1
|
Wang Y, Li Q, Wu Y, Han S, Xiao Y, Kong L. The Effects of Mycovirus BmPV36 on the Cell Structure and Transcription of Bipolaris maydis. J Fungi (Basel) 2024; 10:133. [PMID: 38392805 PMCID: PMC10890528 DOI: 10.3390/jof10020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Bipolaris maydis partitivirus 36 (BmPV36) is a mycovirus that can significantly reduce the virulence of the host Bipolaris maydis, but its hypovirulence mechanism is not clear. To investigate the response of B. maydis to BmPV36, the effects of BmPV36 on host cell structure and gene expression were studied via transmission electron microscopy and transcriptome sequencing using BmPV36-carrying and virus-free mycelium on the second and fifth culture. The results of transmission electron microscopy showed that the cell wall microfibrils of B. maydis were shortened, the cell membrane was broken, and membrane-bound vesicles and vacuoles appeared in the cells after carrying BmPV36. Transcriptome sequencing results showed that after carrying BmPV36, B. maydis membrane-related genes were significantly up-regulated, but membrane transport-related genes were significantly down-regulated. Genes related to carbohydrate macromolecule polysaccharide metabolic and catabolic processes were significantly down-regulated, as were genes related to the synthesis of toxins and cell wall degrading enzymes. Therefore, we speculated that BmPV36 reduces the virulence of B. maydis by destroying the host's cell structure, inhibiting the synthesis of toxins and cell wall degrading enzymes, and reducing cell metabolism. Gaining insights into the hypovirulence mechanism of mycoviruses will provide environmentally friendly strategies for the control of fungal diseases.
Collapse
Affiliation(s)
- Yajiao Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Qiusheng Li
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Yuxing Wu
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Sen Han
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Ying Xiao
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Lingxiao Kong
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| |
Collapse
|
2
|
Deng Y, Wang T, Du Y, Zhang L, Wang J, Qi Z, Ji M. Risk assessment for resistance to fludioxonil in Corynespora cassiicola in Liaoning China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105622. [PMID: 38072516 DOI: 10.1016/j.pestbp.2023.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023]
Abstract
Cucumber corynespora leaf spot, caused by Corynespora cassiicola, is the primary disease of cucumber leaves in greenhouses in China. Fludioxonil is a phenylpyrrole fungicide that inhibits C. cassiicola growth. We studied the sensitivity of 170 isolates of C. cassiicola to fludioxonil and evaluated resistance risk. All of the isolates were sensitive to fludioxonil. The EC50 values ranged from 0.082 to 0.539 μg/mL with a mean of 0.207 ± 0.0053 μg/mL. Laboratory-created mutants with a high resistance factor to fludioxonil were genetically stable after 10 transfers and showed positive cross-resistance to iprodione and procymidone but not to azoxystrobin, carbendazim, pydiflumetofen, and prochloraz. There was no significant difference in mycelial growth and temperature adaptation between the mutant s and the sensitive isolates, except for pathogenicity and sporulation. The resistant isolates accumulated less glycerol than their parental isolates and were more sensitive to osmotic stress. The histidine kinase activity of the sensitive isolates was significantly inhibited compared to that of the resistant mutants. Sequence alignment of the histidine kinase gene CCos revealed that the mutants RTL4, RXM5, and RFS102 had point mutations at different sites that resulted in amino acid changes at G934E, S739F, and A825P in the CCos protein. The mutant RFS102 had an alanine deletion at site 824. After fludioxonil treatment, CCos expression by RFS20 was significantly lower than that of the parental isolate. Our findings demonstrate that C. cassiicola exhibits moderate resistance to fludioxonil.
Collapse
Affiliation(s)
- Yunyan Deng
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Tao Wang
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Ying Du
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - LuLu Zhang
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Jiaxin Wang
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Zhiqiu Qi
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| |
Collapse
|
3
|
Shi D, Wang J, Cao Y, Zhang Z, Li X, Mbadianya JI, Chen C. Overexpression of FgPtp3 Is Involved in Fludioxonil Resistance in Fusarium graminearum by Inhibiting the Phosphorylation of FgHog1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12807-12818. [PMID: 37585613 DOI: 10.1021/acs.jafc.3c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Fusarium graminearum is the main causal agent of Fusarium head blight (FHB), a destructive disease in cereal crops worldwide. Resistance to fludioxonil has been reported in F. graminearum in the field, but its underlying mechanisms remain elusive. In this study, 152 fludioxonil-resistant (FR) mutants of F. graminearum were obtained by selection in vitro. The FR strains exhibited dramatically impaired fitness, but only 7 of the 13 analyzed strains possessed mutations in genes previously reported to underlie fludioxonil resistance. Comparison between the FR-132 strain and its parental strain PH-1 using whole genome sequencing revealed no mutations between them, but transcriptome analysis, after the strains were treated with 0.5 μg/mL fludioxonil, revealed 2778 differently expressed genes (DEGs) mapped to 96 KEGG pathways. Investigation of DEGs in the MAPK pathway showed that overexpression of the tyrosine protein phosphatase FgPtp3, but not FgPtp2, enhanced fludioxonil resistance. Further analysis found that FgPtp3 interacted directly with FgHog1 to regulate the phosphorylation of Hog1, and overexpressed FgPtp3 in PH-1 could significantly suppress the phosphorylation of FgHog1 and hinder signal transmission of the HOG-MAPK pathway. Overall, FgPtp3 plays a significant role in regulating fludioxonil resistance in F. graminearum.
Collapse
Affiliation(s)
- Dongya Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Cao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jane Ifunanya Mbadianya
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Changjun Chen
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Li T, Li N, Lei Z, Zhang C. Sensitivity and resistance risk of Botryosphaeria dothidea causing Chinese hickory trunk canker to fludioxonil. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105500. [PMID: 37532358 DOI: 10.1016/j.pestbp.2023.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023]
Abstract
Hickory trunk canker (HTC), primarily caused by Botryosphaeria dothidea, is an aggravating disease that threatens an important regional economic tree species of Chinese hickory and few information is available in the control of this disease. Here, the sensitivity of 93 isolates to fludioxonil and the resistance risk were investigated. All the isolates tested were sensitive to fludioxonil and the EC50 ranged from 0.0028 to 0.0569 μg/mL. The tamed fludioxonil-resistant mutants remained highly resistant to fludioxonil even after 10 consecutive transfers to fludioxonil-free PDA plates. As for fitness penalty, the fludioxonil-resistant mutants demonstrated a reduction in conidia production and virulence as well as increased sensitivity to high osmotic stress. While, variations in mycelial growth and responses to SDS and H2O2 were not detected in all the resistant mutants. In addition, the resistant mutants demonstrated positive cross-resistance to iprodione but not to fungicides of other modes of action. Sequential analysis of BdNik1 showed that premature stop codon occurred in all the resistant mutants despite of point mutation (BD16-22R9 and BD16-22R20) or frameshift mutation (BD16-22R8, BD16-22R11 and BD16-22R18). Our study suggested that fludioxonil exhibited excellent inhibition activity on mycelial growth of B. dothidea in vitro, the resistance risk of B. dothidea to fludioxonil should be low to moderate and fludioxonil would be a nice candidate in controlling HTC caused by B. dothidea.
Collapse
Affiliation(s)
- Tao Li
- Department of Plant Protection, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Na Li
- Department of Plant Protection, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ziyang Lei
- Department of Plant Protection, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Chuanqing Zhang
- Department of Plant Protection, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
5
|
Control of Maize Sheath Blight and Elicit Induced Systemic Resistance Using Paenibacillus polymyxa Strain SF05. Microorganisms 2022; 10:microorganisms10071318. [PMID: 35889037 PMCID: PMC9322256 DOI: 10.3390/microorganisms10071318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Maize (Zea mays L.) is an important crop in the world and maize sheath blight damages the yield and quality greatly. In this study, an antagonist strain, which exhibited antagonism against pathogenic fungi of maize and controlled maize banded leaf sheath blight in the field, was effectively isolated and named Paenibacillus polymyxa strain SF05. High cellulase and chitinase activity of the strain were detected in this study, which might contribute to degrading the cell wall of fungi. Furthermore, different resistant genes such as ZmPR1a, OPR1 and OPR7 were elicited differently by the strain in the leaves and stems of maize. In order to explain the biocontrol mechanism of P. polymyxa strain SF05, the genome was sequenced and then the genes involving the biocontrol mechanism including biofilm formation pathways genes, cell wall degradation enzymes, secondary metabolite biosynthesis gene clusters and volatile organic compounds biosynthesis genes were predicted. The study revealed the biocontrol mechanism of P. polymyxa strain SF05 preliminary and laid a foundation for further research of biocontrol mechanism of P. polymyxa.
Collapse
|
6
|
Wen Z, Wang J, Jiao C, Shao W, Ma Z. Biological and molecular characterizations of field fludioxonil-resistant isolates of Fusarium graminearum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105101. [PMID: 35715040 DOI: 10.1016/j.pestbp.2022.105101] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Fusarium head blight (FHB) predominately caused by F. graminearum, is an economical devastating disease for grain cereal crops especially on wheat. The phenylpyrrole fungicide fludioxonil exhibits excellent activity against F. graminearum and has been registered to control FHB in China. In this study, 6 fludioxonil-resistant (FludR) isolates of F. graminearum were identified from 2910 isolates collected from wheat cultivated field in Jiang Su, An Hui and Henan province of China in 2020. The sensitivity assay showed that resistance factor (RF) of FludR isolates ranges from 170.73 to >1000. In comparison with fludioxonil-sensitive (FludS) isolates, all of FludR isolates showed fitness defects in terms of mycelial growth, conidiation and virulence. Under fludioxonil treatment condition, the glycerol accumulation was obviously increased in FludS isolates, but was slightly increased in FludR isolates. Four FludR isolates exhibited increased sensitivity to osmotic stresses. Moreover, there is no positive cross-resistance between fludioxonil and other fungicides including phenamacril, carbendazim and tebuconazole. When treated with fludioxonil, the phosphorylation level of Hog1 was significantly decreased in the four FludR isolates, which was in contrast to the observation in the FludS and two FludR isolates where phosphorylation level of Hog1 was increased. Sequencing assay showed that the mutations were identified in different domains in FgOS1, FgOS2 or FgOS4 in FludR isolates. This was first reported that biological and molecular characterizations of field isolates of F. graminearum resistant to fludioxonil. The results can provide scientific directions for controlling FHB using fludioxonil.
Collapse
Affiliation(s)
- Ziyue Wen
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jingrui Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chen Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenyong Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Oiki S, Yaguchi T, Urayama SI, Hagiwara D. Wide distribution of resistance to the fungicides fludioxonil and iprodione in Penicillium species. PLoS One 2022; 17:e0262521. [PMID: 35100282 PMCID: PMC8803201 DOI: 10.1371/journal.pone.0262521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Fludioxonil and iprodione are effective fungicides widely used for crop protection and are essential for controlling plant pathogenic fungi. The emergence of fungicide-resistant strains of targeted pathogens is regularly monitored, and several cases have been reported. Non-targeted fungi may also be exposed to the fungicide residues in agricultural fields. However, there are no comprehensive reports on fungicide-resistant strains of non-targeted fungi. Here, we surveyed 99 strains, representing 12 Penicillium species, that were isolated from a variety of environments, including foods, dead bodies, and clinical samples. Among the Penicillium strains, including non-pathogenic P. chrysogenum and P. camembertii, as well as postharvest pathogens P. expansum and P. digitatum, 14 and 20 showed resistance to fludioxonil and iprodione, respectively, and 6 showed multi-drug resistance to the fungicides. Sequence analyses revealed that some strains of P. chrysogenum and Penicillium oxalicum had mutations in NikA, a group III histidine kinase of the high-osmolarity glycerol pathway, which is the mode of action for fludioxonil and iprodione. The single nucleotide polymorphisms of G693D and T1318P in P. chrysogenum and T960S in P. oxalicum were only present in the fludioxonil- or iprodione-resistant strains. These strains also exhibited resistance to pyrrolnitrin, which is the lead compound in fludioxonil and is naturally produced by some Pseudomonas species. This study demonstrated that non-targeted Penicillium strains distributed throughout the environment possess fungicide resistance.
Collapse
Affiliation(s)
- Sayoko Oiki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Syun-ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
8
|
Zhao W, Sun C, Wei L, Chen W, Wang B, Li F, Wei M, Lou T, Zhang P, Zheng H, Chen C, Xiang Z. Detection and Fitness of Dicarboximide-Resistant Isolates of Alternaria alternata from Dendrobium officinale, a Chinese Indigenous Medicinal Herb. PLANT DISEASE 2021; 105:2222-2230. [PMID: 33048591 DOI: 10.1094/pdis-06-20-1246-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Black spot, caused by Alternaria alternata, poses a severe threat to the industry of Dendrobium officinale, a Chinese indigenous medicinal herb. Dicarboximide fungicides (DCFs) have been intensively used to control this disease for decades in China, and offer excellent efficacy. The resistance of phytopathogenic pathogens against DCFs are reportedly selected in fields; however, the DCF resistance of A. alternata from D. officinale is not well understood. The isolates of A. alternata with low procymidone resistance (ProLR) were detected in the commercial orchards of D. officinale in China in 2018 and biochemically characterized in this study. The result showed that the ProLR isolates were selected in the commercial orchards with a resistance frequency of 100%, and no significant difference in mycelial growth, sporulation, and virulence was observed among the ProLR and procymidone-sensitive (ProS) isolates. A positive cross-resistance pattern was exhibited between procymidone and iprodione. Results of amino acid sequence alignment of AaOS-1 from the tested isolates showed that all of the ProLR genotypes could be categorized into two groups, including group I (mutations at AaOs-1) and group II (no mutation). Under procymidone (5.0 µg/ml) treatment conditions, the AaOs-1 expression levels increased in the ProS isolates and ranged from approximately 2.94- to 3.69-fold higher than those under procymidone-free conditions, while the AaOs-1 expressions of the ProLR isolates were significantly lower than those in the ProS isolates under the same conditions. The data indicated that the mutations at AaOs-1 are involved in the DCF resistance of A. alternata selected in the D. officinale orchards.
Collapse
Affiliation(s)
- Weicheng Zhao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095 China
| | - Chunxia Sun
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095 China
| | - Lingling Wei
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095 China
| | - Wenchan Chen
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095 China
| | - Bingran Wang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095 China
| | - Fengjie Li
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095 China
| | - Mengdi Wei
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095 China
| | - Tiancheng Lou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095 China
| | - Pengcheng Zhang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095 China
| | - Huanhuan Zheng
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095 China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095 China
| | - Zengxu Xiang
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095 China
| |
Collapse
|
9
|
Zhou F, Hu HY, Li DX, Tan LG, Zhang Q, Gao HT, Sun HL, Tian XL, Shi MW, Zhang FL, Li CW. Exploring the Biological and Molecular Characteristics of Resistance to Fludioxonil in Sclerotinia sclerotiorum From Soybean in China. PLANT DISEASE 2021; 105:1936-1941. [PMID: 33044139 DOI: 10.1094/pdis-07-20-1621-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sclerotinia sclerotiorum is one of the most damaging and economically important necrotrophic plant pathogens, infecting more than 400 plant species globally. Although the phenylpyrrole fungicide fludioxonil has high activity against S. sclerotiorum, reports indicate that there is also substantial potential for the development of fungicide resistance. However, the current study investigating five fludioxonil-resistant laboratory mutants found a significant fitness cost associated with fludioxonil resistance resulting in significantly (P < 0.05) reduced mycelial growth and sclerotia formation on potato dextrose agar as well as significantly (P < 0.05) lower pathogenicity on detached tomato leaves, with one mutant, LK-1R, completely losing the capacity to cause infection. In addition, all of the fludioxonil-resistant mutants had significantly (P < 0.05) increased sensitivity to osmotic stress (0.5 M of potassium chloride and 1.0 M of glucose), which is consistent with the proposed fludioxonil target sites within the high osmolarity glycerol stress response mitogen-activated protein kinase (HOG1-MAPK) signaling transduction pathway. Sequence analysis of six genes from this two-component pathway, including SsHk, SsYpd, SsSk1, SsSk2, SsPbs, and SsHog, revealed several mutations that may be associated with fludioxonil resistance. For example, six separate point mutations were found in SsHk that led to changes in the predicted amino acid sequence, including A136G, F249V, G353A, E560K, M610K, and K727R. Similarly, SsPbs had three mutations (D34G, S46L, and L337E), SsSk1 and SsYpd had two (S53G and A795V for SsSk1, and E67G and Y141H for SsYpd), and SsHog and SsSk2 had one each (V220A and S763P, respectively). To our knowledge, these constitute the first reports of amino acid changes in proteins of the HOG1-MAPK pathway being associated with fludioxonil resistance in S. sclerotiorum. This study also showed a positive cross-resistance between fludioxonil and dimethachlone and procymidone, but none with tebuconazole or carbendazim, indicating that the inclusion of tebuconazole within an integrated pest management program could reduce the risk of fludioxonil resistance developing in field populations of S. sclerotiorum and ensure the sustainable production of soybeans in China into the future.
Collapse
Affiliation(s)
- F Zhou
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Biological Pesticide and Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - H Y Hu
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - D X Li
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - L G Tan
- Henan Engineering Research Center of Biological Pesticide and Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Q Zhang
- Henan Engineering Research Center of Biological Pesticide and Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - H T Gao
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - H L Sun
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - X L Tian
- Henan Engineering Research Center of Biological Pesticide and Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - M W Shi
- Henan Engineering Research Center of Biological Pesticide and Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - F L Zhang
- Henan Engineering Research Center of Biological Pesticide and Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - C W Li
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
10
|
Wang W, Fang Y, Imran M, Hu Z, Zhang S, Huang Z, Liu X. Characterization of the Field Fludioxonil Resistance and Its Molecular Basis in Botrytis cinerea from Shanghai Province in China. Microorganisms 2021; 9:microorganisms9020266. [PMID: 33525426 PMCID: PMC7912569 DOI: 10.3390/microorganisms9020266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/01/2022] Open
Abstract
Botrytis cinerea is a destructive necrotrophic pathogen that can infect many plant species. The control of gray mold mainly relies on the application of fungicides, and the fungicide fludioxonil is widely used in China. However, the field fungicide resistance of B. cinerea to this compound is largely unknown. In this study, B. cinerea isolates were collected from different districts of Shanghai province in 2015–2017, and their sensitivity to fludioxonil was determined. A total of 65 out of 187 field isolates (34.76%) were found to be resistant to fludioxonil, with 36 (19.25%) showing high resistance and 29 (15.51%) showing moderate resistance. Most of these resistant isolates also showed resistance to iprodione, and some developed resistance to fungicides of other modes of action. AtrB gene expression, an indicator of MDR1 and MDR1h phenotypes, was not dramatically increased in the tested resistant isolates. Biological characteristics and osmotic sensitivity investigations showed that the fitness of resistant isolates was lower than that of sensitive ones. To investigate the molecular resistance mechanisms of B. cinerea to fludioxonil, the Bos1 amino acid sequences were compared between resistant and sensitive isolates. Resistant isolates revealed either no amino acid variations or the mutations I365S, I365N, Q369P/N373S, and N373S.
Collapse
Affiliation(s)
- Weizhen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.W.); (Y.F.); (M.I.); (Z.H.); (S.Z.); (Z.H.)
| | - Yuan Fang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.W.); (Y.F.); (M.I.); (Z.H.); (S.Z.); (Z.H.)
| | - Muhammad Imran
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.W.); (Y.F.); (M.I.); (Z.H.); (S.Z.); (Z.H.)
| | - Zhihong Hu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.W.); (Y.F.); (M.I.); (Z.H.); (S.Z.); (Z.H.)
| | - Sicong Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.W.); (Y.F.); (M.I.); (Z.H.); (S.Z.); (Z.H.)
| | - Zhongqiao Huang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.W.); (Y.F.); (M.I.); (Z.H.); (S.Z.); (Z.H.)
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (W.W.); (Y.F.); (M.I.); (Z.H.); (S.Z.); (Z.H.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712110, China
- Correspondence:
| |
Collapse
|
11
|
Zhou F, Li DX, Hu HY, Song YL, Fan YC, Guan YY, Song PW, Wei QC, Yan HF, Li CW. Biological Characteristics and Molecular Mechanisms of Fludioxonil Resistance in Fusarium graminearum in China. PLANT DISEASE 2020; 104:2426-2433. [PMID: 32658633 DOI: 10.1094/pdis-01-20-0079-re] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusarium graminearum is the primary causal agent of Fusarium head blight (FHB) of wheat. The phenylpyrrole fungicide fludioxonil is not currently registered for the management of FHB in China. The current study assessed the fludioxonil sensitivity of a total of 53 F. graminearum isolates collected from the six most important wheat-growing provinces of China during 2018 and 2019. The baseline fludioxonil sensitivity distribution indicated that all of the isolates were sensitive, exhibiting a unimodal cure with a mean effective concentration for 50% inhibition value of 0.13 ± 0.12 μg/ml (standard deviation). Five fludioxonil-resistant mutants were subsequently induced by exposure to fludioxonil under laboratory conditions. Ten successive rounds of subculture in the absence of the selection pressure indicated that the mutation was stably inherited. However, the fludioxonil-resistant mutants were found to have reduced pathogenicity, higher glycerol accumulation, and higher osmotic sensitivity than the parental wild-type isolates, indicating that there was a fitness cost associated with fludioxonil resistance. In addition, the study also found a positive cross resistance between fludioxonil, procymidone, and iprodione, but not with other fungicides such as boscalid, carbendazim, tebuconazole, and fluazinam. Sequence analysis of four candidate target genes (FgOs1, FgOs2, FgOs4, and FgOs5) revealed that the HBXT2R mutant contained two point mutations that resulted in amino acid changes at K223T and K415R in its FgOs1 protein, and one point mutation at residue 520 of its FgOs5 protein that resulted in a premature stop codon. Similarly, the three other mutants contained point mutations that resulted in changes at the K192R, K293R, and K411R residues of the FgOs5 protein but none in the FgOs2 and FgOs4 genes. However, it is important to point out that the FgOs2 and FgOs4 expression of all the fludioxonil-resistant mutants was significantly (P < 0.05) downregulated compared with the sensitive isolates (except for the SQ1-2 isolate). It was also found that one of the resistant mutants did not have changes in any of the sequenced target genes, indicating that an alternative mechanism could also lead to fludioxonil resistance.
Collapse
Affiliation(s)
- F Zhou
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Biological Fertilizer Developmental and Collaborative Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - D X Li
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - H Y Hu
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Y L Song
- Henan Engineering Research Center of Biological Fertilizer Developmental and Collaborative Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Y C Fan
- Henan Engineering Research Center of Biological Fertilizer Developmental and Collaborative Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Y Y Guan
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - P W Song
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Q C Wei
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - H F Yan
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - C W Li
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
12
|
Zhou F, Hu HY, Song YL, Gao YQ, Liu QL, Song PW, Chen EY, Yu YA, Li DX, Li CW. Biological Characteristics and Molecular Mechanism of Fludioxonil Resistance in Botrytis cinerea From Henan Province of China. PLANT DISEASE 2020; 104:1041-1047. [PMID: 31999220 DOI: 10.1094/pdis-08-19-1722-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The gray mold caused by Botrytis cinerea has a significant impact on tomato production throughout the world. Although the synthetic fungicide fludioxonil can effectively control B. cinerea, there have been several reports of resistance to this fungicide. This study indicated that all of the fludioxonil-resistant strains tested, including one field-resistant isolate and four laboratory strains, had reduced fitness relative to sensitive isolates. In addition to having reduced growth, sporulation, and pathogenicity, the resistant strains were more sensitive to osmotic stress and had significantly (P < 0.05) higher peroxidase activity. BOs1, a kinase in the high-osmolarity glycerol stress response signal transduction pathway, is believed to harbor mutations related to fludioxonil resistance. Sequence analysis of their BOs1 sequences indicated that the fludioxonil-resistant field isolate, XXtom1806, had four point mutations resulting in four amino acid changes (I365S, S531G, T565N, and T1267A) and three amino acids (I365S, S531G, and T565N) in the histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis receptors, and phosphatases domain, which associated with fludioxonil binding. Similarly, two of the laboratory strains, XXtom-Lab1 and XXtom-Lab4, had three (Q846S, I1126S, and G415D) and two (P1051S and V1241M) point mutations, respectively. A third strain, XXtom-lab3, had a 52-bp insertion that included a stop codon at amino acid 256. Interestingly, the BOs1 sequence of the fourth laboratory strain, XXtom-lab5, was identical to those of the sensitive isolates, indicating that an alternative resistance mechanism exists. The study also found evidence of positive cross-resistance between fludioxonil and the dicarboximide fungicides procymidone and iprodione, but no cross-resistance was detected with any other fungicides tested, including boscalid, carbendazim, tebuconazole, and fluazinam.
Collapse
Affiliation(s)
- Feng Zhou
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources & Environmental Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hai-Yan Hu
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yu-Lu Song
- College of Resources & Environmental Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yu-Qing Gao
- College of Resources & Environmental Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qi-Li Liu
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources & Environmental Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Pu-Wen Song
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Er-Yong Chen
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yong-Ang Yu
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dong-Xiao Li
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Cheng-Wei Li
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
13
|
Hu J, Zhou Y, Gao T, Geng J, Dai Y, Ren H, Lamour K, Liu X. Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:123-128. [PMID: 31027571 DOI: 10.1016/j.pestbp.2019.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/23/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Sclerotinia homoeocarpa causes dollar spot disease on turfgrass and is a serious problem on many species worldwide. Fludioxonil, a phenylpyrrole fungicide, is not currently registered for dollar spot control in China. In this study, the baseline sensitivity to fludioxonil was established using an in vitro assay for 105 isolates of S. homoeocarpa collected from 10 locations in different regions of China. Results indicate that the frequency distribution of effective concentration for 50% inhibition of mycelial growth (EC50) values of the S. homoeocarpa isolates was unimodal (W = 0.9847, P = .2730). The mean EC50 value was 0.0020 ± 0.0006 μg/ml with a range from 0.0003 to 0.0035 μg/ml. A total of 7 fludioxonil-resistant mutants were obtained in laboratory, the mutants were stable in fludioxonil sensitivity after the 10th transfer, with resistance factor (RF) ranging from 4.320 to >13,901.4. The mutants showed a positive cross-resistance between fludioxonil and the dicarboximide fungicide iprodione, but not propiconazole, fluazinam, and thiophanate-methyl. When mycelial growth rate, pathogenicity and osmotic sensitivity were assessed, the mutants decreased in the fitness compared with their parental isolates. Sequence alignment of the histidine kinase gene Shos1 revealed a 13-bp fragment deletion only in one mutant, no mutations were observed on Shos1 in the rest resistant mutants.
Collapse
Affiliation(s)
- Jian Hu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yuxin Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tao Gao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiamei Geng
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuan Dai
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haiyan Ren
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996, USA
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
14
|
Qu XP, Li JS, Wang JX, Wu LY, Wang YF, Chen CJ, Zhou MG, Hou YP. Effects of the dinitroaniline fungicide fluazinam on Fusarium fujikuroi and rice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:98-105. [PMID: 30497718 DOI: 10.1016/j.pestbp.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Fusarium fujikuroi is the primary causal agent of rice bakanae disease. Fluazinam is a protective dinitroaniline fungicide which could interrupt the fungal cell's energy production. Little is known about the effects of fluazinam on F. fujikuroi. In this study, baseline sensitivity of F. fujikuroi to fluazinam was determined using 103 isolates collected from diseased young rice of different fields in Shaoxing of Zhejiang Province and Huaian of Jiangsu Province of China in 2016. The EC50 values of fluazinam on inhibiting mycelial growth against 103 isolates of F. fujikuroi ranged from 0.0621 to 0.5446 μg/mL with the average value of 0.2038 ± 0.0099 μg/mL (mean ± standard error). The EC50 values of fluazinam on suppressing conidium germination against 103 isolates of F. fujikuroi ranged from 0.1006 to 0.9763 μg/mL with the mean value of 0.3552 ± 0.0181 μg/mL. Treated with fluazinam, hyphae of F. fujikuroi were contorted, offshoot of top mycelia increased, conidial production descreased significantly and exopolysaccharide (EPS) content did not change significantly while peroxidase (POD) activity significantly decreased. Meanwhile, cell membrane permeability increased after treated with fluazinam. The analysis of cell ultrastructure indicated that fluazinam could damage the membrane structure of F. fujikuroi and cause a large number of vacuoles formed. In addition, fluazinam did not affect germination rate, plant height and fresh weight of rice, which indicated that fluazinam was safe to rice. All the results indicated that fluazinam had strong antifungal activity against F. fujikuroi and a potential application in controlling rice bakanae disease. These results will provide useful information for management of rice bakanae disease caused by F. fujikuroi and further increase our understanding about the mode of action of fluazinam against F. fujikuroi and other phytopathogens.
Collapse
Affiliation(s)
- Xiang-Pu Qu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiao-Sheng Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian-Xin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Luo-Yu Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ying-Fan Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chang-Jun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ming-Guo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi-Ping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
15
|
Xu Y, Liu F, Zhu S, Li X. Expression of a maize NBS gene ZmNBS42 enhances disease resistance in Arabidopsis. PLANT CELL REPORTS 2018; 37:1523-1532. [PMID: 30039463 DOI: 10.1007/s00299-018-2324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Expression of the ZmNBS42 in Arabidopsis plants conferred resistance to bacterial pathogens, providing potential resistance enhancement of maize in further genetic breeding. Nucleotide-binding site (NBS) domain proteins play critical roles in disease resistance. In this study, we isolate a novel NBS gene ZmNBS42 from maize and systematically investigate its function on disease resistance. We find that the expression levels of ZmNBS42 in maize leaf were strikingly increased in response to Bipolaris maydis inoculation and SA treatment. The spatial expression pattern analysis reveals that, during development, ZmNBS42 is ubiquitously highly expressed in maize root, leaf, stem, internode and seed, but lowly expressed in pericarp and embryo. To better understand the roles of ZmNBS42, we overexpressed ZmNBS42 in heterologous systems. Transient overexpression of ZmNBS42 in the leaves of Nicotiana benthamiana induces a hypersensitive response. ZmNBS42 overexpression (ZmNBS42-OE) Arabidopsis plants produced more SA content than Col-0 plants, and increased the expression levels of some defense-responsive genes compared to Col-0 plants. Moreover, the ZmNBS42-OE Arabidopsis plants displayed enhanced resistance against Pseudomonas syringae pathovar tomato DC3000 (Pst DC3000). These results together suggest that ZmNBS42 can serve as an important regulator in disease resistance, thus better understanding of ZmNBS42 would benefit the resistance enhancement in maize breeding programs.
Collapse
Affiliation(s)
- Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Suwen Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
16
|
Hou YP, Chen YL, Qu XP, Wang JX, Zhou MG. Effects of a novel SDHI fungicide pyraziflumid on the biology of the plant pathogenic fungi Bipolaris maydis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 149:20-25. [PMID: 30033012 DOI: 10.1016/j.pestbp.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/21/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Pyraziflumid is a novel member of succinate dehydrogenase inhibitor (SDHI) fungicide. Southern corn leaf blight (SCLB) caused by Bipolaris maydis is an important foliar disease of maize crop. In this study, baseline sensitivity of B. maydis to pyraziflumid was determined using 100 strains of B. maydis collected from different geographical regions in Jiangsu Province of China during 2015 and 2016, and EC50 values ranged from 0.0309 to 0.8856 μg/ml with the average value of 0.2780 ± 0.2012 μg/ml for mycelial growth, and 0.032 to 0.9592 μg/ml with the average value of 0.3492 ± 0.2450 μg/ml for conidium germination. After treatment with pyraziflumid, the distribution of cell nucleus and septum of mycelium was not changed, but hyphae of offshoot and conidia production decreased, cell secretion decreased, the cell membrane was damaged, mycelium electrolyte leakage increased, and organelles in mycelial cell dissolved and vacuolated. The protective and curative activity test of pyraziflumid suggested that pyraziflumid had great control efficiency against B. maydis on detached corn leaves. In protective activity assay with application of pyraziflumid at 5 μg/ml and 10 μg/ml, the control efficacy reached to 87.32% and 100% respectively. In curative activity assay with application of pyraziflumid at 20 μg/ml and 50 μg/ml, the control efficacy reached to 82.10% and 100% respectively.
Collapse
Affiliation(s)
- Yi-Ping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya-Li Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiang-Pu Qu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian-Xin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ming-Guo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
17
|
Hou YP, Chen YL, Wu LY, Wang JX, Chen CJ, Zhou MG. Baseline sensitivity of Bipolaris maydis to the novel succinate dehydrogenase inhibitor benzovindiflupyr and its efficacy. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 149:81-88. [PMID: 30033021 DOI: 10.1016/j.pestbp.2018.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/01/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Benzovindiflupyr is a novel member of succinate dehydrogenase inhibitor (SDHI) fungicides. The filamentous fungus Bipolaris maydis Nisik. et Miyake was the causal agent of southern corn leaf blight (SCLB). Here, baseline sensitivity of B. maydis to benzovindiflupyr was established by mycelial growth and conidium germination methods using 96 B. maydis isolates collected from various places of Jiangsu Province of China, and EC50 values ranged from 0.0321 to 0.9149 μg/ml with the mean value of 0.3446 (±0.2248) μg/ml for mycelial growth, and 0.1864 to 0.964 μg/ml with the mean value of 0.5060 (±0.2094) μg/ml for conidium germination respectively. Treated with benzovindiflupyr, the distribution of nuclei and septum of hyphae did not change, but hyphae of offshoot and conidial production of B. maydis decreased significantly, the cell membrane permeability increased. The result of transmission electron microscope showed that the cross section of hypha was out of shape, the cell wall became thin and sparse, the cell membrane were distinctly damaged, organelles dissolved and vacuolated, and the cell nearly broke up. The results suggested that benzovindiflupyr had strong activity against mycelial growth and conidial production of B. maydis by damaging cell wall, membrane and organelles. The protective and curative activity assays for benzovindiflupyr indicated that benzovindiflupyr exhibited excellent suppression of B. maydis development on detached corn leaves. In protective activity assay with application of benzovindiflupyr at 10 μg/ml, the control efficacy reached to 100%. In curative activity assay with application of benzovindiflupyr at 50 μg/ml, the control efficacy reached to 90.72%. This is the first report of baseline sensitivity of B. maydis to benzovindiflupyr and its biological activity against B. maydis. It is recommended that benzovindiflupyr is a excellent candidate for controlling SCLB.
Collapse
Affiliation(s)
- Yi-Ping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya-Li Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Luo-Yu Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian-Xin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chang-Jun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ming-Guo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
18
|
Chen YL, Mao XW, Wang JX, Wu LY, Zhou MG, Hou YP. Activity of the dinitroaniline fungicide fluazinam against Bipolaris maydis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 148:8-15. [PMID: 29891381 DOI: 10.1016/j.pestbp.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/25/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Fluazinam is a dinitroaniline fungicide with broad-spectrum activities. However, the activity of fluazinam against Bipolaris maydis which is the causal agent of southern corn leaf blight is unknown yet. In this study, baseline sensitivity of B. maydis to fluazinam was determined using 92 isolates collected during 2015 and 2016 from different geographical regions in Jiangsu Province of China, and the EC50 values ranged from 0.0396 to 0.9808 μg/ml with average value of 0.3853 ± 0.2297 μg/ml, and 0.079 to 0.7832 μg/ml with average value of 0.3065 ± 0.1384 μg/ml for mycelial growth and conidium germination respectively. Fluazinam did not affect the distribution of cell nucleus and the formation of septum of B. maydis. However, fluazinam could make mycelium of B. maydis contorted and the mycelial branches increased and inhibit the development of conidia. The result of transmission electron microscope showed that fluazinam damaged cell wall and cell membrane of mycelium, and make organelles in mycelial cell dissolved and vacuolated, and the cell almost broke up, which caused the intracellular plasma leakage increase. The protective activity test of fluazinam suggested that fluazinam had great control efficiency against B. maydis on detached corn leaves. Application of fluazinam at 10 μg/ml and 20 μg/ml, the control efficacy reached to 87.70% and 98.25% respectively. However, fluazinam had no curative activity against B. maydis on detached corn leaves. These results will contribute to us on evaluating the potential of the dinitroaniline fungicide fluazinam for management of diseases caused by B. maydis and understanding the mode of action of fluazinam against B. maydis.
Collapse
Affiliation(s)
- Ya-Li Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xue-Wei Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian-Xin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Luo-Yu Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ming-Guo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi-Ping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
19
|
Sang C, Ren W, Wang J, Xu H, Zhang Z, Zhou M, Chen C, Wang K. Detection and fitness comparison of target-based highly fludioxonil-resistant isolates of Botrytis cinerea from strawberry and cucumber in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 147:110-118. [PMID: 29933980 DOI: 10.1016/j.pestbp.2018.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/04/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Botrytis cinerea has a high risk of developing resistance to fungicides. Fludioxonil, belonging to phenylpyrroles, has been used for more than three decades, however, only few cases of field resistance against phenylpyrroles have been reported. In this study, the highly fludioxonil-resistant (HR) isolates of Botrytis cinerea were firstly detected in the commercial greenhouses of strawberry in China in 2015, and biochemical characterization differences in high fludioxonil-resistance from strawberry and cucumber were compared. All of the five HR isolates from greenhouses of strawberry and cucumber could grow on PDA amended with 100 μg/mL fludioxonil, and exhibited a positive correlation between the resistance of dicarboximide fungicides and fludioxonil. Sporulation and sclerotium production of the strawberry-originated HR isolates were increased in comparison with the cucumber-originated HR isolates. No matter how the HR isolates were from strawberry and cucumber, all the HR isolates showed enhanced sensitivity to the osmotic agents, but with significant difference. Based on sequence alignment of the BcOS1 which codes protein bound by fludioxonil, two genotypes of the strawberry-originated HR isolates were observed, i.e., (F127S + I365N + S426P) and (G538R + A1259T), which were totally different from those of the cucumber-originated HR isolates. Molecular docking of fludioxonil to the binding site of BcOS1 protein from the five HR isolates illustrated that all the HR isolates had less affinity than the sensitive isolates. Our data indicated that genotypes of the HR isolates match the corresponding fludioxonil-selection pressure on the field populations of B. cinerea in the commercial greenhouses of the two host plants.
Collapse
Affiliation(s)
- Chengwei Sang
- Nanjing Agricultural University, Nanjing 210095, China
| | - Weichao Ren
- Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajie Wang
- Nanjing Agricultural University, Nanjing 210095, China
| | - Heng Xu
- Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Zhang
- Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- Nanjing Agricultural University, Nanjing 210095, China
| | - Changjun Chen
- Nanjing Agricultural University, Nanjing 210095, China..
| | - Kai Wang
- Jiangsu Institute of Agricultural Science in Coastal Region, Yancheng 224000, China.
| |
Collapse
|