1
|
Ajigboye OO, Ray RV, Murchie EH. Chlorophyll Fluorescence on the Fast Timescale. Methods Mol Biol 2024; 2790:257-267. [PMID: 38649575 DOI: 10.1007/978-1-0716-3790-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Chlorophyll fluorescence is a rapid and noninvasive tool used for probing the activity of photosynthesis that can be used in vivo and in the field. It is highly relevant to the demands of high-throughput crop phenotyping and can be automated or manually applied. In this chapter, we describe protocols and advice for making fast timescale fluorescence measurements using handheld equipment in the laboratory or in the field in the context of phenotyping. While interpretation of some measured parameters requires caution for the purpose of identifying underlying mechanisms, we demonstrate this technique is appropriate for some applications where convenience, rapidity, and sensitivity are required.
Collapse
Affiliation(s)
- Olubukola O Ajigboye
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Loughborough, Leicestershire, UK
| | - Rumiana V Ray
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Loughborough, Leicestershire, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Loughborough, Leicestershire, UK.
| |
Collapse
|
2
|
Yao Y, Xia L, Yang L, Liu R, Zhang S. Drought responses and carbon allocation strategies of poplar with different leaf maturity. PHYSIOLOGIA PLANTARUM 2024; 176:e14224. [PMID: 38389291 DOI: 10.1111/ppl.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Leaf characteristics can reflect the adaptation of trees to drought stress. However, the effect of leaf maturity on drought stress has been neglected, leading to uncertainty in inferring individual tree responses to drought from leaves. The allocation strategy of photosynthetic carbon between leaf organs (fully expanded young and old leaves) under drought stress remains unclear. Poplar is a diverse and widespread tree species in arid and semi-arid regions. Here, three poplar genotypes (Populus cathayana, P. × euramericana 'Nanlin 895', and P. alba × P. tremula var. glandulosa) were selected and exposed to different watering regimes. The responses and carbon allocation strategies of leaves with different maturity to drought were investigated using a combination of leaf traits and 13 C pulse labelling technique. The results showed that (1) fully expanded young leaves had better osmotic regulation and antioxidant capacity than aged leaves under drought stress. (2) Aged leaves acted as a carbon source during water deficit, where their photosynthetic products were transferred and supplied to upper young leaves to promote stronger photosynthesis in young leaves to acquire resources for tree growth. This study highlights that the effect of leaf maturity should be considered in the future when investigating the effects of drought on woody plants, especially for continuously growing tree species. Therefore, our study not only demonstrates the existence of leaf-age-dependent responses to drought in poplar but also provides new insights into carbon allocation at the leaf level.
Collapse
Affiliation(s)
- Yuan Yao
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Linchao Xia
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Le Yang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruixuan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sheng Zhang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Schierenbeck M, Fleitas MC, Simón MR. The Interaction of Fungicide and Nitrogen for Aboveground Biomass from Flag Leaf Emergence and Grain Yield Generation under Tan Spot Infection in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:212. [PMID: 36616343 PMCID: PMC9824645 DOI: 10.3390/plants12010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Pyrenophora tritici-repentis (Died.) Drechs., the causal agent of tan spot, is one of the most serious biotic diseases affecting wheat worldwide (Triticum aestivum L.). Studying the interaction between different fungicide mixtures and nitrogen (N) rates under tan spot outbreaks is of key importance for reducing aboveground biomass and grain yield losses. Taking this into account, our study took a mechanistic approach to estimating the combined effect of different fungicides and N fertilization schemes on the severity of tan spot, green leaf area index, SPAD index, aboveground biomass dynamics, and yield in a wheat crop affected at the reproductive stage. Our results indicated that reductions in green leaf area, healthy area duration (HAD), and the chlorophyll concentration (SPAD index) due to increases in the percentage of damage led to decreases in biomass production (-19.2%) and grain yield (-48.1%). Fungicides containing triazole + strobilurin + carboxamides (TSC) or triazole + strobilurin (TS) combined with high N doses showed the most efficient disease control. The positive physiological effects of TSC fungicides, such as extending the green leaf area, are probably responsible for the greater production of aboveground biomass (+29.3%), as well as the positive effects on grain yield (+15.8%) with respect to TS. Both fungicide treatments increased grains per spike, kernel weight, spikes m-2, grains m-2, and grain yield. The increase in biomass in the TSC tended to cause slighter non-significant increases in grains per spike, 1000-kernel weight and grain yield compared with TS. The linear regression revealed positive associations among the extension of HAD and biomass (+5.88 g.m-2.HAD-1.day-1), grain yield (+38 kg.ha.HAD-1.day-1), and grain number (100.7 grains m2.HAD-1.day-1), explained by the interactions of high N doses and fungicides. Our study is the first report of the positive effect of TSC fungicides with high N doses on grain yield related-traits under tan spot infections in wheat.
Collapse
Affiliation(s)
- Matías Schierenbeck
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
- Cereals, Faculty of Agriculture and Forestry Sciences, National University of La Plata. Av.60 y 119, La Plata 1900, Argentina
- CONICET CCT La Plata. Calle 8 Nº 1467, La Plata 1900, Argentina
| | - María Constanza Fleitas
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - María Rosa Simón
- Cereals, Faculty of Agriculture and Forestry Sciences, National University of La Plata. Av.60 y 119, La Plata 1900, Argentina
- CONICET CCT La Plata. Calle 8 Nº 1467, La Plata 1900, Argentina
| |
Collapse
|
4
|
Radzikowska D, Kowalczewski PŁ, Grzanka M, Głowicka-Wołoszyn R, Nowicki M, Sawinska Z. Succinate dehydrogenase inhibitor seed treatments positively affect the physiological condition of maize under drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:984248. [PMID: 36110354 PMCID: PMC9468601 DOI: 10.3389/fpls.2022.984248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Improvements in agricultural production are needed, as the growing human population demands more resources and exerts stronger effects on climate. Water scarcity is one of the main factors limiting the yield of maize in many regions of the world. One possible method to mitigate the negative effects of drought is seed mortars; its use improves plant development from the early stages onwards. In this study, we tested 12 various seed treatments with and without succinate dehydrogenase inhibitors (SDHI; sedaxane) on maize "SY Fanatic." Physiological parameters of germinating seeds, of young maize seedlings under drought, and of seedlings recuperated from drought were assessed and compared across 12 seed treatments and with non-stressed plants. The seed treatments varied greatly in their influence on the germination and the physiological state of seedlings under drought and after regeneration. Seeds under treatments No. 6, 11, and 12 showed the highest germination energy (97.3%). The use of SDHI-containing seed treatments significantly improved the development of the maize root system. The longest roots, ~13 cm in length, were recorded for treatments No. 6 and 12, both containing sedaxane. These treatments also boosted the functioning of plants growing under optimal soil moisture conditions and under drought stress, influencing the photosynthesis process, increasing the absorption of CO2, and improving the parameters of chlorophyll fluorescence in relation to non-treated controls. Our data indicated that using substances from the SDHI group can possibly reduce the drought-related stress reactions in maize, helping this important crop to face the progressing climate change.
Collapse
Affiliation(s)
| | | | - Monika Grzanka
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| | | | - Marcin Nowicki
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
| | - Zuzanna Sawinska
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
5
|
Effect of Inoculation with Arbuscular Mycorrhizal Fungi and Fungicide Application on the Secondary Metabolism of Solanum tuberosum Leaves. PLANTS 2022; 11:plants11030278. [PMID: 35161259 PMCID: PMC8838535 DOI: 10.3390/plants11030278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022]
Abstract
In potato (Solanum tuberosum) crops, the use of fungicides to control some diseases is widespread; however, it has been reported that this practice can modify the potato polyphenolic content, and new strategies oriented to the potato defense system are necessary. One alternative is the use of arbuscular mycorrhizal fungi (AMF) to improve the defense mechanisms of plants. In this study, phenolic profiles and antioxidant activities in leaves of three potato genotypes (CB2011-509, CB2011-104, and VR808) were evaluated in crops inoculated with three AMF strains (Claroideoglomus claroideum, Claroideoglomus lamellosum, and Fumneliformis mosseae) and with AMF in combination with the use of two commercial fungicides (MONCUT [M] and ReflectXtra [R]). Eight phenolic compounds were detected, mainly hydroxycinnamic acids (HCAD) and flavonols, in samples where the highest concentrations of HCAD were obtained, 5-caffeoylquinic acid was the most abundant phenolic. The antioxidant activity was higher using the cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP) methods. The association of AMF with plants had benefits on the secondary metabolism; however, the response differed according to genotype. The different combinations of potato genotypes, AMF strain, and fungicide modified the content of phenolic compounds in leaves in different ways; the treatment using C. lamellosum and ReflectXtra was the ideal combination for the genotypes analyzed here, with the higher antioxidant response, which supports the further technological evaluation of efficient AMF strains and fungicides in potato crops.
Collapse
|
6
|
Junqueira VB, Müller C, Rodrigues AA, Amaral TS, Batista PF, Silva AA, Costa AC. Do fungicides affect the physiology, reproductive development and productivity of healthy soybean plants? PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104754. [PMID: 33518047 DOI: 10.1016/j.pestbp.2020.104754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Fungicides are widely used to control diseases in soybean crops. We hypothesized that fungicides applied to healthy soybean plants compromise the plant's physiology, affect the reproductive process and reduce crop productivity. We aimed to evaluate the photosynthetic process, pollen grain viability and yield components of soybean plants exposed to three commercial fungicides. The experiment was performed twice using soybean cultivar SYN 1378C, disease-free plants, with four treatments: i) control treatment (without any fungicide application); ii) cyproconazole 150 g L-1 + difenoconazole 250 g L-1 (CPZ + DFZ; 250 mL ha-1; without adjuvant); iii) azoxystrobin 300 g Kg-1 + benzovindiflupyr 150 g Kg-1 (AZB + BZP; 200 g ha-1; Nimbus® adjuvant (Syngenta)); and iv) propiconazole 250 g L-1 + difenoconazole 250 g L-1 (PPZ + DFZ; 150 mL ha-1; without adjuvant) in both soybean pre-bloom (V8) and bloom (R1) developmental stages. The experimental design was randomized blocks with four replicates. Phytotoxicity, gas exchange and chlorophyll a fluorescence traits, pollen grain viability, pollen grain germination, flower abortion and soybean production components were evaluated. The fungicides did not affect the physiological traits, pollen grain germination and crop yield.
Collapse
Affiliation(s)
- Verônica Barbosa Junqueira
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil
| | - Caroline Müller
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil
| | - Arthur Almeida Rodrigues
- Laboratory of Plant Anatomy, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil
| | - Thales Simioni Amaral
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil
| | - Priscila Ferreira Batista
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil
| | - Adinan Alves Silva
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil
| | - Alan Carlos Costa
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology - Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil.
| |
Collapse
|
7
|
Fang K, Liu Y, Zhang X, Fang J, Chen D, Liu T, Wang X. Simultaneous Determination of the Residues of Isopyrazam Isomers and Their Metabolites in Soil and Tomatoes by Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:756-766. [PMID: 33404229 DOI: 10.1021/acs.jafc.0c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An effective and sensitive method for the determination of isopyrazam (IZM) isomers (syn-IZM and anti-IZM) and their metabolites (syn545364 and syn545449) in tomato and soil by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed in the present study. The method showed excellent linearities (R2 = 0.999) at 0.005-5 mg/L. The recoveries were 92.0-107%, and the relative standard deviation (RSD) values were lower than 9.40% in tomato and soil matrices at 0.01, 0.1, and 10 mg/kg. The limits of detection (LODs) of the four compounds ranged from 6.88 × 10-5 to 2.70 × 10-4 mg/kg, while the limits of quantification (LOQs) ranged from 2.20 × 10-4 to 9.20 × 10-4 mg/kg. The storage stability test results showed that syn-IZM, anti-IZM, syn545449, and syn545364 were stable in tomato at -20 °C within 36 weeks, and the maximum degradation rates were 16.0, 12.0, 7.10, and 12.0%, respectively. The field dissipation test results showed that the half-lives of syn-IZM in tomato and soil were 2.60-10.2 and 13.6-33.0 days, respectively, while the half-lives of anti-IZM in soil were 21.7-46.2 days, and no residues of anti-IZM were detected in tomato. The terminal residue test results showed that the residue of syn-IZM and anti-IZM in tomato ranged from <0.0100-0.490 to <0.0100-0.0850 mg/kg. The present results showed that anti-IZM degraded faster than syn-IZM in tomato and soil, and had a lower residue level in tomato.
Collapse
Affiliation(s)
- Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| | - Yalei Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| | - Xiaolian Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| | - Jianwei Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| | - Dan Chen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| |
Collapse
|
8
|
Zhao Z, Sun R, Su Y, Hu J, Liu X. Fate, residues and dietary risk assessment of the fungicides epoxiconazole and pyraclostrobin in wheat in twelve different regions, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111236. [PMID: 32911182 DOI: 10.1016/j.ecoenv.2020.111236] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
The fungicides epoxiconazole and pyraclostrobin have been widely used to control wheat fusarium head blight. This study was designed to investigate the dissipation behaviors in different climate regions and provide data for the modification of maximum residue limits of the two fungicides. Wheat samples were collected from field sites in twelve different regions, China and analyzed with an HPLC-MS/MS method for simultaneous detection of epoxiconazole and pyraclostrobin in wheat. The average recoveries of epoxiconazole and pyraclostrobin in wheat matrix were 87-112% and 85-102%, respectively, with the relative standard deviations ≤8.1%. The limits of quantification of epoxiconazole and pyraclostrobin in grain and straw were both 0.01 mg/kg. The dissipations of epoxiconazole and pyraclostrobin followed first-order kinetics, with the half-lives of 10.3 days and 7.6 days, respectively. The terminal residues of epoxiconazole and pyraclostrobin in grain were below 0.034 and 0.028 mg/kg, separately, both lower than the maximum residue limits recommended by China. Based on Chinese dietary pattern and terminal residue distributions, the risk quotients of epoxiconazole and pyraclostrobin were 13.9% and 65.9%, respectively, revealing the evaluated wheat exhibited an acceptably low dietary risk to consumers.
Collapse
Affiliation(s)
- Zixi Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Runxia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yue Su
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
9
|
Simón MR, Fleitas MC, Castro AC, Schierenbeck M. How Foliar Fungal Diseases Affect Nitrogen Dynamics, Milling, and End-Use Quality of Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:569401. [PMID: 33329626 PMCID: PMC7717975 DOI: 10.3389/fpls.2020.569401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/23/2020] [Indexed: 05/16/2023]
Abstract
Foliar fungal diseases may cause important losses on yield and quality of wheat (Triticum aestivum L.). They may impact crop growth rate differently, modifying nitrogen (N) dynamics and carbohydrate accumulation in the grain. The relationship between N and carbohydrates accumulation determines the grain protein concentration, which impacts the gluten concentration and rheological properties of the wheat flour. In addition, types of fungicides and N fertilization can influence the intensity of foliar diseases and have an effect on the milling and end-use quality, depending on the bread-making aptitude of the genotypes, the nutritional habit of the pathogen involved, the amount and time of infection, environmental factors, and interactions between these factors. In that way, N fertilization may modify the severity of the diseases according to the nutritional habit of the pathogen involved. Some fungicides, such as strobilurins and carboxamides, produce high levels of disease control and prolong the healthy leaf area duration, which translates into important yield responses, potentially compromising the grain protein concentration by additional carbohydrate production, with consequences in the bread-making quality. Furthermore, infections caused by biotrophic pathogens can be more damaging to N deposition than to dry matter accumulation, whereas the reverse has been generally true for diseases caused by necrotrophic pathogens. The time of infection could also affect yield components and N dynamics differentially. Early epidemics may reduce the number of grains per area and the N remobilization, whereas late epidemics may affect the thousand kernel weight and mainly the N absorption post-flowering. A review updating findings of the effects of infections caused by foliar fungal pathogens of different nutritional habits and the incidence of several factors modifying these effects on the above-ground biomass generation, N dynamics, protein and gluten concentration, milling, rheological properties, loaf volume, and other quality-related traits is summarized. Three main pathogens in particular, for which recent information is available, were taken as representative of biotrophic (Puccinia triticina), necrotrophic (Pyrenophora tritici-repentis), and hemibiotrophic (Zymoseptoria tritici) nutritional habit, and some general models of their effects are proposed. New challenges for researchers to minimize the impact of foliar diseases on end-use quality are also discussed.
Collapse
Affiliation(s)
- María Rosa Simón
- Cerealicultura, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
- Comisión de Investigaciones Científicas Provincia Buenos Aires, La Plata, Argentina
| | - María Constanza Fleitas
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ana Carolina Castro
- Cerealicultura, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Matías Schierenbeck
- Cerealicultura, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
10
|
Ido K, Kiguchi S, Iwahashi F, Yamato S. Physiological effects of mandestrobin. JOURNAL OF PESTICIDE SCIENCE 2020; 45:132-137. [PMID: 32913415 PMCID: PMC7453300 DOI: 10.1584/jpestics.d20-004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Mandestrobin is a novel and potent fungicide with a methoxyacetamide structure, and inhibits complex III on the mitochondrial respiratory chain of fungi. It is widely accepted that some fungicides, including QOIs and SDHIs, have additional physiological effects on treated plants. In this study, we evaluated the physiological effects of mandestrobin both in the field and the laboratory. Mandestrobin treatment increased the yield of Brassica napus by an average of 6.3% in the field under disease-free conditions. Mandestrobin treatment delayed chlorophyll degradation and the senescence of B. napus leaf discs, and excised Arabidopsis thaliana leaves in darkness. Analyses of transcriptome and gene ontology enrichment of mandestrobin-upregulated genes showed that chlorophyll degradation genes and jasmonate-related genes were downregulated while salicylate-related genes were upregulated by mandestrobin treatment. A possible mechanism by which mandestrobin triggered the physiological effects observed in the field and the laboratory was discussed.
Collapse
Affiliation(s)
- Kunio Ido
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., 2–1 Takatsukasa 4-chome, Takarazuka, Hyogo 665–8555, Japan
| | - So Kiguchi
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., 2–1 Takatsukasa 4-chome, Takarazuka, Hyogo 665–8555, Japan
| | - Fukumatsu Iwahashi
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., 2–1 Takatsukasa 4-chome, Takarazuka, Hyogo 665–8555, Japan
| | - Seiji Yamato
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., 2–1 Takatsukasa 4-chome, Takarazuka, Hyogo 665–8555, Japan
| |
Collapse
|
11
|
Paclobutrazol Application Favors Yield Improvement of Maize Under Semiarid Regions by Delaying Leaf Senescence and Regulating Photosynthetic Capacity and Antioxidant System During Grain-Filling Stage. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020187] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, we examined the potential role of paclobutrazol in delaying leaf senescence, in causing changes in the activities of antioxidants, and in the maintenance of photosynthetic activity during the senescence process, and, therefore, on the grain yield of maize under semiarid field conditions. Maize seeds were pretreated with 0 (CK), 200 (PS1), 300 (PS2), and 400 (PS3) mg paclobutrazol L−1. Our results indicated that elevated levels of reactive oxygen species (ROS) and higher accumulation of malondialdehyde (MDA) contents were positively associated with accelerated leaf senescence during the grain-filling periods. The leaf senescence resulted in the disintegration of the photosynthetic pigments and reduced the net photosynthetic rate after silking. However, the resultant ROS burst (O2− and H2O2) was lessened and the leaf senescence and chlorophyll degradation were evidently inhibited in leaves of paclobutrazol-treated maize plants, which was strongly linked with upregulated activities of antioxidant enzymes in treated plants. The enhanced chlorophyll contents and availability of a greater photosynthetic active green leaf area during the grain filling period facilitated the maintenance of higher photosynthetic rate, and light-harvesting efficiency of photosynthesis associated with photosystem II (PSII) resulted in higher kernel number ear−1 and thousand kernel weights, and thus increased the final grain yield. The average maize grain yield was increased by 18.8% to 55.6% in paclobutrazol treatments, compared to untreated control. Among the various paclobutrazol treatments, PS2 (300 mg L−1) treatment showed the most promising effects on enhancing the activities of antioxidative enzymes, delaying leaf senescence and improving the yield of maize. Thus, understanding this effect of paclobutrazol on delaying leaf senescence introduces new possibilities for facilitating yield improvement of maize under semiarid conditions.
Collapse
|
12
|
Zhang Y, Chen Z, Nie J, Zhang FG, Ma JA. Development of Cyanopyrazoles as Building Blocks to Fungicide Fluxapyroxad and Analogues. J Org Chem 2019; 84:7148-7158. [PMID: 31058497 DOI: 10.1021/acs.joc.9b00819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we present a facile approach to a diverse collection of 1,4-disubstituted 3-di- or mono-fluoromethylpyrazoles utilizing our previously developed cyanopyrazoles as key building blocks. This method features several merits, such as easily accessible starting materials, broad substrate scope, mild reaction conditions, and simple operation. This protocol further deserves to be highlighted by the successful translation into the synthesis of commercialized fungicide fluxapyroxad and its analogues.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering , Tianjin University , Tianjin 300072 , P. R. of China
| | - Zhen Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering , Tianjin University , Tianjin 300072 , P. R. of China
| | - Jing Nie
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering , Tianjin University , Tianjin 300072 , P. R. of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering , Tianjin University , Tianjin 300072 , P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering , Tianjin University , Tianjin 300072 , P. R. of China.,State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , P. R. of China
| |
Collapse
|
13
|
Warzecha T, Skrzypek E, Adamski T, Surma M, Kaczmarek Z, Sutkowska A. Chlorophyll a Fluorescence Parameters of Hulled and Hull-less Barley ( Hordeum vulgare L.) DH Lines Inoculated with Fusarium culmorum. THE PLANT PATHOLOGY JOURNAL 2019; 35:112-124. [PMID: 31007641 PMCID: PMC6464203 DOI: 10.5423/ppj.oa.07.2018.0124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/17/2018] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Barley worldwide is affected seriously by Fusarium seedling blight (FSB) and Fusarium head blight (FHB) diseases caused by the Fusarium species. The objective of this study was to facilitate the resistance of hulled and hull-less barley at different growth stages to F. culmorum according to direct parameters: disease rating (DR), fresh weight of leaves and roots, kernel weight per spike, kernel number per spike, plump kernels, and indirect parameters - chlorophyll a fluorescence (CF). Plate assay, greenhouse and field tests were performed on 30 spring barley doubled haploid (DH) lines and their parents infected with Fusarium culmorum. Direct parameters proved that hulled genotypes show less symptoms. Most studied chlorophyll a fluorescence (CF) parameters (apart from DIo/CS - amount of energy dissipated from PSII for laboratory test, TRo/CS - amount of excitation energy trapped in PSII reaction centers, ETo/CS - amount of energy used for electron transport and RC/CS - number of active reaction centres in the state of fully reduced PSII reaction center in field experiment) were significantly affected by F. culmorum infection. In all experiments, hulled genotypes had higher values of CF parameters compared to hull-less ones. Significant correlations were detected between direct and indirect parameters and also between various environments. It was revealed that ABS/CS, TRo/CS, and RC/CS have significant positive correlation in greenhouse test and field experiment. Significant correlations suggest the possibility of applying the CF parameters in selection of barley DH lines resistant to F. culmorum infection.
Collapse
Affiliation(s)
- Tomasz Warzecha
- University of Agriculture in Kraków, Department of Plant Breeding and Seed Science Łobzowska 24, 31-140 Kraków,
Poland
| | - Edyta Skrzypek
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków,
Poland
| | - Tadeusz Adamski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-681 Poznań,
Poland
| | - Maria Surma
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-681 Poznań,
Poland
| | - Zygmunt Kaczmarek
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-681 Poznań,
Poland
| | - Agnieszka Sutkowska
- University of Agriculture in Kraków, Department of Plant Breeding and Seed Science Łobzowska 24, 31-140 Kraków,
Poland
| |
Collapse
|
14
|
Fleitas MC, Schierenbeck M, Gerard GS, Dietz JI, Golik SI, Campos PE, Simón MR. How leaf rust disease and its control with fungicides affect dough properties, gluten quality and loaf volume under different N rates in wheat. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Abstract
Chlorophyll fluorescence is a rapid and non-invasive tool used for probing the activity of photosynthesis that can be used in vivo and in the field. It is highly relevant to the demands of high-throughput crop phenotyping and can be automated or manually applied. Here we describe protocols and advice for making fast timescale fluorescence measurements using handheld equipment in the laboratory or in the field. While interpretation of some measured parameters requires caution, we demonstrate that this technique is appropriate for some applications where convenience, rapidity, and sensitivity are required.
Collapse
Affiliation(s)
- Olubukola O Ajigboye
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Leicestershire, UK.
| | - Rumiana V Ray
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Leicestershire, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Leicestershire, UK
| |
Collapse
|
16
|
Dal Cortivo C, Conselvan GB, Carletti P, Barion G, Sella L, Vamerali T. Biostimulant Effects of Seed-Applied Sedaxane Fungicide: Morphological and Physiological Changes in Maize Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:2072. [PMID: 29270181 PMCID: PMC5723653 DOI: 10.3389/fpls.2017.02072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/20/2017] [Indexed: 05/23/2023]
Abstract
Most crops are routinely protected against seed-born and soil-borne fungal pathogens through seed-applied fungicides. The recently released succinate dehydrogenase inhibitor (SDHI), sedaxane®, is a broad-spectrum fungicide, used particularly to control Rhizoctonia spp., but also has documented growth-enhancement effects on wheat. This study investigates the potential biostimulant effects of sedaxane and related physiological changes in disease-free maize seedlings (3-leaf stage) at increasing application doses (25, 75 and 150 μg a.i. seed-1) under controlled sterilized conditions. We show sedaxane to have significant auxin-like and gibberellin-like effects, which effect marked morphological and physiological changes according to an approximate saturation dose-response model. Maximum benefits were attained at the intermediate dose, which significantly increased root length (+60%), area (+45%) and forks (+51%), and reduced root diameter as compared to untreated controls. Sedaxane enhanced leaf and root glutamine synthetase (GS) activity resulting in greater protein accumulation, particularly in the above-ground compartment, while glutamate synthase (GOGAT) activity remained almost unchanged. Sedaxane also improved leaf phenylalanine ammonia-lyase (PAL) activity, which may be responsible for the increase in shoot antioxidant activity (phenolic acids), mainly represented by p-coumaric and caffeic acids. We conclude that, in addition to its protective effect, sedaxane can facilitate root establishment and intensify nitrogen and phenylpropanoid metabolism in young maize plants, and may be beneficial in overcoming biotic and abiotic stresses in early growth stages.
Collapse
Affiliation(s)
- Cristian Dal Cortivo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Padua, Italy
| | - Giovanni Battista Conselvan
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Padua, Italy
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Padua, Italy
| | - Giuseppe Barion
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Padua, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Padua, Italy
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Padua, Italy
| |
Collapse
|
17
|
He LM, Cui KD, Ma DC, Shen RP, Huang XP, Jiang JG, Mu W, Liu F. Activity, Translocation, and Persistence of Isopyrazam for Controlling Cucumber Powdery Mildew. PLANT DISEASE 2017; 101:1139-1144. [PMID: 30682956 DOI: 10.1094/pdis-07-16-0981-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A cotyledon bioassay was conducted to assess the activity of isopyrazam against Podosphaera xanthii (Castagne) U. Braun & N. Shishkoff, causal agent of cucumber powdery mildew. Results showed that isopyrazam has protective and curative activity against P. xanthii, with EC50 values of 0.04 and 0.05 mg liter-1, respectively. These activities are higher than those for hexaconazole, difenoconazole, pyraclostrobin, kresoxim-methyl, and azoxystrobin, fungicides currently used against cucumber powdery mildew. Isopyrazam at 0.5 mg liter-1 damaged conidiophores. Results of inoculation tests in greenhouse pots indicate that isopyrazam demonstrates a level of systemic movement in cucumber plants, especially regarding translaminar and transverse translocation. Efficacy following translaminar and transverse translocations on cotyledons and leaves treated with 60 mg liter-1 was 94.40% and 88.96%, and 95.26% and 82.83%, respectively. In addition, isopyrazam at 60 mg liter-1 exhibited a long duration of efficacy against cucumber powdery mildew, almost 2 to 3 weeks longer than that of triazoles and strobilurins. Similar trends in residual durations were observed during 2014 and 2015 greenhouse trials. Isopyrazam at 30 and 60 a.i. g ha-1 provided efficacy ranging from 83.27 to 90.83% 20 days following treatment. In conclusion, isopyrazam has translaminar and transverse translocation in cucumber leaves, and long duration of activity against cucumber powdery mildew.
Collapse
Affiliation(s)
- Lei-Ming He
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, P.R. China
| | - Kai-di Cui
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, P.R. China
| | - Di-Cheng Ma
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, P.R. China
| | - Rui-Ping Shen
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, P.R. China
| | - Xue-Ping Huang
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, P.R. China
| | - Jian-Gong Jiang
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, P.R. China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, P.R. China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, P.R. China
| |
Collapse
|
18
|
Ajigboye OO, Lu C, Murchie EH, Schlatter C, Swart G, Ray RV. Altered gene expression by sedaxane increases PSII efficiency, photosynthesis and growth and improves tolerance to drought in wheat seedlings. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:49-61. [PMID: 28364804 DOI: 10.1016/j.pestbp.2016.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 06/07/2023]
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides have been shown to increase PSII efficiency and photosynthesis under drought stress in the absence of disease to enhance the biomass and yield of winter wheat. However, the molecular mechanism of improved photosynthetic efficiency observed in SDHI-treated wheat has not been previously elucidated. Here we used a combination of chlorophyll fluorescence, gas exchange and gene expression analysis, to aid our understanding of the basis of the physiological responses of wheat seedlings under drought conditions to sedaxane, a novel SDHI seed treatment. We show that sedaxane increased the efficiency of PSII photochemistry, reduced non-photochemical quenching and improved the photosynthesis and biomass in wheat correlating with systemic changes in the expression of genes involved in defense, chlorophyll synthesis and cell wall modification. We applied a coexpression network-based approach using differentially expressed genes of leaves, roots and pregerminated seeds from our wheat array datasets to identify the most important hub genes, with top ranked correlation (higher gene association value and z-score) involved in cell wall expansion and strengthening, wax and pigment biosynthesis and defense. The results indicate that sedaxane confers tolerant responses of wheat plants grown under drought conditions by redirecting metabolites from defense/stress responses towards growth and adaptive development.
Collapse
Affiliation(s)
- Olubukola O Ajigboye
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Chungui Lu
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Erik H Murchie
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | | | - Gina Swart
- Syngenta Crop Protection, Schwarzwaldallee 215, 4058 Basel, Switzerland
| | - Rumiana V Ray
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| |
Collapse
|
19
|
Song Y, Zhang Z, Chen L, He L, Lu H, Ren Y, Mu W, Liu F. Baseline Sensitivity of Botrytis cinerea to the Succinate Dehydrogenase Inhibitor Isopyrazam and Efficacy of this Fungicide. PLANT DISEASE 2016; 100:1314-1320. [PMID: 30686199 DOI: 10.1094/pdis-10-15-1220-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isopyrazam is a new broad-spectrum, foliar-absorbed and -translocated succinate dehydrogenase inhibitor fungicide. In this study, 159 Botrytis cinerea isolates collected from different geographical regions of Shandong Province of China were characterized for baseline sensitivity to isopyrazam. Furthermore, the protective and curative activity of isopyrazam on strawberry fruit and the control efficacy in the field were also determined. In contrast to its mycelial growth, the spore germination of B. cinerea was inhibited completely by lower concentrations of isopyrazam, about 1 μg ml-1 on yeast-peptone-acetate medium. Frequency distributions of isopyrazam 50% effective concentration (EC50) values were unimodal curves, with mean EC50 values of 0.07 ± 0.04 (standard deviation) and 0.68 ± 0.36 μg ml-1 for the inhibition of spore germination and mycelial growth, respectively. In addition, there was no positive multiple resistance between isopyrazam and other classes of botryticides such as diethofencarb, iprodione, pyrimethanil, or SYP-Z048. In field trials conducted during 2014 and 2015, isopyrazam used at a concentration of active ingredient at 150 and 200 g ha-1 provided a control efficacy ranging from 76.7 to 87.8% on leaves and from 81.5 to 90.7% on fruit. These results suggest that isopyrazam has the potential to play an important role in the management of gray mold.
Collapse
Affiliation(s)
- Yingying Song
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, P.R. China
| | - Zhengqun Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Lele Chen
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests
| | - Leiming He
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests
| | - Hongbao Lu
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests
| | - Yupeng Ren
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests
| |
Collapse
|
20
|
Shen Y, Li Z, Ma Q, Wang C, Chen X, Miao Q, Han C. Determination of Six Pyrazole Fungicides in Grape Wine by Solid-Phase Extraction and Gas Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3901-3907. [PMID: 27112545 DOI: 10.1021/acs.jafc.6b00530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A gas chromatography-tandem mass spectrometry (GC-MS/MS) method was developed for the first simultaneous identification and quantification of six pyrazole fungicides (furametpyr, rabenzazole, fluxapyroxad, penflufen, bixafen, and isopyrazam) in grape wine samples. The grape wine samples were first diluted with water, then purified by solid-phase extraction, and finally examined by GC-MS/MS in multiple reaction monitoring (MRM) mode. Matrix-matched calibration curves were used to correct the matrix effects. The limits of quantification (LOQs), calculated as 10 times the standard deviation, were 0.2-0.8 μg kg(-1) for the six pyrazole fungicides. The average recoveries were in the range of 74.3-94.5%, with relative standard deviations (RSDs) below 5.8%, measured at three concentration levels. The proposed method is suitable for the simultaneous determination of six pyrazole fungicides in grape wine samples.
Collapse
Affiliation(s)
- Yan Shen
- College of Chemistry and Materials Engineering, Wenzhou University , Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhou Li
- Wenzhou Entry-Exit Inspection and Quarantine Bureau of People's Republic of China , Wenzhou, Zhejiang 325027, People's Republic of China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine , Beijing 100176, People's Republic of China
| | - Chuanxian Wang
- Shanghai Entry-Exit Inspection and Quarantine Bureau of People's Republic of China , Shanghai 200135, People's Republic of China
| | - Xiangzhun Chen
- Wenzhou Entry-Exit Inspection and Quarantine Bureau of People's Republic of China , Wenzhou, Zhejiang 325027, People's Republic of China
| | - Qian Miao
- College of Chemistry and Materials Engineering, Wenzhou University , Wenzhou, Zhejiang 325035, People's Republic of China
| | - Chao Han
- Wenzhou Entry-Exit Inspection and Quarantine Bureau of People's Republic of China , Wenzhou, Zhejiang 325027, People's Republic of China
| |
Collapse
|
21
|
Ajigboye OO, Bousquet L, Murchie EH, Ray RV. Chlorophyll fluorescence parameters allow the rapid detection and differentiation of plant responses in three different wheat pathosystems. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:356-369. [PMID: 32480467 DOI: 10.1071/fp15280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/14/2015] [Indexed: 06/11/2023]
Abstract
The present study was undertaken to identify chlorophyll fluorescence (CF) parameters that can quantify changes in PSII associated with plant responses in three different wheat pathosystems of foliar, stem-base and ear diseases. The pathosystems included powdery mildew caused by Blumeria graminis, eyespot caused by Oculimacula yallundae or Oculimacula acuformis and Fusarium head blight (FHB) caused by Fusarium culmorum, F. avenaceum or F. langsethiae. Fast CF transients (OJIP) were analysed with the JIP-test to determine changes in PSII photochemistry. Measurements on asymptomatic leaves showed that electron transport related parameters (ETo/RC, ψo and ϕEo) were important to identify varietal differences in resistance to powdery mildew during early stages of infection. The same parameters also allowed differentiation between F. langsethiae and other Fusarium spp. Where infections were caused by the necrotrophic pathogens, Oculimacula spp., F. culmorum or F. avenaceum, changes related to maximum efficiency of PSII photochemistry (Fv'/Fm') as well as flux of dissipated (DIo/RC), trapped (TRo/RC), or absorbed (ABS/RC) energy per active reaction centers were significant in detecting biotic stress and the effectiveness of fungicide treatment for disease control. Our results demonstrated that Fv'/Fm' correlated significantly with visual disease and pathogen DNA of different wheat pathosystems. OJIP was shown as a sensitive technique that can be explored as diagnostic tool in future crop disease management and varietal breeding programs.
Collapse
Affiliation(s)
- Olubukola O Ajigboye
- Plant and Crop Sciences Division, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | | | - Erik H Murchie
- Plant and Crop Sciences Division, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Rumiana V Ray
- Plant and Crop Sciences Division, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| |
Collapse
|