenology.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
In postpartum dairy cows, lipopolysaccharide (LPS) derived from gram-negative bacteria causes uterine or mammary inflammation, resulting in low fertility. The present study aimed to investigate the effect of LPS on the in vitro growth (IVG), steroidogenesis, and maturation of oocyte-cumulus-granulosa cell complexes (OCGCs) derived from bovine early antral follicles. OCGCs were isolated from bovine early antral follicles (0.5-1 mm in diameter) and cultured in vitro for 12 days using media containing 0 (control), 0.01, or 1 μg/mL of LPS. The viability, cavity formation, and oocyte diameter of the OCGCs, as well as the concentrations of estradiol (E2) and progesterone (P4) in the IVG culture media, were determined. After IVG culture, oocytes collected from viable OCGCs were matured in vitro (IVM) in a medium without LPS. The nuclear maturation rate and the mitochondrial membrane potential of oocytes were determined. Bovine oocytes and cumulus-granulosa complexes derived from early antral follicles expressed genes encoding LPS receptor complex, such as toll-like receptor 4 (TLR4). Immunohistochemistry analysis further localized TLR4 expression predominantly in follicular granulosa and theca cells of early antral follicles. The viability of OCGCs and cavity formation in OCGCs were lower in the 0.01 and 1 μg/mL LPS groups than in the control group. No significant difference in oocyte diameter was observed between the treatment groups throughout the culture period. Moreover, E2 production was suppressed in the 0.01 and 1 μg/mL LPS groups from Days 4-8, whereas P4 production increased in the 1 μg/mL LPS group from Days 0-8. The nuclear maturation rate after IVM was lower in the 0.01 and 1 μg/mL LPS groups than in the control group. The mitochondrial membrane potential of post-IVM oocytes was lower in the 0.01 and 1 μg/mL LPS groups than in the control group. Taken together, these results indicate that LPS inhibited the growth and steroidogenesis of OCGCs and the meiosis and mitochondrial function of oocytes derived from early antral follicles. This study suggests that the detrimental effects of LPS on developing oocytes may contribute to long-term decreased fertility in postpartum dairy cows.
Collapse
Affiliation(s)
- Fumie Magata
- Department of Veterinary Medical Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Chie Kuroki
- Department of Veterinary Medical Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takahiro Sakono
- Department of Veterinary Medical Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fuko Matsuda
- Department of Veterinary Medical Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Roach CM, Mayorga EJ, Baumgard LH, Ross JW, Keating AF. Heat stress alters the ovarian proteome in prepubertal gilts. J Anim Sci 2024; 102:skae053. [PMID: 38605681 PMCID: PMC11025630 DOI: 10.1093/jas/skae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Heat stress (HS) occurs when exogenous and metabolic heat accumulation exceeds heat dissipation; a thermal imbalance that compromises female reproduction. This study investigated the hypothesis that HS alters the ovarian proteome and negatively impacts proteins engaged with insulin signaling, inflammation, and ovarian function. Prepubertal gilts (n = 19) were assigned to one of three environmental groups: thermal neutral with ad libitum feed intake (TN; n = 6), thermal neutral pair-fed (PF; n = 6), or HS (n = 7). For 7 d, HS gilts were exposed to 12-h cyclic temperatures of 35.0 ± 0.2 °C and 32.2 ± 0.1 °C, while TN and PF gilts were housed at 21.0 ± 0.1 °C. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed on ovarian protein homogenates. Relative to TN gilts, 178 proteins were altered (P ≤ 0.05, log2foldchange ≥ 1) by HS, with 76 increased and 102 decreased. STRING gene ontology classified and identified 45 biological processes including those associated with chaperone protein refolding, cytoplasmic translational initiation, and immune activation; with a protein-protein interaction web network of 158 nodes and 563 edges connected based on protein function (FDR ≤ 0.05). Relative to PF, HS altered 330 proteins (P ≤ 0.05, log2foldchange ≥ 1), with 151 increased and 179 decreased. Fifty-seven biological pathways associated with protein function and assembly, RNA processing, and metabolic processes were identified, with a protein-protein interaction network of 303 nodes and 1,606 edges. Comparing HS with both the TN and PF treatments, 72 ovarian proteins were consistently altered by HS with 68 nodes and 104 edges, with biological pathways associated with translation and gene expression. This indicates that HS alters the ovarian proteome and multiple biological pathways and systems in prepubertal gilts; changes that potentially contribute to female infertility.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
13
|
Wasilewski T, Wasilewska J, Łukaszewicz-Zając M, Mroczko B. Subfertility as Overlapping of Nutritional, Endocrine, Immune, and Cardiometabolic Dysregulations-A Study Focused on Biochemical Endophenotypes of Subfertile Couples. J Clin Med 2023; 12:6094. [PMID: 37763034 PMCID: PMC10531916 DOI: 10.3390/jcm12186094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Subfertility is a global health issue, and as many as 30% of cases are attributed to unexplained reasons. A hypercaloric, high-fat diet stimulates the expansion of pro-inflammatory gut microbiota with a consequent rise in circulating lipopolysaccharides. Adverse gut microbiota remodeling can exacerbate insulin resistance, while sex and thyroid hormones may influence the variability in gut microbiota. This cross-sectional study included 150 participants and was designed to determine a biochemical, nutritional-related pattern that may distinguish subfertile from fertile individuals and couples. A panel of 28 biomarkers was assessed. Four biochemical phenotypes of unexplained subfertility were found, including two metabolic and two immune, when assessed using binary logistic regression models. Two phenotypes were distinguished in women: cardio-metabolic with atherogenic dyslipidemia (LowHDL-cholesterol: OR = 10.9; p < 0.05) and autoimmune thyroid disorder (Highanti-thyroid-peroxidase: OR = 5.5; p < 0.05) and two in men: hepato-metabolic with elevated liver injury enzymes (HighHOMA-IR: OR = 6.1; p < 0.05) and immune type-2 response (HighIgE: OR = 6.4; p < 0.05). The chances of a couple's subfertility rose with the number of laboratory components of metabolic syndrome in the couple (OR = 1.7; p < 0.05) and if at least one partner had an elevated total IgE level (>100 kU/L) (OR = 6.5; p < 0.05). This study found that unexplained subfertility may be accompanied by mutually overlapping immune and metabolic dysregulations in individuals and couples. We propose one-time laboratory diagnostics taking into account the lipid profile, insulin resistance, anti-thyroid-peroxidase, and total IgE in both males and females with unexplained subfertility. This may allow for a one-time assessment of targeted medical and nutritional interventions and help optimize patients' health. The gut-organ axes related to subfertility are discussed in the context of the obtained results.
Collapse
Affiliation(s)
- Tadeusz Wasilewski
- Centre for Restorative Procreative Medicine, Napromedica, 15-741 Bialystok, Poland;
| | - Jolanta Wasilewska
- Centre for Paediatrics, Allergology, Psychodietetics, and Treatment of Children Diagnosed with Autism, IPM, 15-404 Bialystok, Poland
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
14
|
Smith KB, Zhong J, Gostlin SK, Liang J, Ismail N. Enduring sex-dependent effects of lipopolysaccharide treatment on the hypothalamic-pituitary-gonadal axis in mice. Gen Comp Endocrinol 2023; 340:114324. [PMID: 37247825 DOI: 10.1016/j.ygcen.2023.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Pubertal stress causes enduring sexual behavior dysfunction in males and females, but the underlying mechanism remains unknown. These changes may arise from pubertal programming of the hypothalamic-pituitary-gonadal axis. Previous findings show that stress exposure downregulates the hypothalamic-pituitary-gonadal axis, particularly through the reduction of the neuropeptide kisspeptin (Kiss1) and its receptor (Kiss1R). Although acute changes in kiss1 and Kiss1r genes have been observed following pubertal immune stress, it is unclear whether immune stress-induced downregulation of kiss1 and kiss1r persists beyond puberty. The current study investigated the enduring sex-specific consequences of lipopolysaccharide on the expression of Kiss1 and Kiss1r in 160 pubertal or adult mice at multiple time points. Six-week and 10-week-old male and female mice were treated with either saline or with lipopolysaccharide. Mice were euthanized either 8 h or 4 weeks following treatment. Although we did not identify any sex differences, our results revealed that lipopolysaccharide treatment decreases hypothalamic Kiss1 and Kiss1r in both pubertal and adult mice within 8 h of treatment. The decreased hypothalamic Kiss1 expression persists 4 weeks later only in mice treated with lipopolysaccharide during puberty. Our findings highlight the age-dependent vulnerability of the hypothalamic-pituitary-gonadal axis to immune stress, providing a better understanding of the mechanisms implicated in allostatic shift during immune stress. Finally, our findings also show the effects of immune stress on various components of the hypothalamic-pituitary-gonadal axis, which could have implications for sexual and fertility-related dysfunctions.
Collapse
Affiliation(s)
- Kevin B Smith
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| | - Jasmine Zhong
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| | - Sarah K Gostlin
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| | - Jacky Liang
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada; LIFE Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
15
|
Jaillardon L, Kaiser M. Pathogenesis of the crosstalk between reproductive function and stress in animals - part 2: Prolactin, thyroid, inflammation and oxidative stress. Reprod Domest Anim 2023; 58 Suppl 2:137-143. [PMID: 37724656 DOI: 10.1111/rda.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023]
Abstract
Stress has a significant impact on reproductive health and fertility in both humans as well as various animal species. In particular, chronic stress can disrupt the delicate balance of the hormonal system that regulates reproductive function, leading to a variety of reproductive disorders and fertility issues. Beside the action of the hypothalamic-pituitary-adrenal (HPA) system and the sympatho-adrenomedullary system (SAM), other subsequent mechanisms have been incriminated. Thus, stress has also been associated with increased prolactin level, resulting in an inhibition of the hypothalamo-pituitary-gonadal (HPG) system leading to several reproductive disorders. Thyroid function is inhibited during chronic stress, and therefore considered an important regulator of reproductive function. Thus, and in particular by interfering with the HPA system, stress-induced immune dysregulation can have adverse effects on reproduction. In addition, oxidative stress and inflammation have been proposed as potential mechanisms by which chronic stress affects reproductive function. This is caused by an increase in reactive oxygen species (ROS) production that has a harmful effect on cells. Furthermore, inflammation can lead to tissue damage and scarring, which can affect fertility. The present review completes the complex mechanism linking stress and reproduction through the current knowledge in various animal species in a comparative point of view.
Collapse
Affiliation(s)
- Laetitia Jaillardon
- Oniris, LabOniris, Nantes Atlantic National College of Veterinary Medicine, Food Sciences and Engineering, Nantes, France
| | - Marianne Kaiser
- Management and Modelling, Department of Animal and Veterinary Sciences, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
16
|
Carrasco RA, Breen KM. Allostasis in Neuroendocrine Systems Controlling Reproduction. Endocrinology 2023; 164:bqad125. [PMID: 37586095 PMCID: PMC10461221 DOI: 10.1210/endocr/bqad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Allostasis provides a supporting role to the homeostatic control of biological variables in mammalian species. While the concept of homeostasis is related to the control of variables within a set point or range that are essential to life, allostasis refers to systems that facilitate adaptation to challenges that the organism faces and the new requirements for survival. Essential for such adaptation is the role played by the brain in eliciting neural and neuroendocrine responses. Reproductive function is fundamental for the survival of species but is costly in energetic terms and requires a synchrony with an ever-changing environment. Thus, in many species reproductive function is blocked or delayed over immediate challenges. This review will cover the physiological systems and neuroendocrine pathways that supply allostatic control over reproductive neuroendocrine systems. Light, hypoxia, temperature, nutrition, psychosocial, and immune mediators influence the neuroendocrine control of reproductive functions through pathways that are confluent at the paraventricular nucleus; however, understanding of the integrative responses to these stimuli has not been clarified. Likely, the ultimate consequence of these allostatic mechanisms is the modification of kisspeptin and gonadotropin-releasing hormone neuronal activity, thus compromising reproduction function in the short term, while preserving species survivability.
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0674, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0674, USA
| |
Collapse
|