1
|
Chen Y, Yu X, Chen S, Lu P. Stereoselective toxicity: Investigating the adverse effects of benzovindiflupyr on Xenopus laevis tadpoles. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135789. [PMID: 39276749 DOI: 10.1016/j.jhazmat.2024.135789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
The novel chiral fungicide benzovindiflupyr exerts adverse effects on aquatic organisms; however, its toxic mechanism and stereoselectivity remain largely unknown. The current study aimed to investigate the enantioselective ecotoxicity mechanism of benzovindiflupyr in Xenopus laevis tadpoles using a 28-day exposure experiment. Results of the acute toxicity assessment indicated that (1S,4R)- and (1R,4S)-benzovindiflupyr exhibited high toxicity, with (1S,4R)- demonstrating approximately 75 times greater toxicity than (1R,4S)-. Compared to the latter, (1S,4R)-benzovindiflupyr significantly affected the growth, movement behavior, and oxidative stress of X. laevis tadpoles. The integration of metabolomics and transcriptomics data revealed that (1S,4R)-benzovindiflupyr disrupted the glycine, serine, and threonine metabolic pathways by modulating the activities of key enzymes. This dysregulation resulted in aberrant carbohydrate utilization, antioxidant pathways, and structural protein synthesis and degradation. Molecular docking confirmed that (1S,4R)-benzovindiflupyr exhibited superior docking activity with key enzymes, potentially contributing to its stereoselective toxicity. This study offers novel molecular perspectives on the enantioselective ecotoxicity mechanism of benzovindiflupyr toward aquatic organisms and highlights potential target proteins implicated in metabolic disorders.
Collapse
Affiliation(s)
- Yafang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shaoqin Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Deng L, Sun W, Yu Y, Yang Y, Fang A, Tian B, Wang J, Bi C. Two types of amino acid substitutions in the succinate dehydrogenase complex subunit confer resistance to benzovindiflupyr in Colletotrichum sublineola. PEST MANAGEMENT SCIENCE 2024. [PMID: 39235094 DOI: 10.1002/ps.8406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Colletotrichum sublineola is the pathogenic fungus that causes sorghum anthracnose, which seriously threatens sorghum yield. Benzovindiflupyr is a succinate dehydrogenase inhibitor with good control effects on various crop diseases. However, the control of sorghum anthracnose by benzovindiflupyr and the risk of resistance to benzovindiflupyr in this pathogen are not well studied. Therefore, this study aimed to evaluate the benzovindiflupyr resistance and underlying mechanisms in C. sublineola. RESULTS Analysis of the sensitivity of 126 C. sublineola strains to benzovindiflupyr revealed that the average EC50 of the fungicide was 0.0503 ± 0.0189 μg mL-1, with a unimodal normal distribution curve. The survival fitness of 10 benzovindiflupyr-resistant strains decreased to varying degrees compared with that of the wild-type parental strains. Additionally, a significant positive cross-resistance was observed between benzovindiflupyr and carboxin. Sequencing analyses identified two mutation sites, CsSdhBH249Y and CsSdhCG81V, in the resistant strains. Further molecular docking and site-directed mutagenesis experiments confirmed that the CsSdhBH249Y and CsSdhCG81V substitutions conferred resistance to benzovindiflupyr in C. sublineola. CONCLUSION Colletotrichum sublineola is sensitive to benzovindiflupyr and shows a moderate resistance risk to benzovindiflupyr. Two specific point substitutions, CsSdhBH249Y and CsSdhCG81V, are responsible for the resistance of C. sublineola to benzovindiflupyr. These findings offer a theoretical foundation for strategic application of the fungicide in controlling sorghum anthracnose, and for potentially delaying the emergence and progression of resistance. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liyuan Deng
- College of Plant Protection, Southwest University, Chongqing, China
| | - Weijin Sun
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Cui K, Jiang C, Sun L, Wang M, He L, Zhou L. Resistance risk assessment for benzovindiflupyr in Sclerotium rolfsii and transmission of resistance genes among population. PEST MANAGEMENT SCIENCE 2024; 80:3979-3987. [PMID: 38520375 DOI: 10.1002/ps.8101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Sclerotium rolfsii is a destructive soil-borne fungal pathogen which is distributed worldwide. In previous study, the succinate dehydrogenase inhibitor (SDHI) fungicide benzovindiflupyr has been identified for its great antifungal activity against Sclerotium rolfsii. This study is aimed to investigate the resistance risk and mechanism of benzovindiflupyr in Sclerotium rolfsii. RESULTS Eight stable benzovindiflupyr-resistant isolates were generated by fungicide adaptation. Although the obtained eight resistant isolates have a stronger pathogenicity than the parental sensitive isolate, they have a fitness penalty in the mycelial growth and sclerotia formation compared to the parental isolate. A positive cross-resistance existed in the resistant isolates between benzovindiflupyr and thifluzamide, carboxin, boscalid and isopyrazam. Three-point mutations, including SdhBN180D, SdhCQ68E and SdhDH103Y, were identified in the benzovindiflupyr-resistant isolates. However, molecular docking analysis indicated that only SdhDH103Y could influence the sensitivity of Sclerotium rolfsii to benzovindiflupyr. After mycelial co-incubation of resistant isolates and the sensitive isolate, resistance genes may be transmitted to the sensitive isolate. The in vivo efficacy of benzovindiflupyr and thifluzamide against benzovindiflupyr-resistant isolates was a little lower than that against the sensitive isolate but with no significant difference. CONCLUSION The results suggested a low to medium resistance risk of Sclerotium rolfsii to benzovindiflupyr. However, once resistance occurs, it is possible to spread in the population of Sclerotium rolfsii. This study is helpful to understanding the risk and mechanism of resistance to benzovindiflupyr in multinucleate pathogens such as Sclerotium rolfsii. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaidi Cui
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chaofan Jiang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Longjiang Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mengke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Leiming He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Nsibo DL, Barnes I, Berger DK. Recent advances in the population biology and management of maize foliar fungal pathogens Exserohilum turcicum, Cercospora zeina and Bipolaris maydis in Africa. FRONTIERS IN PLANT SCIENCE 2024; 15:1404483. [PMID: 39148617 PMCID: PMC11324496 DOI: 10.3389/fpls.2024.1404483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Maize is the most widely cultivated and major security crop in sub-Saharan Africa. Three foliar diseases threaten maize production on the continent, namely northern leaf blight, gray leaf spot, and southern corn leaf blight. These are caused by the fungi Exserohilum turcicum, Cercospora zeina, and Bipolaris maydis, respectively. Yield losses of more than 10% can occur if these pathogens are diagnosed inaccurately or managed ineffectively. Here, we review recent advances in understanding the population biology and management of the three pathogens, which are present in Africa and thrive under similar environmental conditions during a single growing season. To effectively manage these pathogens, there is an increasing adoption of breeding for resistance at the small-scale level combined with cultural practices. Fungicide usage in African cropping systems is limited due to high costs and avoidance of chemical control. Currently, there is limited knowledge available on the population biology and genetics of these pathogens in Africa. The evolutionary potential of these pathogens to overcome host resistance has not been fully established. There is a need to conduct large-scale sampling of isolates to study their diversity and trace their migration patterns across the continent.
Collapse
Affiliation(s)
- David L Nsibo
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Dave K Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Qiu Y, Meng Y, Lian W, Jian S, Du Y, Wang M, Yang Y, Liang X, Zhang Y. Polymorphisms at amino acid positions 85 and 86 in succinate dehydrogenase subunit C of Colletotrichum siamense: Implications for fitness and intrinsic sensitivity to SDHI fungicides. Fungal Genet Biol 2023; 169:103844. [PMID: 37989450 DOI: 10.1016/j.fgb.2023.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Among succinate dehydrogenase inhibiter (SDHI) fungicides, penthiopyrad and benzovindiflupyr particularly inhibit Colletotrichum. Studying SDH amino acid polymorphism in Colletotrichum, along with its fungicide binding sites, is key to understanding their mechanisms of action. This study explores the SDH amino acid polymorphisms in Colletotrichum siamense strains from rubber trees in China and their interaction with SDHI fungicides, specifically penthiopyrad and benzovindiflupyr. Sequencing revealed most polymorphisms were in the SDHC subunit, particularly at positions 85 and 86, which are key to penthiopyrad resistance. Among 33 isolates, 33.3 % exhibited a substitution at position 85, and 9 % at position 86. A strain with W85L and T86N substitutions in SDHC showed reduced SDH activity, ATP content, mycelial growth, and virulence, and decreased sensitivity to penthiopyrad but not benzovindiflupyr. Molecular docking with Alphafold2 modeling suggested distinct binding modes of the two fungicides to C. siamense SDH. These findings underscore the importance of SDHC polymorphisms in C. siamense's fitness and sensitivity to SDHIs, enhancing our understanding of pathogen-SDHI interactions and aiding the development of novel SDHI fungicides.
Collapse
Affiliation(s)
- Yurong Qiu
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Yaling Meng
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Wenxu Lian
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Shasha Jian
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Yannan Du
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Meng Wang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Ye Yang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xiaoyu Liang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
| | - Yu Zhang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
| |
Collapse
|
6
|
Wang J, Lu T, Xiao T, Cheng W, Jiang W, Yan Y, Tang X. Novel quinolin-2(1H)-one analogues as potential fungicides targeting succinate dehydrogenase: design, synthesis, inhibitory evaluation and molecular modeling. PEST MANAGEMENT SCIENCE 2023; 79:3425-3438. [PMID: 36562216 DOI: 10.1002/ps.7332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Succinate dehydrogenase is an important target of fungicides. Succinate dehydrogenase inhibitors (SDHIs) have widely been used to combat destructive plant pathogenic fungi because they possess efficient and broad-spectrum antifungal activities and as well as unique mode of action. The research and development of novel SDHIs have been ongoing. RESULTS Thirty-six novel quinolin-2(1H)-one derivatives were designed, synthesized and characterized. The single crystal structure of compound 3c was determined through the X-ray diffraction of single crystals. The bioassay results displayed that most compounds had good antifungal activities at 16 μg mL-1 against Rhizoctonia cerealis, Erysiphe graminis, Botrytis cinerea, Penicillium italicum and Phytophthora infestans. Compounds 6o, 6p and 6r had better antifungal activities than the commercialized fungicide pyraziflumid against Botrytis cinerea. Their half maximal effective concentration (EC50 ) values were 0.398, 0.513, 0.205 and 0.706 μg mL-1 , respectively. Moreover, the inhibiting activities of the bioactive compounds were tested against succinate dehydrogenase. The results indicated that they possessed outstanding activities. Compounds 6o, 6p and 6r also exhibited better inhibiting activities than pyraziflumid against succinate dehydrogenase. Their half maximal inhibitory concentration (IC50 ) values were 0.450, 0.672, 0.232 and 0.858 μg mL-1 , respectively. The results of molecular dynamic (MD) simulations indicated that compound 6r displayed stronger affinity to succinate dehydrogenase than pyraziflumid. CONCLUSION The results of the present study displayed that quinolin-2(1H)-one derivative could be one scaffold of potential SDHIs and will provide some valuable information for the research and development of new SDHIs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingwen Wang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Tong Lu
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Tingting Xiao
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Wei Cheng
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Wenjing Jiang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Yingkun Yan
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Xiaorong Tang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| |
Collapse
|
7
|
Zhang C, Zhao C, Zheng H, Li L, Zheng Y, Wu Z. Design, Synthesis, and Study of the Dual Action Mode of Novel N-Thienyl-1,5-disubstituted-4-pyrazole Carboxamides against Nigrospora oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7210-7220. [PMID: 37141153 DOI: 10.1021/acs.jafc.3c00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Due to the single target but extensive application of commercialized succinate dehydrogenase inhibitors (SDHIs), resistance problems have gradually become apparent in recent years. To solve this problem, a series of novel N-thienyl-1,5-disubstituted-1H-4-pyrazole carboxamide derivatives were designed and synthesized in this work based on the active skeleton 5-trifluoromethyl-4-pyrazole carboxamide. The bioassay results indicated that some target compounds exhibited excellent in vitro antifungal activities against the eight phytopathogenic fungi tested. Among them, the EC50 values of T4, T6, and T9 against Nigrospora oryzae were 5.8, 1.9, and 5.5 mg/L, respectively. The in vivo protective and curative activities of 40 mg/L T6 against rice infected with N. oryzae were 81.5% and 43.0%, respectively. Further studies revealed that T6 not only significantly inhibited the growth of N. oryzae mycelia but also effectively hindered spore germination and germ tube elongation. Morphological studies using scanning electron microscopy (SEM), fluorescence microscopy (FM), and transmission electron microscopy (TEM) found that T6 could affect the mycelium membrane integrity by increasing cell membrane permeability and causing peroxidation of cellular lipids, and these results were further verified by measuring the malondialdehyde (MDA) content. The IC50 value of T6 against succinate dehydrogenase (SDH) was 7.2 mg/L, lower than that of the commercialized SDHI penthiopyrad (3.4 mg/L). Further, ATP content detection and the results after docking T6 and penthiopyrad suggested that T6 was a potential SDHI. These studies demonstrated that active compound T6 could both inhibit the activity of SDH and affect the integrity of the cell membrane at the same time via a dual action mode, which is different from the mode of action of penthiopyrad. Thus, this study provides a new idea for a strategy to delay resistance and diversify the structures of SDHIs.
Collapse
Affiliation(s)
- Chengzhi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Cailong Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Huanlin Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Longju Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ya Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhibing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
8
|
Liang X, Zou L, Lian W, Wang M, Yang Y, Zhang Y. Comparative Transcriptome Analyses Reveal Conserved and Distinct Mechanisms of the SDHI Fungicide Benzovindiflupyr Inhibiting Colletotrichum. PHYTOPATHOLOGY 2022; 112:1255-1263. [PMID: 34879716 DOI: 10.1094/phyto-10-21-0420-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colletotrichum leaf disease (CLD) is an annual production concern for commercial growers worldwide. The succinate dehydrogenase inhibitor (SDHI) fungicide benzovindiflupyr shows higher bioactivity against CLD than other SDHIs. However, the mechanism underlying such difference remains unclear. In this study, benzovindiflupyr exhibits good inhibitory activity against Colletotrichum siamense and C. nymphaeae in vitro and in vivo. To reveal its mechanism for inhibiting Colletotrichum, we compared transcriptomes of C. siamense and C. nymphaeae under treatment with benzovindiflupyr and boscalid. Benzovindiflupyr exhibited higher inhibitory activity against SDH enzyme than boscalid, resulting in a greater reduction in the ATP content of Colletotrichum isolates. Most of the metabolic pathways induced in these fungicide-treated isolates were similar, indicating that benzovindiflupyr exhibited a conserved mechanism of SDHIs inhibiting Colletotrichum. At the same level of suppressive SDH activity, benzovindiflupyr activated more than three times greater gene numbers of Colletotrichum than boscalid, suggesting that benzovindiflupyr could activate distinct mechanisms against Colletotrichum. Membrane-related gene ontology terms, mainly including intrinsic components of membrane, were highly abundant for the benzovindiflupyr-treated isolates rather than boscalid-treated isolates. Only benzovindiflupyr increased the relative conductivities of hyphae, indicating that it could damage the cell membrane and increase mycelial electrolyte leakage. Thus, we proposed that the high bioactivity of benzovindiflupyr against Colletotrichum occurred by inhibiting SDH activity and damaging the cell membrane at the same time. The research improves our understanding the mode of action of SDHI fungicides against Colletotrichum.
Collapse
Affiliation(s)
- Xiaoyu Liang
- College of Plant Protection, Hainan University, 570228 Haikou, China
- Natural Rubber Cooperative Innovation Center of Hainan Province, Ministry of Education, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, China
| | - Lijun Zou
- College of Plant Protection, Hainan University, 570228 Haikou, China
| | - Wenxu Lian
- College of Plant Protection, Hainan University, 570228 Haikou, China
| | - Meng Wang
- College of Plant Protection, Hainan University, 570228 Haikou, China
- Natural Rubber Cooperative Innovation Center of Hainan Province, Ministry of Education, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, China
| | - Ye Yang
- College of Plant Protection, Hainan University, 570228 Haikou, China
- Natural Rubber Cooperative Innovation Center of Hainan Province, Ministry of Education, China
| | - Yu Zhang
- College of Plant Protection, Hainan University, 570228 Haikou, China
- Natural Rubber Cooperative Innovation Center of Hainan Province, Ministry of Education, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, China
| |
Collapse
|
9
|
Zhang J, Jia X, Wang GF, Ma S, Wang S, Yang Q, Chen X, Zhang Y, Lyu Y, Wang X, Shi J, Zhao Y, Chen Y, Wu L. Ascorbate peroxidase 1 confers resistance to southern corn leaf blight in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1196-1211. [PMID: 35319160 DOI: 10.1111/jipb.13254] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Southern corn leaf blight (SCLB), caused by Bipolaris maydis, is one of the most devastating diseases affecting maize production. However, only one SLCB resistance gene, conferring partial resistance, is currently known, underscoring the importance of isolating new SCLB resistance-related genes. Here, we performed a comparative proteomic analysis and identified 258 proteins showing differential abundance during the maize response to B. maydis. These proteins included an ascorbate peroxidase (Zea mays ascorbate peroxidase 1 (ZmAPX1)) encoded by a gene located within the mapping interval of a previously identified quantitative trait locus associated with SCLB resistance. ZmAPX1 overexpression resulted in lower H2 O2 accumulation and enhanced resistance against B. maydis. Jasmonic acid (JA) contents and transcript levels for JA biosynthesis and responsive genes increased in ZmAPX1-overexpressing plants infected with B. maydis, whereas Zmapx1 mutants showed the opposite effects. We further determined that low levels of H2 O2 are accompanied by an accumulation of JA that enhances SCLB resistance. These results demonstrate that ZmAPX1 positively regulates SCLB resistance by decreasing H2 O2 accumulation and activating the JA-mediated defense signaling pathway. This study identified ZmAPX1 as a potentially useful gene for increasing SCLB resistance. Furthermore, the generated data may be relevant for clarifying the functions of plant APXs.
Collapse
Affiliation(s)
- Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xingmeng Jia
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guan-Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biologym, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shijun Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biologym, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shunxi Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qin Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Xueyan Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuqian Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- School of Environmental and Rural Science, University of New England, Armidale, 2351, NSW, Australia
| | - Yajing Lyu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoxu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiawei Shi
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yangtao Zhao
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
10
|
Novel 4,5-dihydro-1H-pyrazole derivatives as potential succinate dehydrogenase inhibitors: design, synthesis, crystal structure, biological activity and molecular modeling. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Li S, Li X, Zhang H, Wang Z, Xu H. The research progress in and perspective of potential fungicides: Succinate dehydrogenase inhibitors. Bioorg Med Chem 2021; 50:116476. [PMID: 34757244 DOI: 10.1016/j.bmc.2021.116476] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have become one of the fastest growing classes of new fungicides since entering the market, and have attracted increasing attention as a result of their unique structure, high activity and broad fungicidal spectrum. The mechanism of SDHIs is to inhibit the activity of succinate dehydrogenase, thereby affecting mitochondrial respiration and ultimately killing pathogenic fungi. At present, they have become popular varieties researched and developed by major pesticide companies in the world. In the review, we focused on the mechanism, the history, the representative varieties, structure-activity relationship and resistance of SDHIs. Finally, the potential directions for the development of SDHIs were discussed. It is hoped that this review can strengthen the individuals' understanding of SDHIs and provide some inspiration for the development of new fungicides.
Collapse
Affiliation(s)
- Shuqi Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Xiangshuai Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Hongmei Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| |
Collapse
|
12
|
He F, Wan J, Li X, Chu S, Sun N, Liu R. Toxic effects of benzovindiflupyr, a new SDHI-type fungicide on earthworms (Eisenia fetida). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62782-62795. [PMID: 34215985 DOI: 10.1007/s11356-021-15207-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Benzovindiflupyr has received increasing attention as a new novel succinate dehydrogenase inhibitor (SDHI)-type fungicide. Nonetheless, its traces remaining in soil potentially trigger an ecotoxicological threat to soil organisms including earthworms. This paper evaluates the eco-toxicity of different benzovindiflupyr doses (0.1, 1, 5, and 10 mg kg-1) on earthworms (Eisenia fetida) after long-term exposure. Consequently, benzovindiflupyr at higher doses significantly inhibited the activities of respiratory chain complex II and succinate dehydrogenase (SDH) in E. fetida. Besides, the reactive oxygen species (ROS) and lipid peroxidation (LPO) were significantly induced in earthworms when treated with this fungicide. After benzovindiflupyr exposure, activities of antioxidant enzymes including catalase, peroxidase, and superoxide dismutase were activated. However, glutathione S-transferase activity in E. fetida was initially induced then inhibited in earthworms after treatment. Furthermore, benzovindiflupyr exposure induced the protein carbonylation (PCO) level in cells indicating oxidative damage to the cellular protein. Due to the destruction of the normal function in the coelomocytes, the phagocytic activity was initially activated, then inhibited when earthworms were treated at 5 and 10 mg kg-1 concentrations. Additionally, DNA damage was induced (larger olive tail moment (OTM) values) with the increase of benzovindiflupyr doses and exposure time. The weight was significantly decreased after benzovindiflupyr exposure on days 21 and 28. Benzovindiflupyr at higher doses significantly decreased the reproduction (number of cocoons and juveniles) of E. fetida. These findings reveal that benzovindiflupyr potentially induces a potential toxicological risk to earthworms when applied in the mentioned above dosages.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| | - Jingqiang Wan
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Shanshan Chu
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Ning Sun
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| |
Collapse
|
13
|
Budde-Rodriguez S, Celoy RM, Mallik I, Pasche JS, Gudmestad NC. Impact of SDH Mutations in Alternaria solani on Recently Developed SDHI Fungicides Adepidyn and Solatenol. PLANT DISEASE 2021; 105:3015-3024. [PMID: 33736470 DOI: 10.1094/pdis-12-20-2718-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Early blight, caused by Alternaria solani, is observed annually in all midwestern potato production areas. The use of foliar fungicides remains a primary management strategy. However, A. solani has developed reduced sensitivity or resistance to many single-site fungicides such as quinone outside inhibitor (QoI, FRAC group 11), succinate dehydrogenase inhibitor (SDHI, FRAC group 7), demethylation inhibitor (DMI, FRAC group 3), and anilinopyrimidine (AP, FRAC group 9) fungicides. Boscalid, fluopyram, solatenol, and adepidyn are EPA-registered SDHI fungicides used commercially on a variety of crops, including potato. Five SDH mutations have been characterized previously in A. solani that affect the efficacy of boscalid while only one of these mutations has been demonstrated to negatively affect fluopyram efficacy. Conidial germination assays were used to determine if a shift in sensitivity has occurred in these SDHI fungicides. A. solani isolates collected prior to the commercial application of SDHI fungicides (baseline) were compared with recently collected isolates (nonbaseline). Greenhouse evaluations were conducted also to evaluate the efficacy of boscalid, fluopyram, solatenol, and adepidyn on A. solani isolates possessing individual SDH mutations. Additionally, field trials were conducted to determine the effects of application of these SDHI fungicides on the frequency of SDH mutations. Fluopyram, solatenol, and adepidyn had high intrinsic activity against A. solani when compared with boscalid, based on in vitro assays. The application of adepidyn and solatenol resulted in greater early blight control than the application of boscalid and fluopyram in greenhouse experiments. Molecular characterization of A. solani isolates collected from the field trials determined that the frequency of the H134R-mutation can increase in response to more recently developed SDHI fungicides. In contrast, the H278R/Y- and H133R-mutations decreased to the point of being nearly absent in these field experiments.
Collapse
Affiliation(s)
| | - Rhodesia M Celoy
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Ipsita Mallik
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Julie S Pasche
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Neil C Gudmestad
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| |
Collapse
|
14
|
Zhu J, Li X, Zhang L, Gao Y, Mu W, Liu F. The Bioactivity and Efficacy of Benzovindiflupyr Against Corynespora cassiicola, the Causal Agent of Cucumber Corynespora Leaf Spot. PLANT DISEASE 2021; 105:3201-3207. [PMID: 33560881 DOI: 10.1094/pdis-11-20-2334-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Corynespora cassiicola, which causes Corynespora leaf spot, results in considerable yield loss of cucumber grown in greenhouses. Frequent reports of reduced efficacy and control failure of fungicides warrant new, efficient alternative chemistries. In this study, the sensitivity of C. cassiicola to benzovindiflupyr was evaluated using a collection of 81 isolates collected from Shandong, China. The mean EC50 values for mycelial growth, spore germination, and germ tube elongation of C. cassiicola were 0.69 ± 0.44, 0.12 ± 0.063, and 0.13 ± 0.076 µg ml-1, respectively. Benzovindiflupyr treatment led to a reduced respiration rate and ATP production of C. cassiicola and decreased spore pathogenicity by 21.9% on average. Additionally, detached cucumber leaves sprayed with fungicides before or after inoculation were used to assess the efficacy of benzovindiflupyr against C. cassiicola. Benzovindiflupyr (150 µg ml-1) exhibited preventive and curative efficacies of 86.9 and 77.1%, respectively. Benzovindiflupyr at 150 g a.i. ha-1 provided over 70% efficacy in field trials performed in 2018 and 2019, which was significantly higher than that of the reference fungicides fluopyram and fluxapyroxad at the same dose. Furthermore, the yield of commercial cucumber increased as disease incidence decreased. Our findings pave the way for the introduction of benzovindiflupyr in the integrated management of Corynespora leaf spot.
Collapse
Affiliation(s)
- Jiamei Zhu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiuhuan Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lingyan Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yangyang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
15
|
Wang M, Du Y, Ling C, Yang Z, Jiang B, Duan H, An J, Li X, Yang X. Design, synthesis and antifungal/anti-oomycete activity of pyrazolyl oxime ethers as novel potential succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2021; 77:3910-3920. [PMID: 33871901 DOI: 10.1002/ps.6418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Succinate dehydrogenase inhibitors (SDHIs) play an increasingly important role in controlling plant diseases. However, the similar structures of SDHIs result in rapid development of cross-resistance development and a clear bottleneck of poor activity against oomycetes, therefore the need to seek new SDHI fungicides with novel structures is urgent. RESULTS Innovative pyrazolyl oxime ethers were designed by replacing amide with oxime ether based on the succinate dehydrogenase (SDH) structure, and 19 pairs of Z- and E-isomers were efficiently prepared for the discovery of SDHI compounds with a novel bridge. Their biological activities against four fungi and two oomycetes were evaluated, and substantial differences were observed between the Z- and E- isomers of the title compounds. Furthermore, most of these compounds exhibited remarkable activities against Rhizoctonia solani with EC50 values of less than 10 mg L-1 in vitro, and bioassay in vivo further confirmed that E-I-6 exhibited good protective efficacy (76.12%) at 200 mg L-1 . In addition, Z-I-12 provided better activity against the oomycetes Pythium aphanidermatum and Phytophthora capsici (EC50 = 1.56 and 0.93 mg L-1 ) than those of boscalid. Moreover, E-I-12 exhibited excellent SDH inhibition (IC50 = 0.21 mg L-1 ) thanks to its good binding ability to the SDH by hydrogen-bonding interactions, π-cation interaction and hydrophobic interactions. CONCLUSION Novel pyrazolyl oxime ethers have the potential as SDHI compounds for future development, and the strategy of replacing an amide bond with oxime ether may offer an alternative option in SDHI fungicide discovery.
Collapse
Affiliation(s)
- Minlong Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ying Du
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chen Ling
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhaokai Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Biaobiao Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xinghai Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Li X, Yang X, Zheng X, Bai M, Hu D. Review on Structures of Pesticide Targets. Int J Mol Sci 2020; 21:E7144. [PMID: 32998191 PMCID: PMC7582455 DOI: 10.3390/ijms21197144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Molecular targets play important roles in agrochemical discovery. Numerous pesticides target the key proteins in pathogens, insect, or plants. Investigating ligand-binding pockets and/or active sites in the proteins' structures is usually the first step in designing new green pesticides. Thus, molecular target structures are extremely important for the discovery and development of such pesticides. In this manuscript, we present a review of the molecular target structures, including those of antiviral, fungicidal, bactericidal, insecticidal, herbicidal, and plant growth-regulator targets, currently used in agrochemical research. The data will be helpful in pesticide design and the discovery of new green pesticides.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China;
| | - Miao Bai
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
| |
Collapse
|
17
|
Discovery of broad-spectrum fungicides that block septin-dependent infection processes of pathogenic fungi. Nat Microbiol 2020; 5:1565-1575. [PMID: 32958858 DOI: 10.1038/s41564-020-00790-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 11/09/2022]
Abstract
Many pathogenic fungi depend on the development of specialized infection structures called appressoria to invade their hosts and cause disease. Impairing the function of fungal infection structures therefore provides a potential means by which diseases could be prevented. In spite of this extraordinary potential, however, relatively few anti-penetrant drugs have been developed to control fungal diseases, of either plants or animals. In the present study, we report the identification of compounds that act specifically to prevent fungal infection. We found that the organization of septin GTPases, which are essential for appressorium-mediated infection in the rice blast fungus Magnaporthe oryzae, requires very-long-chain fatty acids (VLCFAs), which act as mediators of septin organization at membrane interfaces. VLCFAs promote septin recruitment to curved plasma membranes and depletion of VLCFAs prevents septin assembly and host penetration by M. oryzae. We observed that VLCFA biosynthesis inhibitors not only prevent rice blast disease, but also show effective, broad-spectrum fungicidal activity against a wide range of fungal pathogens of maize, wheat and locusts, without affecting their respective hosts. Our findings reveal a mechanism underlying septin-mediated infection structure formation in fungi and provide a class of fungicides to control diverse diseases of plants and animals.
Collapse
|
18
|
Wu YY, Shao WB, Zhu JJ, Long ZQ, Liu LW, Wang PY, Li Z, Yang S. Novel 1,3,4-Oxadiazole-2-carbohydrazides as Prospective Agricultural Antifungal Agents Potentially Targeting Succinate Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13892-13903. [PMID: 31774673 DOI: 10.1021/acs.jafc.9b05942] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A novel simple 1,3,4-oxadiazole-2-carbohydrazide was reported to discover low-cost and versatile antifungal agents. Bioassay results suggested that a majority of the designed compounds were extremely bioactive against four types of fungi and two kinds of oomycetes. This extreme bioactivity was highlighted by the applausive inhibitory effects of compounds 4b, 4h, 5c, 5g, 5h, 5i, 5m, 5p, 5t, and 5v against Gibberella zeae, affording EC50 values ranging from 0.486 to 0.799 μg/mL, which were superior to that of fluopyram (2.96 μg/mL) and comparable to those of carbendazim (0.947 μg/mL) and prochloraz (0.570 μg/mL). Meanwhile, compounds 4g, 5f, 5i, and 5t showed significant actions against Fusarium oxysporum with EC50 values of 0.652, 0.706, 0.813, and 0.925 μg/mL, respectively. Pharmacophore exploration suggested that the N'-phenyl-1,3,4-oxadiazole-2-carbohydrazide pattern is necessary for the bioactivity. Molecular docking of 5h with succinate dehydrogenase (SDH) indicated that it can completely locate the inside of the binding pocket via hydrogen-bonding and hydrophobic interactions, revealing that this novel framework might target SDH. This result was further verified by the significant inhibitory effect on SDH activity. In addition, scanning electron microscopy patterns were performed to elucidate the anti-G. zeae mechanism. Given these features, this type of framework is a suitable template for future exploration of alternative SDH inhibitors against plant microbial infections.
Collapse
Affiliation(s)
- Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Jian-Jun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhou-Qing Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhong Li
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| |
Collapse
|
19
|
Yang D, Zhao B, Fan Z, Yu B, Zhang N, Li Z, Zhu Y, Zhou J, Kalinina TA, Glukhareva TV. Synthesis and Biological Activity of Novel Succinate Dehydrogenase Inhibitor Derivatives as Potent Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13185-13194. [PMID: 31697490 DOI: 10.1021/acs.jafc.9b05751] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In searching for novel fungicidal leads, the novel bioactive succinate dehydrogenase inhibitor (SDHI) derivatives were designed and synthesized by the inversion of carbonyl and amide groups. Bioassay indicated that compound 5i stood out with a broad spectrum of in vitro activity against five fungi. Its EC50 value (0.73 μg/mL) was comparable to that of boscalid (EC50 of 0.51 μg/mL) and fluxapyroxad (EC50 of 0.19 μg/mL) against Sclerotinia sclerotiorum. For Rhizoctonia cerealis, 5i and 5p with EC50 values of 4.61 and 6.48 μg/mL, respectively, showed significantly higher activity than fluxapyroxad with the EC50 value of 16.99 μg/mL. In vivo fungicidal activity of 5i exhibited an excellent inhibitory rate (100%) against Puccinia sorghi at 50 μg/mL, while the positive control boscalid showed only a 70% inhibitory rate. Moreover, 5i showed promising fungicidal activity with a 60% inhibitory rate against Rhizoctonia solani at 1 μg/mL, which was better than that of boscalid (30%). Compound 5i possessed better in vivo efficacy against P. sorghi and R. solani than boscalid. Molecular docking showed that even the carbonyl oxygen atom of 5i was far from the pyrazole ring. It could also form hydrogen bonds toward the hydroxyl hydrogen and amino hydrogen of TYR58 and TRP173 on SDH, respectively, which consisted of the positive control fluxapyroxad. Fluorescence quenching analysis and SDH enzymatic inhibition studies also validated its mode of action. Our studies showed that 5i was worthy of further investigation as a promising fungicide candidate.
Collapse
Affiliation(s)
- Dongyan Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Bin Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Bin Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Nailou Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Zhengming Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Yilin Zhu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Jinghui Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Tatiana A Kalinina
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin , 620002 Ekaterinburg , Russia
| | - Tatiana V Glukhareva
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin , 620002 Ekaterinburg , Russia
| |
Collapse
|
20
|
Zhu J, Zhang L, Ma D, Gao Y, Mu W, Liu F. A bioactivity and biochemical analysis of iminoctadine tris (albesilate) as a fungicide against Corynespora cassiicola. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:121-127. [PMID: 31378347 DOI: 10.1016/j.pestbp.2019.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 06/10/2023]
Abstract
Iminoctadine tris (albesilate) is a bis-guazatine fungicide, and its specific modes of action and efficacy against C. cassiicola are not yet clear. In this study, baseline sensitivity data for mycelial growth showed that the frequency distribution curve of iminoctadine tris (albesilate) EC50 values is unimodal. The EC50 values ranged from 0.1151 to 1.2101 μg/mL, with a mean of 0.5775 ± 0.2677 μg/mL. Iminoctadine tris (albesilate) affected the morphological development of C. cassiicola, causing increased branching of the mycelium. The significant increase in membrane permeability and malondialdehyde content after iminoctadine tris (albesilate) treatment indicated that this fungicide caused severe damage to the membrane structure. Furthermore, 0.4 μg/mL iminoctadine tris (albesilate) could decrease the spore density of C. cassiicola from 2.6200 × 104 to 1.4967 × 104/cm2 on average in vitro, indicating that the fungicide had great potential to reduce secondary infection with C. cassiicola in the field. Additionally, 120 μg/mL iminoctadine tris (albesilate) provided over 95% curative efficacy and 81.17% preventative efficacy on detached cucumber leaves inoculated with C. cassiicola. In field trials, iminoctadine tris (albesilate) at a dose of 120 g a.i./ha exhibited 72.92% and 80.92% control efficacy in 2017 and 2018, respectively. However, the efficacy supplied by the reference fungicide azoxystrobin at 250 g a.i./ha was only approximately 50% due to the development of fungicide resistance in C. cassiicola. Taken together, the findings above provide a solid foundation for the exploration of the action mechanisms of iminoctadine tris (albesilate) against C. cassiicola and provide overwhelming evidence for the use of iminoctadine tris (albesilate) as an excellent potential alternative fungicide in the management of cucumber Corynespora leaf spot.
Collapse
Affiliation(s)
- Jiamei Zhu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China
| | - Lingyan Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China
| | - Dicheng Ma
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yangyang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
21
|
Calixto NM, dos Santos DB, Bezerra JCB, Silva LDA. In silico repositioning of approved drugs against Schistosoma mansoni energy metabolism targets. PLoS One 2018; 13:e0203340. [PMID: 30596650 PMCID: PMC6312253 DOI: 10.1371/journal.pone.0203340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 11/26/2022] Open
Abstract
Schistosomiasis is a neglected parasitosis caused by Schistosoma spp. Praziquantel is used for the chemoprophylaxis and treatment of this disease. Although this monotherapy is effective, the risk of resistance and its low efficiency against immature worms compromises its effectiveness. Therefore, it is necessary to develop new schistosomicide drugs. However, the development of new drugs is a long and expensive process. The repositioning of approved drugs has been proposed as a quick, cheap, and effective alternative to solve this problem. This study employs chemogenomic analysis with use of bioinformatics tools to search, identify, and analyze data on approved drugs with the potential to inhibit Schistosoma mansoni energy metabolism enzymes. The TDR Targets Database, Gene DB, Protein, DrugBank, Therapeutic Targets Database (TTD), Promiscuous, and PubMed databases were used. Fifty-nine target proteins were identified, of which 18 had one or more approved drugs. The results identified 20 potential drugs for schistosomiasis treatment; all approved for use in humans.
Collapse
Affiliation(s)
- Nicole Melo Calixto
- Department of Bioinformatics, Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Ceres, Ceres, Goiás, Brazil
| | - Daniela Braz dos Santos
- LAERPH- Laboratory of Parasite-Host Relationship Study, Instituto de Patologia Tropical e Saúde Pública da Universidade Federal de Goiás Goiânia, Goiás, Brazil
| | - José Clecildo Barreto Bezerra
- LAERPH- Laboratory of Parasite-Host Relationship Study, Instituto de Patologia Tropical e Saúde Pública da Universidade Federal de Goiás Goiânia, Goiás, Brazil
| | - Lourival de Almeida Silva
- Department of Bioinformatics, Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Ceres, Ceres, Goiás, Brazil
- * E-mail:
| |
Collapse
|