1
|
Das S, Maurya A, Singh VK, Chaudhari AK, Singh BK, Dwivedy AK, Dubey NK. Chitosan nanoemulsion incorporated with Carum carvi essential oil as ecofriendly alternative for mitigation of aflatoxin B 1 contamination in stored herbal raw materials. Int J Biol Macromol 2024; 270:132248. [PMID: 38729502 DOI: 10.1016/j.ijbiomac.2024.132248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The present investigation entails the first report on entrapment of Carum carvi essential oil (CCEO) into chitosan polymer matrix for protection of stored herbal raw materials against fungal inhabitation and aflatoxin B1 (AFB1) production. Physico-chemical characterization of nanoencapsulated CCEO was performed through Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffractometry, and scanning electron microscopy. The nanoencapsulated CCEO displayed improved antifungal and AFB1 suppressing potentiality along with controlled delivery over unencapsulated CCEO. The encapsulated CCEO nanoemulsion obstructed the ergosterol production and escalated the efflux of cellular ions, thereby suggesting plasma membrane as prime target of antifungal action in Aspergillus flavus cells. The impairment in methyglyoxal production and modeling based carvone interaction with Afl-R protein validated the antiaflatoxigenic mechanism of action. In addition, CCEO displayed augmentation in antioxidant potentiality after encapsulation into chitosan nanomatrix. Moreover, the in-situ study demonstrated the effective protection of Withania somnifera root samples (model herbal raw material) against fungal infestation and AFB1 contamination along with prevention of lipid peroxidation. The acceptable organoleptic qualities of W. somnifera root samples and favorable safety profile in mice (animal model) strengthen the application of nanoencapsulated CCEO emulsion as nano-fungitoxicant for preservation of herbal raw materials against fungi and AFB1 mediated biodeterioration.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India.
| | - Akash Maurya
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Department of Botany, Shri Murli Manohar Town Post Graduate College, Ballia 277001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, Ayodhya 224123, Uttar Pradesh, India
| | - Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur 233001, Uttar Pradesh, India
| | | | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Das S, Chaudhari AK. Encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer for protection of stored rice against Fusarium verticillioides and fumonisins contamination. Heliyon 2024; 10:e29954. [PMID: 38694117 PMCID: PMC11061702 DOI: 10.1016/j.heliyon.2024.e29954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The present investigation entails the encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer (AGEO-Ne) and assessment of its efficacy against Fusarium verticillioides contamination and fumonisins biosynthesis in stored rice (Oryza sativa L.) samples. The AGEO was encapsulated through ionic gelation process and characterized by scanning electron microscopy (SEM), Dynamic light scattering (DLS), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The AGEO exhibited bi-phasic delivery pattern from chitosan matrix. The AGEO caused complete inhibition of F. verticillioides growth at 1.2 μL/mL, while fumonisin B1 (FB1) and B2 (FB2) biosynthesis at 1.2 and 1.0 μL/mL, respectively. On the other hand, nanoencapsulated AGEO (AGEO-Ne) exhibited improved efficacy, caused complete inhibition of fungal growth at 0.8 μL/mL, and FB1 and FB2 production at 0.8 and 0.6 μL/mL, respectively. AGEO-Ne caused 100 % inhibition of ergosterol synthesis at 0.8 μL/mL and exhibited greater efflux of Ca2+, Mg2+, K+ ions (18.99, 21.63, and 25.38 mg/L) as well as 260 and 280 nm absorbing materials from exposed fungal cells. The in silico interaction of granyl acetate and linalyl acetate with FUM 21 protein validated the molecular mechanism for inhibition of FB1 and FB2 biosynthesis. Further, improvement in antioxidant activity of AGEO-Ne was observed after encapsulation with IC50 values of 12.08 and 6.40 μL/mL against DPPH and ABTS radicals, respectively. During in situ investigation, AGEO caused 82.09 and 86.32 % protection of rice against F. verticillioides contamination in inoculated and uninoculated rice samples, respectively, while AGEO-Ne exhibited 100 % protection of fumigated rice samples against F. verticillioides proliferation as well as FB1 and FB2 contamination. The AGEO-Ne also caused better retardation of lipid peroxidation (41.35 and 37.52 μM/g FW malondialdehyde in inoculated and uninoculated treatment) and acceptable organoleptic properties in rice samples, which strengthen its application as plant based novel preservative in food and agricultural industries.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India
| | - Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh, 233001, India
| |
Collapse
|
3
|
Chen L, Li X, Wang Y, Guo Z, Wang G, Zhang Y. The performance of plant essential oils against lactic acid bacteria and adverse microorganisms in silage production. FRONTIERS IN PLANT SCIENCE 2023; 14:1285722. [PMID: 38023889 PMCID: PMC10667483 DOI: 10.3389/fpls.2023.1285722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Plant essential oils have played an important role in the field of antibiotic alternatives because of their efficient bacteriostatic and fungistatic activity. As plant essential oils are widely used, their activity to improve the quality of plant silage has also been explored. This review expounds on the active ingredients of essential oils, their bacteriostatic and fungistatic activity, and mechanisms, as well as discusses the application of plant essential oils in plant silage fermentation, to provide a reference for the development and application of plant essential oils as silage additives in plant silage fermentation feed.
Collapse
Affiliation(s)
- Lijuan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xi Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yili Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zelin Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Guoming Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhua Zhang
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Sindhu M, Rajkumar V, Annapoorani CA, Gunasekaran C, Kannan M. Functionalized nanoencapsulated Curcuma longa essential oil in chitosan nanopolymer and their application for antioxidant and antimicrobial efficacy. Int J Biol Macromol 2023; 251:126387. [PMID: 37595727 DOI: 10.1016/j.ijbiomac.2023.126387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The present study reports on the encapsulation of Curcuma longa (L.) essential oil (CLEO) in chitosan nanopolymer as a novel nanotechnology preservative for enhancing its antibacterial, antifungal, and mycotoxin inhibitory efficacy. GC-MS analysis of CLEO showed the presence of α-turmerone (42.6 %) and β- turmerone (14.0 %) as the major components. CLEO-CSNPs were prepared through the ionic-gelation technique and confirmed by TEM micrograph, DLS, XRD, and FTIR. In vitro, bactericidal activity of CLEO-CSNPs at a concentration of 100 μg/mL showed significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, which mostly rely on ROS production and depend on its penetration and interaction with bacterial cells. Furthermore, the CLEO-CSNPs during in vitro investigation against F. graminearum completely inhibited the growth and zearalenone and deoxynivalenol production at 0.75 μL/mL, respectively. Further, CLEO-CSNPs enhanced antioxidant activity against DPPH• and ABTS•+ with IC50 values 0.95 and 0.66 μL/mL, respectively, and without any negative impacts on germinating seeds were observed during the phytotoxicity investigation. Overall, experiments concluded that encapsulated CLEO enhances antimicrobial inhibitory efficiency against stored foodborne pathogens.
Collapse
Affiliation(s)
- Murugesan Sindhu
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Vallavan Rajkumar
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Coimbatore Alagubrahmam Annapoorani
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India..
| | - Chinnappan Gunasekaran
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Malaichamy Kannan
- Centre for Agricultural nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
5
|
Fan K, Qian S, Zhang Z, Huang Q, Hu Z, Nie D, Meng J, Guo W, Zhao Z, Han Z. Recent advances in the combinations of plant-sourced natural products for the prevention of mycotoxin contamination in food. Crit Rev Food Sci Nutr 2023; 64:10626-10642. [PMID: 37357923 DOI: 10.1080/10408398.2023.2227260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Mycotoxins, secondary metabolites produced by mycotoxigenic fungi, are a major problem affecting food safety and security, because of their adverse health effects, their socio-economic impact and the difficulty of degradation or removal by conventional food processing methods. Plant-sourced natural products are a novel and effective control method for fungal infestation and mycotoxin production, with the advantages of biodegradability and acceptability for food use. However, development of resistance, low and inconsistent efficacy, and a limited range of antifungal activities hinder the effective application of single plant natural products for controlling mycotoxin contamination. To overcome these limitations, combinations of plant natural products have been tested extensively and found to increase efficacy, often synergistically. However, this extensive and promising research area has seen little development of practical applications. This review aims to provide up-to-date information on the antifungal, anti-mycotoxigenic and synergistic effects of combinations of plant natural products, as well as their mechanisms of action, to provide a reference source for future research and encourage application development.
Collapse
Affiliation(s)
- Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shenan Qian
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Hu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
6
|
Celuppi LCM, Capelezzo AP, Cima LB, Zeferino RCF, Carniel TA, Zanetti M, de Mello JMM, Fiori MA, Riella HG. Microbiological, thermal and mechanical performance of cellulose acetate films with geranyl acetate. Int J Biol Macromol 2023; 228:517-527. [PMID: 36563822 DOI: 10.1016/j.ijbiomac.2022.12.170] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The present work concerns to investigate the microbiological, thermal and mechanical behavior of cellulose acetate films obtained with addition of 0.5 % (v/v) and 1.0 % (v/v) of geranyl acetate by the casting technique. The antimicrobial activities of the polymeric films were assessed against Staphylococcus aureus and Escherichia coli bacteria and against Aspergillus flavus fungal. The achieved results show that the films presented antibacterial and antifungal activities. Moreover, the incorporation of the geranyl acetate in the polymeric films was confirmed by FTIR and TGA technique, while DSC analysis pointed out the compatibility between the geranyl acetate and cellulose acetate. The addition of the geranyl acetate did not modify the mechanical behavior of the cellulose acetate films concerning stiffness and tensile strength. These results suggest that this new material is promising for future applications in biomedical devices and food packaging.
Collapse
Affiliation(s)
- Laura Cassol Mohr Celuppi
- Universidade Federal de Santa Catarina (UFSC), R. do Biotério Central, S/n - Córrego Grande, Florianópolis, SC, Brazil.
| | - Ana Paula Capelezzo
- Universidade Federal de Santa Catarina (UFSC), R. do Biotério Central, S/n - Córrego Grande, Florianópolis, SC, Brazil.
| | - Letícia Bavaresco Cima
- Universidade Comunitária da Região de Chapecó (Unochapecó), Servidão Anjo da Guarda, 295-D - Efapi, Chapecó, SC, Brazil.
| | - Rubieli Carla Frezza Zeferino
- Universidade Comunitária da Região de Chapecó (Unochapecó), Servidão Anjo da Guarda, 295-D - Efapi, Chapecó, SC, Brazil.
| | - Thiago André Carniel
- Universidade Comunitária da Região de Chapecó (Unochapecó), Servidão Anjo da Guarda, 295-D - Efapi, Chapecó, SC, Brazil.
| | - Micheli Zanetti
- Universidade Comunitária da Região de Chapecó (Unochapecó), Servidão Anjo da Guarda, 295-D - Efapi, Chapecó, SC, Brazil.
| | - Josiane Maria Muneron de Mello
- Universidade Comunitária da Região de Chapecó (Unochapecó), Servidão Anjo da Guarda, 295-D - Efapi, Chapecó, SC, Brazil.
| | - Márcio Antônio Fiori
- Universidade Tecnológica Federal do Paraná (UTFPR), Via do Conhecimento, Km 1, Pato Branco, SC, Brazil.
| | - Humberto Gracher Riella
- Universidade Federal de Santa Catarina (UFSC), R. do Biotério Central, S/n - Córrego Grande, Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Albuquerque PM, Azevedo SG, de Andrade CP, D’Ambros NCDS, Pérez MTM, Manzato L. Biotechnological Applications of Nanoencapsulated Essential Oils: A Review. Polymers (Basel) 2022; 14:polym14245495. [PMID: 36559861 PMCID: PMC9782583 DOI: 10.3390/polym14245495] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Essential oils (EOs) are complex mixtures of volatile and semi-volatile organic compounds that originate from different plant tissues, including flowers, buds, leaves and bark. According to their chemical composition, EOs have a characteristic aroma and present a wide spectrum of applications, namely in the food, agricultural, environmental, cosmetic and pharmaceutical sectors. These applications are mainly due to their biological properties. However, EOs are unstable and easily degradable if not protected from external factors such as oxidation, heat and light. Therefore, there is growing interest in the encapsulation of EOs, since polymeric nanocarriers serve as a barrier between the oil and the environment. In this context, nanoencapsulation seems to be an interesting approach as it not only prevents the exposure and degradation of EOs and their bioactive constituents by creating a physical barrier, but it also facilitates their controlled release, thus resulting in greater bioavailability and efficiency. In this review, we focused on selecting recent articles whose objective concerned the nanoencapsulation of essential oils from different plant species and highlighted their chemical constituents and their potential biotechnological applications. We also present the fundamentals of the most commonly used encapsulation methods, and the biopolymer carriers that are suitable for encapsulating EOs.
Collapse
Affiliation(s)
- Patrícia Melchionna Albuquerque
- Research Group on Chemistry Applied to Technology (QAT), School of Technology, Amazonas State University, Manaus 69050-020, Brazil
- Correspondence:
| | - Sidney Gomes Azevedo
- Laboratory of Synthesis and Characterization of Nanomaterials (LSCN), Federal Institute of Education, Science and Technology of Amazonas, Manaus 69075-351, Brazil
| | - Cleudiane Pereira de Andrade
- Research Group on Chemistry Applied to Technology (QAT), School of Technology, Amazonas State University, Manaus 69050-020, Brazil
| | - Natália Corrêa de Souza D’Ambros
- Research Group on Chemistry Applied to Technology (QAT), School of Technology, Amazonas State University, Manaus 69050-020, Brazil
| | - Maria Tereza Martins Pérez
- Laboratory of Synthesis and Characterization of Nanomaterials (LSCN), Federal Institute of Education, Science and Technology of Amazonas, Manaus 69075-351, Brazil
| | - Lizandro Manzato
- Laboratory of Synthesis and Characterization of Nanomaterials (LSCN), Federal Institute of Education, Science and Technology of Amazonas, Manaus 69075-351, Brazil
| |
Collapse
|
8
|
Hu Z, Zhang J, Tong W, Zhang Y, Du L, Liu F. Perilla frutescens essential oil as a potential fumigant against quality deterioration of post-harvested rice caused by Aspergillus flavus. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Das S, Chaudhari AK, Singh VK, Singh BK, Dubey NK. High speed homogenization assisted encapsulation of synergistic essential oils formulation: Characterization, in vitro release study, safety profile, and efficacy towards mitigation of aflatoxin B 1 induced deterioration in rice samples. Food Chem Toxicol 2022; 169:113443. [PMID: 36167259 DOI: 10.1016/j.fct.2022.113443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022]
Abstract
Application of essential oils to mitigate aflatoxin B1 (AFB1) contamination in food is a current research hotspot; however, their direct incorporation may cause toxic effects, and changes in food organoleptic properties. This work aimed to synthesize novel synergistic formulation of Pinus roxburghii, Juniperus communis, and Cupressus sempervirens essential oils by mixture design assay (PJC) and encapsulation of PJC formulation into chitosan nanocomposite (Nm-PJC) with an aim to protect stored rice (Oryza sativa L., prime staple food) against fungi and AFB1 mediated loss of valuable minerals, macronutrients, and fatty acids. Nm-PJC was characterized through DLS, SEM, FTIR, and XRD analyses, along with controlled delivery from chitosan nanobiopolymer. Encapsulation of synergistic formulation into chitosan-nanomatrix improved antifungal (4.0 μL/mL), antiaflatoxigenic (3.5 μL/mL), and antioxidant activities (P < 0.05). Impairment in ergosterol and methylglyoxal biosynthesis along with in-silico-homology-modeling of major components with Ver-1 and Omt-A proteins advocated chemico-molecular interaction responsible for fungal growth inhibition and AFB1 secretion. In addition, in-situ efficacy against lipid-peroxidation, fatty acid biodeterioration, and preservation of minerals, macronutrients without affecting organoleptic attributes in rice and high mammalian safety profile (9874.23 μL/kg) suggested practical application of synergistic nanoformulation as innovative smart, and green candidate to mitigate AFB1 contamination, and shelf-life extension of stored food products.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India
| | - Anand Kumar Chaudhari
- Department of Botany, Government Girls' P.G. College, Ghazipur, 233001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya, 224123, Uttar Pradesh, India
| | - Bijendra Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Santos AR, Carreiró F, Freitas A, Barros S, Brites C, Ramos F, Sanches Silva A. Mycotoxins Contamination in Rice: Analytical Methods, Occurrence and Detoxification Strategies. Toxins (Basel) 2022; 14:647. [PMID: 36136585 PMCID: PMC9504649 DOI: 10.3390/toxins14090647] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
The prevalence of mycotoxins in the environment is associated with potential crop contamination, which results in an unavoidable increase in human exposure. Rice, being the second most consumed cereal worldwide, constitutes an important source of potential contamination by mycotoxins. Due to the increasing number of notifications reported, and the occurrence of mycotoxins at levels above the legislated limits, this work intends to compile the most relevant studies and review the main methods used in the detection and quantification of these compounds in rice. The aflatoxins and ochratoxin A are the predominant mycotoxins detected in rice grain and these data reveal the importance of adopting safety storage practices that prevent the growth of producing fungi from the Aspergillus genus along all the rice chain. Immunoaffinity columns (IAC) and QuECHERS are the preferred methods for extraction and purification and HPLC-MS/MS is preferred for quantification purposes. Further investigation is still required to establish the real exposition of these contaminants, as well as the consequences and possible synergistic effects due to the co-occurrence of mycotoxins and also for emergent and masked mycotoxins.
Collapse
Affiliation(s)
- Ana Rita Santos
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Filipa Carreiró
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Sílvia Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
| | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, 4501-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
11
|
Das S, Singh VK, Chaudhari AK, Dwivedy AK, Dubey NK. Co-encapsulation of Pimpinella anisum and Coriandrum sativum essential oils based synergistic formulation through binary mixture: Physico-chemical characterization, appraisal of antifungal mechanism of action, and application as natural food preservative. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105066. [PMID: 35715028 DOI: 10.1016/j.pestbp.2022.105066] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 06/15/2023]
Abstract
The present study aimed to co-encapsulate binary synergistic formulation of Pimpinella anisum and Coriandrum sativum (PC) essential oils (0.75:0.25) into chitosan nanoemulsion (Nm-PC) with effective inhibition against fungal proliferation, aflatoxin B1 (AFB1) secretion, and lipid peroxidation in stored rice. Physico-chemical characterization of Nm-PC by SEM, FTIR, and XRD confirmed successful encompassment of PC inside the chitosan nanomatrix with efficient interaction by functional groups and reduction in crystallinity. Nm-PC showed superior antifungal, antiaflatoxigenic, and antioxidant activities over unencapsulated PC. Reduction in ergosterol biosynthesis and enhanced leakage of Ca2+, K+, Mg2+ ions and 260, 280 nm absorbing materials by Nm-PC fumigation confirmed irreversible damage of plasma membrane in toxigenic Aspergillus flavus cells. Significant diminution of methylglyoxal in A. flavus cells by Nm-PC fumigation illustrated biochemical mechanism for antiaflatoxigenic activity, suggesting future exploitation for development of aflatoxin resistant rice varieties through green transgenic technology. In silico findings indicated specific stereo-spatial interaction of anethole and linalool with Nor-1 protein, validating molecular mechanism for AFB1 inhibition. In addition, in situ investigation revealed effective protection of stored rice against fungal occurrence, AFB1 biosynthesis, and lipid peroxidation without affecting organoleptic attributes. Moreover, mammalian non-toxicity of chitosan entrapped PC synergistic nanoformulation could provide exciting potential for application as eco-smart safe nano-green food preservative.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal 713104, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
12
|
Jafarzadeh S, Abdolmalek K, Javanmardi F, Hadidi M, Mousavi Khaneghah A. Recent advances in plant‐based compounds for mitigation of mycotoxin contamination in food products: current status, challenges, and perspectives. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering Edith Cowan University Joondalup WA 6027 Australia
| | - Khadije Abdolmalek
- Research Center of Oils and Fats Kermanshah University of Medical Sciences Kermanshah Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Milad Hadidi
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas São Paulo Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas São Paulo Brazil
| |
Collapse
|
13
|
Liu XS, Gao B, Dong ZD, Qiao ZA, Yan M, Han WW, Li WN, Han L. Chemical Compounds, Antioxidant Activities, and Inhibitory Activities Against Xanthine Oxidase of the Essential Oils From the Three Varieties of Sunflower ( Helianthus annuus L.) Receptacles. Front Nutr 2021; 8:737157. [PMID: 34869517 PMCID: PMC8641733 DOI: 10.3389/fnut.2021.737157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background/Aim: Essential oils of sunflower receptacles (SEOs) have antibacterial and antioxidant potential. However, the differences of biological activities from the different varieties of sunflowers have not been studied till now. The purpose of this study was to compare the differences of chemical compounds, antioxidant activities, and inhibitory activities against xanthine oxidase (XO) of SEOs from the three varieties of sunflowers including LD5009, SH363, and S606. Methods: SEOs were extracted by using the optimal extraction conditions selected by response surface methodology (RSM). Chemical compounds of SEOs were identified from the three varieties of sunflowers by gas chromatography-mass spectrometry (GC-MS). Antioxidant activities of SEOs were detected by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and iron ion reduction ability. Inhibitory activities of SEOs against XO were measured by using UV spectrophotometer. XO inhibitors were selected from the main chemical compounds of SEOs by the high-throughput selections and molecular simulation docking. Results: The extraction yields of SEOs from LD5009, SH363, and S606 were 0.176, 0.319, and 0.580%, respectively. A total of 101 chemical compounds of SEOs were identified from the three varieties of sunflowers. In addition, the results of inhibitory activities against XO showed that SEOs can reduce uric acid significantly. Eupatoriochromene may be the most important chemical compounds of SEOs for reducing uric acid. The results of antioxidant activities and inhibitory activities against XO showed that SEOs of LD5009 had the strongest antioxidant and XO inhibitory activities. The Pearson correlation coefficient (r > 0.95) showed that γ-terpinene, (E)-citral, and L-Bornyl acetate were highly correlated with the antioxidant activities and XO inhibitory ability. Conclusion: SEOs had antioxidant activities and XO inhibitory ability. It would provide more scientific information for utilization and selection of varieties of sunflowers, which would increase the food quality of sunflowers and incomes of farmers.
Collapse
Affiliation(s)
- Xin-Sheng Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Bo Gao
- School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Ministry of Education, Changchun, China
| | - Zhan-De Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Zi-An Qiao
- School of Life Sciences, Jilin University, Changchun, China
| | - Min Yan
- School of Life Sciences, Jilin University, Changchun, China
| | - Wei-Wei Han
- Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Ministry of Education, Changchun, China
| | - Wan-Nan Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Lu Han
- School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Ministry of Education, Changchun, China.,Key Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Ministry of Education, Changchun, China
| |
Collapse
|
14
|
Mo F, Hu X, Ding Y, Li R, Long Y, Wu X, Li M. Naturally produced magnolol can significantly damage the plasma membrane of Rhizoctonia solani. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104942. [PMID: 34446208 DOI: 10.1016/j.pestbp.2021.104942] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Rice sheath blight is a destructive fungal disease caused by Rhizoctonia solani. To find a safe and green measure, the biological activity of six plant extracts against R. solani was determined by mycelial growth rate method. The results showed that magnolol possessed better antifungal activities against R. solani, with an EC50 value of 7.47 mg/L. further action mechanism of magnolol against R. solani was carried out. Studies by scanning electron microscopy (SEM) showed that the morphology of R. solani mycelia was deformation and surface folds. Transmission electron microscope (TEM) observation on treated R. solani showed that magnolol could induce cytoplasmic membrane rupture and cytoplasmic membrane even disappeared completely accompanied with cellular debris was covered around this fungal, and the mycelia treated with magnolol showed fluorescence after PI staining. Further study showed that the content of malondialdehyde (MDA) and activity of chitinase, β-1,3-glucanase and relative conductivity of mycelia were increased, while the content of soluble protein and activities of catalase (CAT), polyphenol oxidase (PPO), superoxide dismutase (SOD), succinate dehydrogenase (SDH) and NAD-malate dehydrogenase (NAD-MDH) were significantly decreased. These results indicated that magnolol could significantly damage the plasma membrane of R. solani, and interfere with cell respiratory metabolism, thus inhibiting the growth of mycelium.
Collapse
Affiliation(s)
- Feixu Mo
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xianfeng Hu
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yi Ding
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Rongyu Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Youhua Long
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xiaomao Wu
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Ming Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
15
|
Maurya A, Prasad J, Das S, Dwivedy AK. Essential Oils and Their Application in Food Safety. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.653420] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Food industries are facing a great challenge due to contamination of food products with different microbes such as bacteria, fungi, viruses, parasites, etc. These microbes deteriorate food items by producing different toxins during pre- and postharvest processing. Mycotoxins are one of the most potent and well-studied toxic food contaminants of fungal origin, causing a severe health hazard to humans. The application of synthetic chemicals as food preservatives poses a real scourge in the present scenario due to their bio-incompatibility, non-biodegradability, and environmental non-sustainability. Therefore, plant-based antimicrobials, including essential oils, have developed cumulative interest as a potential alternative to synthetic preservatives because of their ecofriendly nature and generally recognized as safe status. However, the practical utilization of essential oils as an efficient antimicrobial in the food industry is challenging due to their volatile nature, less solubility, and high instability. The recent application of different delivery strategies viz. nanoencapsulation, active packaging, and polymer-based coating effectively addressed these challenges and improved the bioefficacy and controlled release of essential oils. This article provides an overview of essential oils for the preservation of stored foods against bacteria, fungi, and mycotoxins, along with the specialized mechanism of action and technological advancement by using different delivery systems for their effective application in food and agricultural industries smart green preservative.
Collapse
|
16
|
Kujur A, Kumar A, Prakash B. Elucidation of antifungal and aflatoxin B 1 inhibitory mode of action of Eugenia caryophyllata L. essential oil loaded chitosan nanomatrix against Aspergillus flavus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104755. [PMID: 33518049 DOI: 10.1016/j.pestbp.2020.104755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The present study investigated the novel antifungal, and anti-aflatoxin B1 mechanism of Eugenia caryophyllata L. essential oil (ECEO) loaded chitosan nanomatrix against the toxigenic strain of A. flavus (AFLV-DK-02). Phytochemical profiling of ECEO was done by GC-MS which revealed eugenol (73.6%) as the primary bioactive compound. ECEO was encapsulated inside the chitosan nanomatrix (ECEO-Np) and characterized using SEM, AFM, FTIR and XRD analysis. The ECEO-Np exhibited enhance antifungal (0.25 μL/mL) and anti-aflatoxin B1 inhibitory activity (0.15 μL/mL) than ECEO. Antifungal and antiaflatoxin B1 inhibitory activity was found to be related with impairment in the biological functioning of the plasma membrane (ergosterol synthesis, leakage of membrane ions, UV light (260, 280 nm) absorbing material, dead cell by propidium iodide assay, mitochondrial membrane potential (MMP), methylglyoxal and inhibition in essential carbon substrate utilization). ECEO-Np exhibited remarkable free radical scavenging activity with IC50 value of 0.002 μL/mL. ECEO-Np effectively preserves the sensory characteristics of exposed maize crop seed up to six months of storage and shows considerable safety profile (non-toxic, non-mutagenic, non-hepatotoxic, non-carcinogenic, non-tumorigenic and biodegradable) using computational ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis.
Collapse
Affiliation(s)
- Anupam Kujur
- Centre for Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akshay Kumar
- Centre for Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhanu Prakash
- Centre for Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
17
|
Exploration of some potential bioactive essential oil components as green food preservative. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Chaudhari AK, Singh VK, Das S, Dubey NK. Nanoencapsulation of essential oils and their bioactive constituents: A novel strategy to control mycotoxin contamination in food system. Food Chem Toxicol 2021; 149:112019. [PMID: 33508419 DOI: 10.1016/j.fct.2021.112019] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Spoilage of food by mycotoxigenic fungi poses a serious risk to food security throughout the world. In view of the negative effects of synthetic preservatives, essential oils (EOs) and their bioactive constituents are gaining momentum as suitable substitute to ensure food safety by controlling mycotoxins. However, despite their proven preservative potential against mycotoxins, the use of EOs/bioactive constituents in real food system is still restricted due to instability caused by abiotic factors and negative impact on organoleptic attributes after direct application. Nanoencapsulation in this regard could be a promising approach to address these problems, since the process can increase the stability of EOs/bioactive constituents, barricades their loss and considerably prevent their interaction with food matrices, thus preserving their original organoleptic qualities. The aim of this review is to provide wider and up-to-date overview on recent advances in nanoencapsulation of EOs/bioactive constituents with the objective to control mycotoxin contamination in food system. Further, the information on polymer characteristics, nanoencapsulation techniques, factors affecting the nanoencapsulation, applications of nanoencapsulated formulations, and characterization along with the study on their release kinetics and impacts on organoleptic attributes of food are discussed. Finally, the safety aspects of nanoencapsulated formulations for their safe utilization are also explored.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
19
|
Liu XS, Gao B, Li XL, Li WN, Qiao ZA, Han L. Chemical Composition and Antimicrobial and Antioxidant Activities of Essential Oil of Sunflower ( Helianthus annuus L.) Receptacle. Molecules 2020; 25:molecules25225244. [PMID: 33187052 PMCID: PMC7697854 DOI: 10.3390/molecules25225244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Sunflower (Helianthus annuus L.) contains active ingredients, such as flavonoids, alkaloids and tannins. Nevertheless, few studies have focused on essential oil from the receptacle of sunflower (SEO). In this work, we investigated the chemical composition and antimicrobial and antioxidant activities of SEO. The yield of SEO was about 0.42% (v/w) by hydrodistillation. A total of 68 volatile components of SEO were putatively identified by gas chromatography–mass spectrometry (GC-MS). The main constituents of SEO were α-pinene (26.00%), verbenone (7.40%), terpinolene (1.69%) and α-terpineol (1.27%). The minimum inhibitory concentration (MIC) of SEO against P. aeruginosa and S. aureus was 0.2 mg/mL. The MIC of SEO against S. cerevisiae was 3.2 mg/mL. The MIC of SEO against E. coli and Candida albicans was 6.4 mg/mL. The results showed that SEO had high antibacterial and antifungal activities. Three different analytical assays (DPPH, ABTS and iron ion reducing ability) were used to determine the antioxidant activities. The results showed that SEO had antioxidant activities. To summarize, the results in this study demonstrate the possibility for the development and application of SEO in potential natural preservatives and medicines due to its excellent antimicrobial and antioxidant activities.
Collapse
Affiliation(s)
- Xin-Sheng Liu
- School of Life Science, Jilin University, Changchun 130012, China; (X.-S.L.); (B.G.); (X.-L.L.); (W.-N.L.); (Z.-A.Q.)
| | - Bo Gao
- School of Life Science, Jilin University, Changchun 130012, China; (X.-S.L.); (B.G.); (X.-L.L.); (W.-N.L.); (Z.-A.Q.)
- Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Ministry of Education, Changchun 130012, China
| | - Xin-Lu Li
- School of Life Science, Jilin University, Changchun 130012, China; (X.-S.L.); (B.G.); (X.-L.L.); (W.-N.L.); (Z.-A.Q.)
| | - Wan-Nan Li
- School of Life Science, Jilin University, Changchun 130012, China; (X.-S.L.); (B.G.); (X.-L.L.); (W.-N.L.); (Z.-A.Q.)
| | - Zi-An Qiao
- School of Life Science, Jilin University, Changchun 130012, China; (X.-S.L.); (B.G.); (X.-L.L.); (W.-N.L.); (Z.-A.Q.)
| | - Lu Han
- School of Life Science, Jilin University, Changchun 130012, China; (X.-S.L.); (B.G.); (X.-L.L.); (W.-N.L.); (Z.-A.Q.)
- Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Ministry of Education, Changchun 130012, China
- Key Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Ministry of Education, Changchun 130012, China
- Correspondence: ; Tel.: +86-431-8515-5345; Fax: +86-431-8515-5127
| |
Collapse
|
20
|
Das S, Kumar Singh V, Kumar Dwivedy A, Kumar Chaudhari A, Deepika, Kishore Dubey N. Nanostructured Pimpinella anisum essential oil as novel green food preservative against fungal infestation, aflatoxin B 1 contamination and deterioration of nutritional qualities. Food Chem 2020; 344:128574. [PMID: 33218855 DOI: 10.1016/j.foodchem.2020.128574] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023]
Abstract
Application of synthetic preservatives to control the contamination of stored food commodities with aflatoxin B1 causing considerable loss in nutritional value is a major challenge. However, employment of essential oils for protecting food commodities is much limited due to high volatility, and increased susceptibility to oxidation. Therefore, objective of the present investigation was encapsulation of Pimpinella anisum essential oil in chitosan nanobiopolymer (CS-PAEO-Nm) to improve its bioefficacy, and sensorial suitability for application in food system. The synthesized CS-PAEO-Nm was characterized through SEM, FTIR, and XRD and evaluated for improved biological activity. The CS-PAEO-Nm exhibited improved antifungal (minimum inhibitory concentration = 0.08 μL/mL) and antiaflatoxigenic (minimum aflatoxin inhibitory concentration = 0.07 μL/mL) activities. CS-PAEO-Nm treatment significantly inhibited ergosterol, enhanced leakage of ions and induced impairment in defense enzymes (p < 0.05). In situ minerals and macronutrient preservation, and acceptable sensorial characteristics suggested possible recommendation of nanoencapsulated PAEO as potential safe green food preservative.
Collapse
Affiliation(s)
- Somenath Das
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vipin Kumar Singh
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Abhishek Kumar Dwivedy
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Chaudhari
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Deepika
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
21
|
Kujur A, Kumar A, Yadav A, Prakash B. Antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated Pelargonium graveolens L. essential oil and its mode of action. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109619] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Walsh DJ, Livinghouse T, Durling GM, Chase-Bayless Y, Arnold AD, Stewart PS. Sulfenate Esters of Simple Phenols Exhibit Enhanced Activity against Biofilms. ACS OMEGA 2020; 5:6010-6020. [PMID: 32226882 PMCID: PMC7098047 DOI: 10.1021/acsomega.9b04392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The recalcitrance exhibited by microbial biofilms to conventional disinfectants has motivated the development of new chemical strategies to control and eradicate biofilms. The activities of several small phenolic compounds and their trichloromethylsulfenyl ester derivatives were evaluated against planktonic cells and mature biofilms of Staphylococcus epidermidis and Pseudomonas aeruginosa. Some of the phenolic parent compounds are well-studied constituents of plant essential oils, for example, eugenol, menthol, carvacrol, and thymol. The potency of sulfenate ester derivatives was markedly and consistently increased toward both planktonic cells and biofilms. The mean fold difference between the parent and derivative minimum inhibitory concentration against planktonic cells was 44 for S. epidermidis and 16 for P. aeruginosa. The mean fold difference between the parent and derivative biofilm eradication concentration for 22 tested compounds against both S. epidermidis and P. aeruginosa was 3. This work demonstrates the possibilities of a new class of biofilm-targeting disinfectants deploying a sulfenate ester functional group to increase the antimicrobial potency toward microorganisms in biofilms.
Collapse
Affiliation(s)
- Danica J Walsh
- Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Tom Livinghouse
- Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Greg M Durling
- Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Yenny Chase-Bayless
- Fish and Wildlife, Montana State University, Bozeman, Montana 59717, United States
| | - Adrienne D Arnold
- Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, United States
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
23
|
Das S, Singh VK, Dwivedy AK, Chaudhari AK, Upadhyay N, Singh A, Dubey NK. Fabrication, characterization and practical efficacy of Myristica fragrans essential oil nanoemulsion delivery system against postharvest biodeterioration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110000. [PMID: 31787384 DOI: 10.1016/j.ecoenv.2019.110000] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The present study deals with encapsulation of Myristica fragrans essential oil (MFEO) into chitosan nano-matrix, their characterization and assessment of antimicrobial activity, aflatoxin inhibitory potential, safety profiling and in situ efficacy in stored rice as environment friendly effective preservative to control the postharvest losses of food commodities under storage. Surface morphology of MFEO-chitosan nanoemulsion as well as encapsulation of MFEO was confirmed through SEM, FTIR and XRD analysis. In vitro release characteristics with biphasic burst explained controlled volatilization from nanoencapsulated MFEO. Unencapsulated MFEO exhibited fungitoxicity against 15 food borne molds and inhibited aflatoxin B1 secretion by toxigenic Aspergillus flavus LHP R14 strain. In contrast, nanoencapsulated MFEO showed better fungitoxicity and inhibitory effect on aflatoxin biosynthesis at lower doses. In situ efficacy of unencapsulated and nanoencapsulated MFEO on stored rice seeds exhibited effective protection against fungal infestation, aflatoxin B1 contamination, and lipid peroxidation. Both the unencapsulated and nanoencapsulated MFEO did not affect the germination of stored rice seeds confirming non-phytotoxic nature. In addition, negligible mammalian toxicity of unencapsulated MFEO (LD50 = 14,289.32 μL/kg body weight) and MFEO loaded chitosan nanoemulsion (LD50 = 9231.89 μL/kg body weight) as revealed through favorable safety profile recommend the industrial significance of nanoencapsulated MFEO as an effective green alternative to environmentally hazardous synthetic pesticides for protection of food commodities during storage.
Collapse
Affiliation(s)
- Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Upadhyay
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|