1
|
Victor Atoki A, Aja PM, Shinkafi TS, Ondari EN, Adeniyi AI, Fasogbon IV, Dangana RS, Shehu UU, Akin-Adewumi A. Exploring the versatility of Drosophila melanogaster as a model organism in biomedical research: a comprehensive review. Fly (Austin) 2025; 19:2420453. [PMID: 39722550 DOI: 10.1080/19336934.2024.2420453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
Drosophila melanogaster is a highly versatile model organism that has profoundly advanced our understanding of human diseases. With more than 60% of its genes having human homologs, Drosophila provides an invaluable system for modelling a wide range of pathologies, including neurodegenerative disorders, cancer, metabolic diseases, as well as cardiac and muscular conditions. This review highlights key developments in utilizing Drosophila for disease modelling, emphasizing the genetic tools that have transformed research in this field. Technologies such as the GAL4/UAS system, RNA interference (RNAi) and CRISPR-Cas9 have enabled precise genetic manipulation, with CRISPR-Cas9 allowing for the introduction of human disease mutations into orthologous Drosophila genes. These approaches have yielded critical insights into disease mechanisms, identified novel therapeutic targets and facilitated both drug screening and toxicological studies. Articles were selected based on their relevance, impact and contribution to the field, with a particular focus on studies offering innovative perspectives on disease mechanisms or therapeutic strategies. Our findings emphasize the central role of Drosophila in studying complex human diseases, underscoring its genetic similarities to humans and its effectiveness in modelling conditions such as Alzheimer's disease, Parkinson's disease and cancer. This review reaffirms Drosophila's critical role as a model organism, highlighting its potential to drive future research and therapeutic advancements.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | | | | | | | - Umar Uthman Shehu
- Department of Physiology, Kampala International University, Ishaka, Uganda
| | | |
Collapse
|
2
|
Mocchetti A, De Rouck S, Naessens S, Dermauw W, Van Leeuwen T. SYNCAS based CRISPR-Cas9 gene editing in predatory mites, whiteflies and stinkbugs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 177:104232. [PMID: 39615800 DOI: 10.1016/j.ibmb.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
Despite the establishment of CRISPR-Cas9 gene editing protocols in a wide range of organisms, genetic engineering is still challenging for many organisms due to constraints including lethality of embryo injection, difficulties in egg/embryo collection or viviparous lifestyles. Recently, an efficient CRISPR-Cas9 method, termed SYNCAS, was developed to genetically modify spider mites and thrips species. The method is based on maternal injection of formulated CRISPR-Cas9 using saponin and BAPC. Here, we investigate whether the method can be used to perform gene editing in other arthropods such as the beneficial predatory mites Amblyseius swirskii and Phytoseiulus persimilis, and the pests Bemisia tabaci and Nezara viridula. For the predatory mites, Antp and SLC25A38 were used as target genes, while the ortholog of the Drosophila melanogaster ABCG transporter white was targeted in B. tabaci and N. viridula. All species were successfully edited with the highest efficiencies (up to 39%) being obtained for B. tabaci. For A. swirskii and P. persimilis no clear phenotypes could be observed, even though SLC25A38 was successfully knocked-out. The lack of a color phenotype in SLC25A38 mutants was confirmed in the spider mite Tetranychus urticae. Disruption of the target gene Antp is likely lethal in predatory mites, as no true null mutants could be recovered. For B. tabaci, KO of white resulted in orange eyes which diverges from the phenotype seen in white mutants of D. melanogaster. In the last species, N. viridula, a single phenotypic mutant could be detected having a patchy white body coloration with wild type eye coloration. Genotyping revealed a single amino acid deletion at the target site, suggesting the creation of a hypomorphic allele. To conclude, the protocols provided in this work can contribute to the genetic study of predatory mites used in biological control, as well as hemipteran pests.
Collapse
Affiliation(s)
- A Mocchetti
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - S De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - S Naessens
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - W Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - T Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| |
Collapse
|
3
|
Mottet C, Caddoux L, Fontaine S, Plantamp C, Bass C, Barrès B. Myzus persicae resistance to neonicotinoids-unravelling the contribution of different mechanisms to phenotype. PEST MANAGEMENT SCIENCE 2024; 80:5852-5863. [PMID: 39041680 DOI: 10.1002/ps.8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Deciphering the mechanisms underlying insecticide resistance is key to devising appropriate strategies against this economically important trait. Myzus persicae, the green peach-potato aphid, is a major pest that has evolved resistance to many insecticide classes, including neonicotinoids. M. persicae resistance to neonicotinoids has previously been shown to result from two main mechanisms: metabolic resistance resulting from P450 overexpression and a targetsite mutation, R81T. However, their respective contribution to resistant phenotypes remains unclear. RESULTS By combining extensive insecticide bioassays with and without addition of the synergist PBO, and gene copy number and expression quantification of two key P450 enzymes (CYP6CY3 and CYP6CY4) in a 23 clone collection, we, (i) confirmed that metabolic resistance is correlated with P450 expression level, up to a threshold, (ii) demonstrated that the R81T mutation, in the homozygous state and in combination with P450 overexpression, leads to high levels of resistance to neonicotinoids, and, (iii) showed that there is a synergistic interaction between the P450 and R81T mechanisms, and that this interaction has the strongest impact on the strength of resistance phenotypes. However, even though the R81T mutation has a great effect on the resistance phenotype, different R81T genotypes can exhibit variation in the level of resistance, explained only partially by P450 overexpression. CONCLUSION To comprehend resistance phenotypes, it is important to take into account every mechanism at play, as well as the way these mechanisms interact. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Claire Mottet
- Université de Lyon, Anses, INRAE, USC CASPER, Lyon, France
| | | | | | | | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Benoît Barrès
- Université de Lyon, Anses, INRAE, USC CASPER, Lyon, France
| |
Collapse
|
4
|
Toprak U, İnak E, Nauen R. Lipid Metabolism as a Target Site in Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39466572 DOI: 10.1007/5584_2024_822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of "lipid biosynthesis inhibitors", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).
Collapse
Affiliation(s)
- Umut Toprak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey.
| | - Emre İnak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
5
|
Charamis J, Balaska S, Ioannidis P, Dvořák V, Mavridis K, McDowell MA, Pavlidis P, Feyereisen R, Volf P, Vontas J. Comparative Genomics Uncovers the Evolutionary Dynamics of Detoxification and Insecticide Target Genes Across 11 Phlebotomine Sand Flies. Genome Biol Evol 2024; 16:evae186. [PMID: 39224065 PMCID: PMC11412322 DOI: 10.1093/gbe/evae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Sand flies infect more than 1 million people annually with Leishmania parasites and other bacterial and viral pathogens. Progress in understanding sand fly adaptations to xenobiotics has been hampered by the limited availability of genomic resources. To address this gap, we sequenced, assembled, and annotated the transcriptomes of 11 phlebotomine sand fly species. Subsequently, we leveraged these genomic resources to generate novel evolutionary insights pertaining to their adaptations to xenobiotics, including those contributing to insecticide resistance. Specifically, we annotated over 2,700 sand fly detoxification genes and conducted large-scale phylogenetic comparisons to uncover the evolutionary dynamics of the five major detoxification gene families: cytochrome P450s (CYPs), glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs), carboxyl/cholinesterases (CCEs), and ATP-binding cassette (ABC) transporters. Using this comparative approach, we show that sand flies have evolved diverse CYP and GST gene repertoires, with notable lineage-specific expansions in gene groups evolutionarily related to known xenobiotic metabolizers. Furthermore, we show that sand flies have conserved orthologs of (i) CYP4G genes involved in cuticular hydrocarbon biosynthesis, (ii) ABCB genes involved in xenobiotic toxicity, and (iii) two primary insecticide targets, acetylcholinesterase-1 (Ace1) and voltage gated sodium channel (VGSC). The biological insights and genomic resources produced in this study provide a foundation for generating and testing hypotheses regarding the molecular mechanisms underlying sand fly adaptations to xenobiotics.
Collapse
Affiliation(s)
- Jason Charamis
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Sofia Balaska
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Vít Dvořák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Pavlos Pavlidis
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens 11855, Greece
| |
Collapse
|
6
|
Li H, Wu S, Liu J, Chen Y, Meng L, Li B. Effects of CO 2 elevation on life-history traits of two insecticide-resistant strains of planthopper Nilaparvata lugens on rice. INSECT SCIENCE 2024. [PMID: 39034425 DOI: 10.1111/1744-7917.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024]
Abstract
We made separate experiments to examine life-history traits and activities of protective enzymes as affected by carbon dioxide (CO2) elevation to 780 μL/L as compared to 390 μL/L in imidacloprid- or buprofezin-resistant strains of the brown planthopper (BPH) Nilaparvata lugens. We found an interaction effect between resistance and the CO2 level on the nymphal survival and duration in both resistant strains. Nymphal durations in both resistant strains were much shorter in the resistant than susceptible BPH at 780 μL/L but similar between them or slightly shorter in the resistant than susceptible BPH at 390 μL/L. Nymphal survival was lower for imidacloprid-resistant than its susceptible BPH at 390 μL/L but higher at 780 μL/L; it stayed unaffected by the CO2 elevation in buprofezin-resistant BPH. We did not observe an interaction effect between resistance and the CO2 level on major reproductive parameters in both resistant strains. But the 2 strains were not consistent across CO2 levels in all parameters. Our measurements of protective enzyme activities of superoxide dismutase, catalase, and peroxidase showed an interaction between resistance and the CO2 level. Overall, these enzymes became similar in activity between resistant and susceptible BPH at 780 μL/L compared to 390 μL/L and the change was more distinct in the imidacloprid- than buprofezin-resistant BPH strains. Our findings suggest that CO2 elevation can affect life-history traits of insecticide-resistant BPH, while the effect may vary depending on the kind of insecticides it is resistant to.
Collapse
Affiliation(s)
- Hongran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shanshan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yong Chen
- College of Life and Environment Science, Huangshan College, Huangshan, Anhui, China
| | - Ling Meng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Baoping Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
İnak E, De Rouck S, Demirci B, Dermauw W, Geibel S, Van Leeuwen T. A novel target-site mutation (H146Q) outside the ubiquinone binding site of succinate dehydrogenase confers high levels of resistance to cyflumetofen and pyflubumide in Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 170:104127. [PMID: 38657708 DOI: 10.1016/j.ibmb.2024.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Mitochondrial electron transfer inhibitors at complex II (METI-II), also referred to as succinate dehydrogenase inhibitors (SDHI), represent a recently developed class of acaricides encompassing cyflumetofen, cyenopyrafen, pyflubumide and cyetpyrafen. Despite their novelty, resistance has already developed in the target pest, Tetranychus urticae. In this study a new mutation, H146Q in a highly conserved region of subunit B of complex II, was identified in a T. urticae population resistant to all METI-IIs. In contrast to previously described mutations, H146Q is located outside the ubiquinone binding site of complex II. Marker-assisted backcrossing of this mutation in a susceptible genetic background validated its association with resistance to cyflumetofen and pyflubumide, but not cyenopyrafen or cyetpyrafen. Biochemical assays and the construction of inhibition curves with isolated mitochondria corroborated this selectivity. In addition, phenotypic effects of H146Q, together with the previously described H258L, were further examined via CRISPR/Cas9 gene editing. Although both mutations were successfully introduced into a susceptible T. urticae population, the H146Q gene editing event was only recovered in individuals already harboring the I260V mutation, known to confer resistance towards cyflumetofen. The combination of H146Q + I260V conferred high resistance levels to all METI-II acaricides with LC50 values over 5000 mg a.i./L for cyflumetofen and pyflubumide. Similarly, the introduction of H258L via gene editing resulted in high resistance levels to all tested acaricides, with extreme LC50 values (>5000 mg a.i./L) for cyenopyrafen and cyetpyrafen, but lower resistance levels for pyflubumide and cyflumetofen. Together, these findings indicate that different mutations result in a different cross-resistance spectrum, probably also reflecting subtle differences in the binding mode of complex II acaricides.
Collapse
Affiliation(s)
- Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, 06135, Ankara, Turkey
| | - Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Berke Demirci
- Graduate School of Natural and Applied Sciences, Ankara University, 06110, Ankara, Turkey
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sven Geibel
- Bayer AG, Crop Science Division, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
8
|
Li J, Liu J, Peng L, Liu J, Xu L, He J, Sun L, Shen G, He L. Functional analysis of SDR112C1 associated with fenpropathrin tolerance in Tetranychus cinnabarinus (Boisduval). INSECT SCIENCE 2024. [PMID: 38926942 DOI: 10.1111/1744-7917.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Short-chain dehydrogenases/reductases (SDRs) are ubiquitously distributed across diverse organisms and play pivotal roles in the growth, as well as endogenous and exogenous metabolism of various substances, including drugs. The expression levels of SDR genes are reportedly upregulated in the fenpropathrin (FEN)-resistant (FeR) strain of Tetranychus cinnabarinus. However, the functions of these SDR genes in acaricide tolerance remain elusive. In this study, the activity of SDRs was found to be significantly higher (2.26-fold) in the FeR strain compared to the susceptible strain (SS) of T. cinnabarinus. A specific upregulated SDR gene, named SDR112C1, exhibited significant overexpression (3.13-fold) in the FeR population compared with that in the SS population. Furthermore, the expression of SDR112C1 showed a significant increase in the response to FEN induction. Additionally, knockdown of the SDR112C1 gene resulted in decreased SDR activity and reduced mite viability against FEN. Importantly, heterologous expression and in vitro incubation assays confirmed that recombinant SDR112C1 could effectively deplete FEN. Moreover, the overexpression of the SDR112C1 gene in Drosophila melanogaster significantly decreased the toxicity of FEN to transgenic fruit flies. These findings suggest that the overexpression of SDR SDR112C1 is a crucial factor contributing to FEN tolerance in T. cinnabarinus. This discovery not only enhances our understanding of SDR-mediated acaricide tolerance but also introduces a new family of detoxification enzymes to consider in practice, beyond cytochrome P450s, carboxyl/choline esterases and glutathione S-transferases.
Collapse
Affiliation(s)
- Jinhang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jialu Liu
- Key Scientific Research Base of Pest and Mold Control of Heritage Collection (Chongqing China Three Gorges Museum), State Administration of Cultural Heritage, Chongqing, China
| | - Lishu Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jingui Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Lin Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Junfeng He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Longjiang Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Zhang F, Zhang YC, Yu ZT, Zeng B, Sun H, Xie YQ, Zhu KY, Gao CF. The G932C mutation of chitin synthase 1 gene (CHS1) mediates buprofezin resistance as confirmed by CRISPR/Cas9-mediated knock-in approach in the brown planthopper, Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105953. [PMID: 38879307 DOI: 10.1016/j.pestbp.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024]
Abstract
The brown planthopper (Nilaparvata lugens) is a major destructive rice pest in Asia. High levels of insecticide resistance have been frequently reported, and the G932C mutation in the chitin synthase 1 (CHS1) gene has been found to mediate buprofezin resistance. However, there has been no direct evidence to confirm the functional significance of the single G932C substitution mutation leading to buprofezin resistance in N. lugens. Here, we successfully constructed a knock-in homozygous strain (Nl-G932C) of N. lugens using CRISPR/Cas9 coupled with homology-directed repair (HDR). Compared with the background strain susceptible to buprofezin (Nl-SS), the knock-in strain (Nl-G932C) showed a 94.9-fold resistance to buprofezin. Furthermore, resistant strains (Nl-932C) isolated from the field exhibited a 2078.8-fold resistance to buprofezin, indicating that there are other mechanisms contributing to buprofezin resistance in the field. Inheritance analysis showed that the resistance trait is incomplete dominance. In addition, the Nl-G932C strain had a relative fitness of 0.33 with a substantially decreased survival rate, emergence rate, and fecundity. This study provided in vivo functional evidence for the causality of G932C substitution mutation of CHS1 with buprofezin resistance and valuable information for facilitating the development of resistance management strategies in N. lugens. This is the first example of using CRISPR/Cas9 gene-editing technology in a hemipteran insect to directly confirm the role of a candidate target site mutation in insecticide resistance.
Collapse
Affiliation(s)
- Fan Zhang
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Yan-Chao Zhang
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Zhi-Tao Yu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Bing Zeng
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Hao Sun
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Yu-Qiu Xie
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
10
|
Sun H, Wang S, Liu C, Hu WK, Liu JW, Zheng LJ, Gao MY, Guo FR, Qiao ST, Liu JL, Sun B, Gao CF, Wu SF. Risk assessment, fitness cost, cross-resistance, and mechanism of tetraniliprole resistance in the rice stem borer, Chilo suppressalis. INSECT SCIENCE 2024; 31:835-846. [PMID: 37846895 DOI: 10.1111/1744-7917.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
The rice stem borer (RSB), Chilo suppressalis, a notorious rice pest in China, has evolved a high resistance level to commonly used insecticides. Tetraniliprole, a new anthranilic diamide insecticide, effectively controls multiple pests, including RSB. However, the potential resistance risk of RSB to tetraniliprole is still unknown. In this study, the tetraniliprole-selection (Tet-R) strain was obtained through 10 continuous generations of selection with tetraniliprole 30% lethal concentration (LC30). The realized heritability (h2) of the Tet-R strain was 0.387, indicating that resistance of RSB to tetraniliprole developed rapidly under the continuous selection of tetraniliprole. The Tet-R strain had a high fitness cost (relative fitness = 0.53). We established the susceptibility baseline of RSB to tetraniliprole (lethal concentration at LC50 = 0.727 mg/L) and investigated the resistance level of 6 field populations to tetraniliprole. All tested strains that had resistance to chlorantraniliprole exhibited moderate- to high-level resistance to tetraniliprole (resistance ratio = 27.7-806.8). Detection of ryanodine receptor (RyR) mutations showed that the Y4667C, Y4667D, I4758M, and Y4891F mutations were present in tested RSB field populations. RyR mutations were responsible for the cross-resistance between tetraniliprole and chlorantraniliprole. Further, the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated genome-modified flies were used to study the contribution of RyR mutations to tetraniliprole resistance. The order of contribution of a single RyR mutation to tetraniliprole resistance was Y4667D > G4915E > Y4667C ≈ I4758M > Y4891F. In addition, the I4758M and Y4667C double mutations conferred higher tetraniliprole resistance than single Y4667C mutations. These results can guide resistance management practices for diamides in RSB and other arthropods.
Collapse
Affiliation(s)
- Hao Sun
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Shuai Wang
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Chong Liu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Wen-Kai Hu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Jin-Wei Liu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Ling-Jun Zheng
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Meng-Yue Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Fang-Rui Guo
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Song-Tao Qiao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Jun-Li Liu
- Bayer Cropscience (China) Co., Ltd., Hangzhou, China
| | - Bo Sun
- Bayer Cropscience (China) Co., Ltd., Hangzhou, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| |
Collapse
|
11
|
Zhou T, Wu W, Ma S, Chen J, Huang J, Qiao X. Effects of RDL GABA Receptor Point Mutants on Susceptibility to Meta-Diamide and Isoxazoline Insecticides in Drosophila melanogaster. INSECTS 2024; 15:334. [PMID: 38786890 PMCID: PMC11122182 DOI: 10.3390/insects15050334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Ionotropic γ-aminobutyric acid (GABA) receptors in insects, specifically those composed of the RDL (resistant to dieldrin) subunit, serve as important targets for commonly used synthetic insecticides. These insecticides belong to various chemical classes, such as phenylpyrazoles, cyclodienes, meta-diamides, and isoxazolines, with the latter two potentially binding to the transmembrane inter-subunit pocket. However, the specific amino acid residues that contribute to the high sensitivity of insect RDL receptors to these novel insecticides remain elusive. In this study, we investigated the susceptibility of seven distinct Drosophila melanogaster Rdl point mutants against four meta-diamide and isoxazoline insecticides: isocycloseram, fluxametamide, fluralaner, and broflanilide. Our findings indicate that, despite exhibiting increased sensitivity to fluralaner in vitro, the RdlI276C mutant showed resistance to isocycloseram and fluxametamide. Similarly, the double-points mutant RdlI276F+G279S also showed decreased sensitivity to the tested isoxazolines. On the other hand, the RdlG335M mutant displayed high levels of resistance to all tested insecticides. Molecular modeling and docking simulations further supported these findings, highlighting similar binding poses for these insecticides. In summary, our research provides robust in vivo evidence supporting the idea that the inter-subunit amino acids within transmembrane M1 and M3 domains form the binding site crucial for meta-diamide and isoxazoline insecticide interactions. This study highlights the complex interplay between mutations and insecticide susceptibility, paving the way for more targeted pest control strategies.
Collapse
Affiliation(s)
- Tianhao Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (T.Z.); (W.W.); (S.M.); (J.H.)
| | - Weiping Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (T.Z.); (W.W.); (S.M.); (J.H.)
| | - Suhan Ma
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (T.Z.); (W.W.); (S.M.); (J.H.)
| | - Jie Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China;
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (T.Z.); (W.W.); (S.M.); (J.H.)
| | - Xiaomu Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (T.Z.); (W.W.); (S.M.); (J.H.)
- Xianghu Laboratory, Hangzhou 311231, China
| |
Collapse
|
12
|
Rehman MFU, Khan MM. Application of nanopesticides and its toxicity evaluation through Drosophila model. Bioprocess Biosyst Eng 2024; 47:1-22. [PMID: 37993740 DOI: 10.1007/s00449-023-02932-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2023] [Indexed: 11/24/2023]
Abstract
Insects feed on plants and cause the growth of plants to be restricted. Moreover, the application of traditional pesticides causes harmful effects on non-target organisms and poses serious threats to the environment. The use of conventional pesticides has negative impacts on creatures that are not the intended targets. It also presents significant risks to the surrounding ecosystem. Insects that are exposed to these chemicals eventually develop resistance to them. This review could benefit researcher for future development of nanopesticides research. This is because a holistic approach has been taken to describe the multidimensional properties of nanopesticides, health and environmental concerns and its possible harmful effects on non-target organisms and physiochemical entities. The assessment of effects of the nanopesticides is also being discussed through the drosophotoxicology. The future outlooks have been suggested to take a critical analysis before commercialization or formulation of the nanopesticides.
Collapse
Affiliation(s)
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam.
| |
Collapse
|
13
|
Courtier-Orgogozo V. The loci of insect phenotypic evolution. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101134. [PMID: 37858791 DOI: 10.1016/j.cois.2023.101134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Insects are important elements of terrestrial ecosystems because they pollinate plants, destroy crops, transmit diseases to livestock and humans, and are important components of food chains. Here, I used Gephebase, a manually curated database of genetic variants associated with natural and domesticated trait variation, to explore current knowledge about the genes and the mutations known to contribute to natural phenotypic variation in insects. Analysis of over 600 mutations reveals that data are concentrated toward certain species and traits and that experimental approaches have changed over time. The distribution of coding and cis-regulatory changes varies with traits, experimental approaches, and identified gene loci. Recent studies highlight the important role of standing variation, repeated mutations in hotspot genes, recombination, inversions, and introgression.
Collapse
|
14
|
Komal J, Desai HR, Samal I, Mastinu A, Patel RD, Kumar PVD, Majhi PK, Mahanta DK, Bhoi TK. Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:3961. [PMID: 38068598 PMCID: PMC10708123 DOI: 10.3390/plants12233961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024]
Abstract
Phytophagous insects pose a significant threat to global crop yield and food security. The need for increased agricultural output while reducing dependence on harmful synthetic insecticides necessitates the implementation of innovative methods. The utilization of CRISPR-Cas (Clustered regularly interspaced short palindromic repeats) technology to develop insect pest-resistant plants is believed to be a highly effective approach in reducing production expenses and enhancing the profitability of farms. Insect genome research provides vital insights into gene functions, allowing for a better knowledge of insect biology, adaptability, and the development of targeted pest management and disease prevention measures. The CRISPR-Cas gene editing technique has the capability to modify the DNA of insects, either to trigger a gene drive or to overcome their resistance to specific insecticides. The advancements in CRISPR technology and its various applications have shown potential in developing insect-resistant varieties of plants and other strategies for effective pest management through a sustainable approach. This could have significant consequences for ensuring food security. This approach involves using genome editing to create modified insects or crop plants. The article critically analyzed and discussed the potential and challenges associated with exploring and utilizing CRISPR-Cas technology for reducing insect pest pressure in crop plants.
Collapse
Affiliation(s)
- J. Komal
- Basic Seed Multiplication and Training Centre, Central Silk Board, Kharaswan 833216, Jharkhand, India;
| | - H. R. Desai
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - Ipsita Samal
- Indian Council of Agricultural Research-National Research Centre on Litchi, Mushahari, Ramna, Muzaffarpur 842002, Bihar, India;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
| | - R. D. Patel
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - P. V. Dinesh Kumar
- Research Extension Centre, Central Silk Board, Hoshangabad 461001, Madhya Pradesh, India;
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India;
| | - Deepak Kumar Mahanta
- Forest Entomology Discipline, Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Forest Research Institute (ICFRE-FRI), Dehradun 248006, Uttarakhand, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Arid Forest Research Institute (ICFRE-AFRI), Jodhpur 342005, Rajasthan, India
| |
Collapse
|
15
|
Zhao F, Ding X, Liu Z, Yan X, Chen Y, Jiang Y, Chen S, Wang Y, Kang T, Xie C, He M, Zheng J. Application of CRISPR/Cas9-based genome editing in ecotoxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122458. [PMID: 37633433 DOI: 10.1016/j.envpol.2023.122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Chemicals are widely used and released into the environment, and their degradation, accumulation, migration, and transformation processes in the environment can pose a threat to the ecosystem. The advancement in analytical methods with high-throughput screening of biomolecules has revolutionized the way toxicologists used to explore the effects of chemicals on organisms. CRISPR/Cas is a newly developed tool, widely used in the exploration of basic science and biologically engineered products given its high efficiency and low cost. For example, it can edit target genes efficiently, and save loss of the crop yield caused by environmental pollution as well as gain a better understanding of the toxicity mechanisms from various chemicals. This review briefly introduces the development history of CRISPR/Cas and summarizes the current application of CRISPR/Cas in ecotoxicology, including its application on improving crop yield and drug resistance towards agricultural pollution, antibiotic pollution and other threats. The benefits by applying the CRISPR/Cas9 system in conventional toxicity mechanism studies are fully demonstrated here together with its foreseeable expansions in other area of ecotoxicology. Finally, the prospects and disadvantages of CRISPR/Cas system in the field of ecotoxicology are also discussed.
Collapse
Affiliation(s)
- Fang Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China; School of Public Health, Guizhou Medical University, Guizhou, China
| | - Xiaofan Ding
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zimeng Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| | - Yanzhen Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yaxin Jiang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shunjie Chen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yuanfang Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tingting Kang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chun Xie
- School of Public Health, Guizhou Medical University, Guizhou, China
| | - Mian He
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Jing Zheng
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| |
Collapse
|
16
|
De Rouck S, İnak E, Dermauw W, Van Leeuwen T. A review of the molecular mechanisms of acaricide resistance in mites and ticks. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103981. [PMID: 37391089 DOI: 10.1016/j.ibmb.2023.103981] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 07/02/2023]
Abstract
The Arachnida subclass of Acari comprises many harmful pests that threaten agriculture as well as animal health, including herbivorous spider mites, the bee parasite Varroa, the poultry mite Dermanyssus and several species of ticks. Especially in agriculture, acaricides are often used intensively to minimize the damage they inflict, promoting the development of resistance. Beneficial predatory mites used in biological control are also subjected to acaricide selection in the field. The development and use of new genetic and genomic tools such as genome and transcriptome sequencing, bulked segregant analysis (QTL mapping), and reverse genetics via RNAi or CRISPR/Cas9, have greatly increased our understanding of the molecular genetic mechanisms of resistance in Acari, especially in the spider mite Tetranychus urticae which emerged as a model species. These new techniques allowed to uncover and validate new resistance mutations in a larger range of species. In addition, they provided an impetus to start elucidating more challenging questions on mechanisms of gene regulation of detoxification associated with resistance.
Collapse
Affiliation(s)
- Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapı, 06110, Ankara, Turkiye
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
17
|
Panteleri R, Anthousi A, Denecke S, Boaventura D, Nauen R, Vontas J. Transgenic Drosophila to Functionally Validate Fall Armyworm ABCC2 Mutations Conferring Bt Resistance. Toxins (Basel) 2023; 15:386. [PMID: 37368687 DOI: 10.3390/toxins15060386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith; Lepidoptera: Noctuidae) is an invasive agricultural pest with a global distribution, causing major crop losses annually. Its control strategies largely rely on chemical insecticides and transgenic crops expressing Bacillus thuringiensis insecticidal proteins (Cry and Vip toxins); however, the development of high resistance poses a significant issue. The ATP-binding cassette transporter C2 (ABCC2) has been linked to Cry toxin pore formation, acting as a receptor of some Cry toxins. Recently detected mutations in the SfABCC2 gene in extracellular loop 4 (ECL4) have been associated with Bt toxin resistance in FAW. In the present study, we expressed the SfABCC2 gene in Drosophila melanogaster, a species normally unaffected by the Bt toxins. We demonstrate that susceptibility can be introduced by the ectopic and tissue-specific expression of wildtype SfABCC2. Next, we introduced mutations into ECL4-both individually and in combination-that have been recently described in Brazilian FAW and functionally validated by toxicity bioassays against the foliar Bt product Xentari. Our results provide an efficient demonstration of the suitability of transgenic Drosophila for validating FAW ABCC2 resistance mutations in ECL4 against Bt toxins, and potential cross-resistance issues between closely related proteins that use ABCC2.
Collapse
Affiliation(s)
- Rafaela Panteleri
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71409 Heraklion, Greece
| | - Amalia Anthousi
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71409 Heraklion, Greece
| | - Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71409 Heraklion, Greece
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Debora Boaventura
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71409 Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
18
|
Gong C, Hasnain A, Wang Q, Liu D, Xu Z, Zhan X, Liu X, Pu J, Sun M, Wang X. Eco-friendly deacetylated chitosan base siRNA biological-nanopesticide loading cyromazine for efficiently controlling Spodoptera frugiperda. Int J Biol Macromol 2023; 241:124575. [PMID: 37100329 DOI: 10.1016/j.ijbiomac.2023.124575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Spodoptera frugiperda is a serious threat to various crops, such as corn and rice, and results in severe economic losses. Herein, a chitin synthase sfCHS highly expressed in the epidermis of S. frugiperda was screened, and when interfered by an sfCHS-siRNA nanocomplex, most individuals could not ecdysis (mortality rate 53.3 %) or pupate (abnormal pupation 80.6 %). Based on the results of structure-based virtual screening, cyromazine (CYR, binding free energy -57.285 kcal/mol) could inhibit ecdysis (LC50, 19.599 μg/g). CYR-CS/siRNA nanoparticles encapsulating CYR and SfCHS-siRNA with chitosan (CS) were successfully prepared, as confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and 74.9 mg/g CYR was characterized in the core of CYR-CS/siRNA by high-performance liquid chromatography and Fourier transform infrared spectroscopy. Small amounts of prepared CYR-CS/siRNA containing only 1.5 μg/g CYR could better inhibit chitin synthesis in the cuticle and peritrophic membrane (mortality rate 84.4 %). Therefore, chitosan/siRNA nanoparticle-loaded pesticides were useful for pesticide reduction and comprehensive control of S. frugiperda.
Collapse
Affiliation(s)
- Changwei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ali Hasnain
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiulin Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Dan Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengze Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxu Zhan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
19
|
King R, Buer B, Davies TGE, Ganko E, Guest M, Hassani-Pak K, Hughes D, Raming K, Rawlings C, Williamson M, Crossthwaite A, Nauen R, Field L. The complete genome assemblies of 19 insect pests of worldwide importance to agriculture. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105339. [PMID: 36963921 DOI: 10.1016/j.pestbp.2023.105339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
There are many insect pests worldwide that damage agricultural crop and reduce yield either by direct feeding or by the transmission of plant diseases. To date, control of pest insects has been achieved largely by applying synthetic insecticides. However, insecticide use can be seriously impacted by legislation that limits their use or by the evolution of resistance in the target pest. Thus, there is a move towards less use of insecticides and increased adoption of integrated pest management strategies using a wide range of non-chemical and chemical control methods. For good pest control there is a need to understand the mode of action and selectivity of insecticides, the life cycles of the pests and their biology and behaviours, all of which can benefit from good quality genome data. Here we present the complete assembled (chromosome level) genomes (incl. mtDNA) of 19 insect pests, Agriotes lineatus (click beetle/wireworm), Aphis gossypii (melon/cotton aphid), Bemisia tabaci (cotton whitefly), Brassicogethes aeneus (pollen beetle), Ceutorhynchus obstrictus (seedpod weevil), Chilo suppressalis (striped rice stem borer), Chrysodeixis includens (soybean looper), Diabrotica balteata (cucumber beetle), Diatraea saccharalis (sugar cane borer), Nezara viridula (green stink bug), Nilaparvata lugens (brown plant hopper), Phaedon cochleariae (mustard beetle), Phyllotreta striolata (striped flea beetle), Psylliodes chrysocephala (cabbage stem flea beetle), Spodoptera exigua (beet army worm), Spodoptera littoralis (cotton leaf worm), Diabrotica virgifera (western corn root worm), Euschistus heros (brown stink bug) and Phyllotreta cruciferae (crucifer flea beetle). For the first 15 of these we also present the annotation of genes encoding potential xenobiotic detoxification enzymes. This public resource will aid in the elucidation and monitoring of resistance mechanisms, the development of highly selective chemistry and potential techniques to disrupt behaviour in a way that limits the effect of the pests.
Collapse
Affiliation(s)
- Rob King
- Rothamsted Research, Harpenden, Herts AL52JQ, UK
| | - Benjamin Buer
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim, Germany
| | | | - Eric Ganko
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Marcus Guest
- Syngenta, Jealott's Hill Research Centre, Bracknell, Berks RG426EY, UK
| | | | - David Hughes
- Rothamsted Research, Harpenden, Herts AL52JQ, UK
| | - Klaus Raming
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim, Germany
| | | | | | | | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim, Germany.
| | - Linda Field
- Rothamsted Research, Harpenden, Herts AL52JQ, UK.
| |
Collapse
|
20
|
Sun H, Bu LA, Su SC, Guo D, Gao CF, Wu SF. Knockout of the odorant receptor co-receptor, orco, impairs feeding, mating and egg-laying behavior in the fall armyworm Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103889. [PMID: 36493964 DOI: 10.1016/j.ibmb.2022.103889] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The olfactory transduction system of insects is involved in multiple behavioral processes such as foraging, mating, and egg-laying behavior. In the insect olfactory receptor neurons (ORNs), the odorant receptor co-receptor (Orco) is an obligatory component that is required for dimerization with odorant receptors (ORs) to form a ligand-gated ion channel complex. The ORs/Orco heteromeric complex plays a crucial role in insect olfaction. To explore the function of OR-mediated olfaction in the physiological behavior of the fall armyworm, Spodoptera frugiperda, we applied CRISPR/Cas9 genome editing to mutate its Orco gene and constructed a homozygous mutant strain of Orco (Orco-/-) by genetic crosses. Electroantennogram (EAG) analysis showed that the responses of Orco-/- male moths to two universal sex pheromones, Z9-14: Ac and Z7-12: Ac, were abolished. We found that Orco-/- males cannot successfully mate with female moths. An oviposition preference assay confirmed that Orco-/- female moths had a reduced preference for the optimal host plant maize. A larval feeding assay revealed that the time for Orco-/- larvae to locate the food source was significantly longer than in the wild-type. Overall, in the absence of Orco, the OR-dependent olfactory behavior was impaired in both larval and adult stages. Our results confirm that Orco is essential for multiple behavioral processes related to olfaction in the fall armyworm.
Collapse
Affiliation(s)
- Hao Sun
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Ling-Ao Bu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Shao-Cong Su
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Di Guo
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
21
|
Schneeweiss A, Juvigny-Khenafou NPD, Osakpolor S, Scharmüller A, Scheu S, Schreiner VC, Ashauer R, Escher BI, Leese F, Schäfer RB. Three perspectives on the prediction of chemical effects in ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:21-40. [PMID: 36131639 DOI: 10.1111/gcb.16438] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The increasing production, use and emission of synthetic chemicals into the environment represents a major driver of global change. The large number of synthetic chemicals, limited knowledge on exposure patterns and effects in organisms and their interaction with other global change drivers hamper the prediction of effects in ecosystems. However, recent advances in biomolecular and computational methods are promising to improve our capacity for prediction. We delineate three idealised perspectives for the prediction of chemical effects: the suborganismal, organismal and ecological perspective, which are currently largely separated. Each of the outlined perspectives includes essential and complementary theories and tools for prediction but captures only part of the phenomenon of chemical effects. Links between the perspectives may foster predictive modelling of chemical effects in ecosystems and extrapolation between species. A major challenge for the linkage is the lack of data sets simultaneously covering different levels of biological organisation (here referred to as biological levels) as well as varying temporal and spatial scales. Synthesising the three perspectives, some central aspects and associated types of data seem particularly necessary to improve prediction. First, suborganism- and organism-level responses to chemicals need to be recorded and tested for relationships with chemical groups and organism traits. Second, metrics that are measurable at many biological levels, such as energy, need to be scrutinised for their potential to integrate across levels. Third, experimental data on the simultaneous response over multiple biological levels and spatiotemporal scales are required. These could be collected in nested and interconnected micro- and mesocosm experiments. Lastly, prioritisation of processes involved in the prediction framework needs to find a balance between simplification and capturing the essential complexity of a system. For example, in some cases, eco-evolutionary dynamics and interactions may need stronger consideration. Prediction needs to move from a static to a real-world eco-evolutionary view.
Collapse
Affiliation(s)
- Anke Schneeweiss
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | | | - Stephen Osakpolor
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Andreas Scharmüller
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
- Institut Terre et Environnement de Strasbourg (ITES), UMR 7063, CNRS-Université de Strasbourg-ENGEES, Strasbourg, France
| | - Sebastian Scheu
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Verena C Schreiner
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Roman Ashauer
- Syngenta Crop Protection AG, Basel, Switzerland
- Department of Environment and Geography, University of York, York, UK
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| |
Collapse
|
22
|
Singh S, Rahangdale S, Pandita S, Saxena G, Upadhyay SK, Mishra G, Verma PC. CRISPR/Cas9 for Insect Pests Management: A Comprehensive Review of Advances and Applications. AGRICULTURE 2022; 12:1896. [DOI: 10.3390/agriculture12111896] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Insect pests impose a serious threat to agricultural productivity. Initially, for pest management, several breeding approaches were applied which have now been gradually replaced by genome editing (GE) strategies as they are more efficient and less laborious. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-associated system) was discovered as an adaptive immune system of bacteria and with the scientific advancements, it has been improvised into a revolutionary genome editing technique. Due to its specificity and easy handling, CRISPR/Cas9-based genome editing has been applied to a wide range of organisms for various research purposes. For pest control, diverse approaches have been applied utilizing CRISPR/Cas9-like systems, thereby making the pests susceptible to various insecticides, compromising the reproductive fitness of the pest, hindering the metamorphosis of the pest, and there have been many other benefits. This article reviews the efficiency of CRISPR/Cas9 and proposes potential research ideas for CRISPR/Cas9-based integrated pest management. CRISPR/Cas9 technology has been successfully applied to several insect pest species. However, there is no review available which thoroughly summarizes the application of the technique in insect genome editing for pest control. Further, authors have highlighted the advancements in CRISPR/Cas9 research and have discussed its future possibilities in pest management.
Collapse
Affiliation(s)
- Sanchita Singh
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Department of Botany, University of Lucknow, Lucknow 226007, UP, India
| | - Somnath Rahangdale
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Shivali Pandita
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Department of Zoology, University of Lucknow, Lucknow 226007, UP, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow 226007, UP, India
| | | | - Geetanjali Mishra
- Department of Zoology, University of Lucknow, Lucknow 226007, UP, India
| | - Praveen C. Verma
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| |
Collapse
|
23
|
Tadatsu M, Sakashita R, Panteleri R, Douris V, Vontas J, Shimotsuma Y, Ishida T, Sudo M, Van Leeuwen T, Osakabe M. A mutation in chitin synthase I associated with etoxazole resistance in the citrus red mite Panonychus citri (Acari: Tetranychidae) and its uneven geographical distribution in Japan. PEST MANAGEMENT SCIENCE 2022; 78:4028-4036. [PMID: 35639971 DOI: 10.1002/ps.7021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND High-levels of etoxazole resistance have not yet been frequently reported in Panonychus citri. Although a highly resistant strain was discovered in 2014, etoxazole resistance has not become a significant problem in areas of citrus production in Japan. A target site mutation in chitin synthase 1 (CHS1), I1017F, is a major etoxazole-resistance factor in Tetranychus urticae. To investigate the mechanisms of etoxazole resistance and the dispersal of resistance genes, we analyzed target-site mutations in a highly resistant strain and their geographical distribution in Japan. RESULTS High-level etoxazole resistance was completely recessive. The I1017F mutation was detected in CHS1 of the highly resistant strain, and its frequency was correlated with the hatchability of eggs treated with etoxazole. Sequencing and variant frequency analyses of local populations by quantitative polymerase chain reaction revealed that I1017F is restricted to the Ariake Sea area of Kyushu Island. Although a new nonsynonymous substitution, S1016L, accompanied by I1017F was found in CHS1 of the highly resistant strain, CRISPR/Cas9 engineering of flies showed that S1016L had no effect on the etoxazole resistance conferred by I1017F. CONCLUSION I1017F is a major target site mutation that confers high-level etoxazole resistance on P. citri. Dispersion of I1017F possibly was suppressed as a result of the completely recessive inheritance of resistance together with low gene flow between local populations. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Misono Tadatsu
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryota Sakashita
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Rafaela Panteleri
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Crete, Greece
- Laboratory of Molecular Entomology, Department of Biology, University of Crete, Crete, Greece
| | - Vassilis Douris
- Department of Biological Applications and Technology, University of Ioannina and Institute of Biosciences, University Research Center of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology Hellas, Ioannina, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Crete, Greece
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Yushi Shimotsuma
- Agro-Science Research Center, Kyoyu Agri Co., Ltd., Nagano, Japan
| | - Tatsuya Ishida
- Agro-Science Research Center, Kyoyu Agri Co., Ltd., Nagano, Japan
| | - Masaaki Sudo
- Division of Fruit Tree and Tea Pest Control Research, Institute for Plant Protection, NARO, Kanaya Tea Research Station, Shimada, Japan
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Souza D, Christensen SA, Wu K, Buss L, Kleckner K, Darrisaw C, Shirk PD, Siegfried BD. RNAi-induced knockdown of white gene in the southern green stink bug (Nezara viridula L.). Sci Rep 2022; 12:10396. [PMID: 35729244 PMCID: PMC9213411 DOI: 10.1038/s41598-022-14620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022] Open
Abstract
The southern green stink bug (SGSB) Nezara viridula L. is one of the most common stink bug species in the United States and can cause significant yield loss in a variety of crops. A suitable marker for the assessment of gene-editing tools in SGSB has yet to be characterized. The white gene, first documented in Drosophila, has been a useful target to assess the efficiency of introduced mutations in many species as it controls pigmentation processes and mutants display readily identifiable phenotypes. In this study we used the RNAi technique to investigate functions and phenotypes associated with the white ortholog in the SGSB and to validate white as a marker for genetic transformation in this species. This study revealed that white may be a suitable marker for germline transformation in the SGSB as white transcript knockdown was not lethal, did not impair embryo development and provided a distinguishable phenotype. Our results demonstrated that the white ortholog in SGSB is involved in the pathway for ommochrome synthesis and suggested additional functions of this gene such as in the integument composition, management of hemolymph compounds and riboflavin mobilization.
Collapse
Affiliation(s)
- Dariane Souza
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA. .,Syngenta Crop Protection AG, WST-540.1.17 Schaffhauserstrasse, 4332, Stein, Switzerland.
| | - Shawn A Christensen
- USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, 32608, USA
| | - Ke Wu
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Lyle Buss
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Kaylin Kleckner
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Constance Darrisaw
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Paul D Shirk
- USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, 32608, USA
| | - Blair D Siegfried
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| |
Collapse
|
25
|
Zuo YY, Xue YX, Wang ZY, Ren X, Aioub AAA, Wu YD, Yang YH, Hu ZN. Knockin of the G275E mutation of the nicotinic acetylcholine receptor (nAChR) α6 confers high levels of resistance to spinosyns in Spodoptera exigua. INSECT SCIENCE 2022; 29:478-486. [PMID: 33998150 DOI: 10.1111/1744-7917.12922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Spinosyns, including spinosad and spinetoram, act on the insect central nervous system, gradually paralyzing or destroying the target insect. Spinosad resistance is associated with loss-of-function mutations in the nicotinic acetylcholine receptor (nAChR) α6 subunit in a number of agricultural pests. Using gene editing, nAChR α6 has been verified as a target for spinosyns in five insect species. Recently, a point mutation (G275E) in exon 9 of nAChR α6 was identified in spinosad-resistant strains of Thrips palmi and Tuta absoluta. To date, no in vivo functional evidence has been obtained to support that this mutation is involved in spinosyn resistance in lepidopteran pests. In this study, the G275E mutation was introduced into the nAChR of Spodoptera exigua using clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9) gene-editing technology. Reverse transcriptase-polymerase chain reaction and sequencing confirmed that this mutation was present in exon 9 of the nAChR transcripts in the edited 275E strain. The results of bioassays showed that the 275E strain was highly resistant to spinosad (230-fold) and spinetoram (792-fold) compared to the unedited background strain, directly confirming that the G275E mutation of the nAChR α6 subunit confers high levels of spinosyn resistance in S. exigua. Inheritance analysis showed that the resistance trait is autosomal and incompletely recessive. This study employs a reverse genetics approach to validate the functional role played by the G275E mutation in nAChR α6 of S. exigua in spinosyns resistance and provides another example of the use of CRISPR/Cas9 gene-editing technology to confirm the role played by candidate target site mutations in insecticide resistance.
Collapse
Affiliation(s)
- Ya-Yun Zuo
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu-Xin Xue
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Ze-Yu Wang
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Xuan Ren
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Yi-Dong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi-Hua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhao-Nong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi, 712100, China
| |
Collapse
|
26
|
Parsons GJI, Lees RS, Balaska S, Vontas J. A Practical Insecticide Resistance Monitoring Bioassay for Orally Ingested Dinotefuran in Anopheles Malaria Vectors. INSECTS 2022; 13:insects13040311. [PMID: 35447753 PMCID: PMC9025404 DOI: 10.3390/insects13040311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023]
Abstract
Attractive Toxic Sugar Baits (ATSB) deployed outdoors are likely to be particularly effective against outdoor biting mosquitoes and, if they contain insecticides with a different mode of action, mosquitoes resistant to pyrethroids. One such ATSB based on the neonicotinoid dinotefuran is currently under evaluation in Africa. As with any insecticide-based intervention, it will be important to monitor for the possible emergence of vector resistance. While methods for detecting resistance to insecticides via tarsal contact are recommended by the World Health Organization (WHO), these may not be applicable for orally ingested insecticides. Here, a new ingestion assay, appropriate for a controlled laboratory setting, is described using fluorescein sodium salt (uranine) as a feeding marker. Conventional topical application bioassays, more appropriate for routine deployment, have also been used to apply dinotefuran to the thorax of adult Anopheles mosquitoes with an organic carrier to bypass lipid cuticle barriers. The two methods were compared by establishing lethal doses (LD) in several Anopheles strains. The similarity of the ratios of susceptibility to dinotefuran between pairs of pyrethroid susceptible and resistant strains validates topical application as a suitable, more practical and field applicable method for monitoring for the emergence of resistance to orally ingested dinotefuran. A discriminating dose is proposed, which will be further validated against field populations and used to routinely monitor for the emergence of resistance alongside ATSB trials.
Collapse
Affiliation(s)
- George John Ian Parsons
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
| | - Rosemary Susan Lees
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK
- Correspondence:
| | - Sofia Balaska
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100 Heraklion, Greece; (S.B.); (J.V.)
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100 Heraklion, Greece; (S.B.); (J.V.)
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
27
|
Papapostolou KM, Riga M, Samantsidis GR, Skoufa E, Balabanidou V, Van Leeuwen T, Vontas J. Over-expression in cis of the midgut P450 CYP392A16 contributes to abamectin resistance in Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103709. [PMID: 34995778 DOI: 10.1016/j.ibmb.2021.103709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 mediated metabolism is a well-known mechanism of insecticide resistance. However, to what extent qualitative or quantitative changes are responsible for increased metabolism, is not well understood. Increased expression of P450 genes is most often reported, but the underlying regulatory mechanisms remain widely unclear. In this study, we investigate CYP392A16, a P450 from the polyphagous and major agricultural pest Tetranychus urticae. High expression levels of CYP392A16 and in vitro metabolism assays have previously associated this P450 with abamectin resistance. Here, we show that CYP392A16 is primarily localized in the midgut epithelial cells, as indicated by immunofluorescence analysis, a finding also supported by a comparison between feeding and contact toxicity bioassays. Silencing via RNAi of CYP392A16 in a highly resistant T. urticae population reduced insecticide resistance levels from 3400- to 1900- fold, compared to the susceptible reference strain. Marker-assisted backcrossing, using a single nucleotide polymorphism (SNP) found in the CYP392A16 allele from the resistant population, was subsequently performed to create congenic lines bearing this gene in a susceptible genetic background. Toxicity assays indicated that the allele derived from the resistant strain confers 3.6-fold abamectin resistance compared to the lines with susceptible genetic background. CYP392A16 is over-expressed at the same levels in these lines, pointing to cis-regulation of gene expression. In support of that, functional analysis of the putative promoter region from the resistant and susceptible parental strains revealed a higher reporter gene expression, confirming the presence of cis-acting regulatory mechanisms.
Collapse
Affiliation(s)
- Kyriaki Maria Papapostolou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Maria Riga
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece.
| | - George-Rafael Samantsidis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Evangelia Skoufa
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000, Ghent, Belgium
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece.
| |
Collapse
|
28
|
Samantsidis GR, Denecke S, Swevers L, Skavdis G, Geibel S, Vontas J. Identification of Helicoverpa armigera promoters for biotechnological applications. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103725. [PMID: 35093501 DOI: 10.1016/j.ibmb.2022.103725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Helicoverpa armigera and Helicoverpa zea are highly polyphagous major agricultural pests with a global distribution. Their control is based on insecticides, however, new, effective, and environmentally friendly control tools are required to be developed and validated. In an effort to facilitate the development of advanced biotechnological tools in these species that will take advantage of new powerful molecular biology techniques like CRISPR/Cas9, we used available transcriptomic data and literature resources, in order to identify RNA polymerase II and III promoters active in RP-HzGUT-AW1(MG), a midgut derived cell line from Helicoverpa zea. Following functional analysis in insect cell lines, four RNA polymerase II promoters from the genes HaLabial, HaTsp-2A, HaPtx-I and HaCaudal were found to exhibit high transcriptional activity in vitro. The HaTsp-2A promoter did not exhibit any activity in the non-midgut derived cell lines Sf-9 and Hi-5 despite high sequence conservation among Lepidoptera, suggesting that it may function in a gut specific manner. Furthermore, considering the utility of RNA polymerase III U6 promoters in methodologies such as RNAi and CRISPR/Cas9, we identified and evaluated four different U6 promoters of H. armigera. In vitro experiments based on luciferase and GFP reporter assays, as well as in vivo experiments targeting an essential gene of Helicoverpa, indicate that these U6 promoters are functional and can be used to experimentally silence or knockout target genes through the expression of shRNAs and sgRNAs respectively. Taking our findings together, we provide a set of promoters useful for the genetic manipulation of Helicoverpa species, that can be used in various applications in the context of agricultural biotechnology.
Collapse
Affiliation(s)
- George-Rafael Samantsidis
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, 15310, Athens, Greece
| | - George Skavdis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Sven Geibel
- R&D Pest Control, Bayer AG, Crop Science Division, Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Pesticide Science Lab, Department of Crop Science, Agricultural University of Athens, Greece.
| |
Collapse
|
29
|
Kaduskar B, Kushwah RBS, Auradkar A, Guichard A, Li M, Bennett JB, Julio AHF, Marshall JM, Montell C, Bier E. Reversing insecticide resistance with allelic-drive in Drosophila melanogaster. Nat Commun 2022; 13:291. [PMID: 35022402 PMCID: PMC8755802 DOI: 10.1038/s41467-021-27654-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022] Open
Abstract
A recurring target-site mutation identified in various pests and disease vectors alters the voltage gated sodium channel (vgsc) gene (often referred to as knockdown resistance or kdr) to confer resistance to commonly used insecticides, pyrethroids and DDT. The ubiquity of kdr mutations poses a major global threat to the continued use of insecticides as a means for vector control. In this study, we generate common kdr mutations in isogenic laboratory Drosophila strains using CRISPR/Cas9 editing. We identify differential sensitivities to permethrin and DDT versus deltamethrin among these mutants as well as contrasting physiological consequences of two different kdr mutations. Importantly, we apply a CRISPR-based allelic-drive to replace a resistant kdr mutation with a susceptible wild-type counterpart in population cages. This successful proof-of-principle opens-up numerous possibilities including targeted reversion of insecticide-resistant populations to a native susceptible state or replacement of malaria transmitting mosquitoes with those bearing naturally occurring parasite resistant alleles. Insecticide resistance (IR) poses a major global health challenge. Here, the authors generate common IR mutations in laboratory Drosophila strains and use a CRISPR-based allelic-drive to replace an IR allele with a susceptible wild-type counterpart, providing a potent new tool for vector control.
Collapse
Affiliation(s)
- Bhagyashree Kaduskar
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India.,Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Raja Babu Singh Kushwah
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India.,Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Menglin Li
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Jared B Bennett
- Biophysics Graduate Group, Division of Biological Sciences, College of Letters and Science, University of California, Berkeley, CA, 94720, USA
| | | | - John M Marshall
- Division of Biostatistics and Epidemiology - School of Public Health, University of California, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Craig Montell
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA. .,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
30
|
Nauen R, Bass C, Feyereisen R, Vontas J. The Role of Cytochrome P450s in Insect Toxicology and Resistance. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:105-124. [PMID: 34590892 DOI: 10.1146/annurev-ento-070621-061328] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect cytochrome P450 monooxygenases (P450s) perform a variety of important physiological functions, but it is their role in the detoxification of xenobiotics, such as natural and synthetic insecticides, that is the topic of this review. Recent advances in insect genomics and postgenomic functional approaches have provided an unprecedented opportunity to understand the evolution of insect P450s and their role in insect toxicology. These approaches have also been harnessed to provide new insights into the genomic alterations that lead to insecticide resistance, the mechanisms by which P450s are regulated, and the functional determinants of P450-mediated insecticide resistance. In parallel, an emerging body of work on the role of P450s in defining the sensitivity of beneficial insects to insecticides has been developed. The knowledge gained from these studies has applications for the management of P450-mediated resistance in insect pests and can be leveraged to safeguard the health of important beneficial insects.
Collapse
Affiliation(s)
- Ralf Nauen
- Crop Science Division R&D, Bayer AG, D-40789 Monheim, Germany;
| | - Chris Bass
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom;
| | - René Feyereisen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium;
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - John Vontas
- Department of Crop Science, Agricultural University of Athens, GR-11855 Athens, Greece;
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, GR-700 13 Heraklion, Crete, Greece
| |
Collapse
|
31
|
Feng C, Nita-Lazar M, González-Montalbán N, Wang J, Mancini J, Wang S, Ravindran C, Ahmed H, Vasta GR. Manipulating Galectin Expression in Zebrafish (Danio rerio). Methods Mol Biol 2022; 2442:425-443. [PMID: 35320539 DOI: 10.1007/978-1-0716-2055-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Techniques for disrupting gene expression are invaluable tools for the analysis of the biological role of a gene product. Because of its genetic tractability and multiple advantages over conventional mammalian models, the zebrafish (Danio rerio) is recognized as a powerful system for gaining new insight into diverse aspects of human health and disease. Among the multiple mammalian gene families for which the zebrafish has shown promise as an invaluable model for functional studies, the galectins have attracted great interest due to their participation in early development, regulation of immune homeostasis, and recognition of microbial pathogens. Galectins are β-galactosyl-binding lectins with a characteristic sequence motif in their carbohydrate recognition domains (CRDs), that constitute an evolutionary conserved family ubiquitous in eukaryotic taxa. Galectins are emerging as key players in the modulation of many important pathological processes, which include acute and chronic inflammatory diseases, autoimmunity and cancer, thus making them potential molecular targets for innovative drug discovery. Here, we provide a review of the current methods available for the manipulation of gene expression in the zebrafish, with a focus on gene knockdown [morpholino (MO)-derived antisense oligonucleotides] and knockout (CRISPR-Cas) technologies.
Collapse
Affiliation(s)
- Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Mihai Nita-Lazar
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Nuria González-Montalbán
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Jingyu Wang
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Justin Mancini
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Sheng Wang
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chinnarajan Ravindran
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
- Department of Marine Biotechnology, National Institute of Oceanography (CSIR), Dona Paula, Goa, India
| | - Hafiz Ahmed
- Department of Biochemistry, School of Medicine, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
32
|
Baci GM, Cucu AA, Giurgiu AI, Muscă AS, Bagameri L, Moise AR, Bobiș O, Rațiu AC, Dezmirean DS. Advances in Editing Silkworms ( Bombyx mori) Genome by Using the CRISPR-Cas System. INSECTS 2021; 13:28. [PMID: 35055871 PMCID: PMC8777690 DOI: 10.3390/insects13010028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) represents a powerful genome editing technology that revolutionized in a short period of time numerous natural sciences branches. Therefore, extraordinary progress was made in various fields, such as entomology or biotechnology. Bombyx mori is one of the most important insects, not only for the sericulture industry, but for numerous scientific areas. The silkworms play a key role as a model organism, but also as a bioreactor for the recombinant protein production. Nowadays, the CRISPR-Cas genome editing system is frequently used in order to perform gene analyses, to increase the resistance against certain pathogens or as an imaging tool in B. mori. Here, we provide an overview of various studies that made use of CRISPR-Cas for B. mori genome editing, with a focus on emphasizing the high applicability of this system in entomology and biological sciences.
Collapse
Affiliation(s)
- Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Alexandra-Antonia Cucu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Alexandru-Ioan Giurgiu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Adriana-Sebastiana Muscă
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Lilla Bagameri
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Otilia Bobiș
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | | | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| |
Collapse
|
33
|
Luong HNB, Damijonaitis A, Nauen R, Vontas J, Horstmann S. Assessing the anti-resistance potential of public health vaporizer formulations and insecticide mixtures with pyrethroids using transgenic Drosophila lines. Parasit Vectors 2021; 14:495. [PMID: 34565459 PMCID: PMC8474913 DOI: 10.1186/s13071-021-04997-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insecticide resistance-and especially pyrethroid resistance-is a major challenge for vector control in public health. The use of insecticide mixtures utilizing alternative modes of action, as well as new formulations facilitating their uptake, is likely to break resistance and slow the development of resistance. METHODS We used genetically defined highly resistant lines of Drosophila melanogaster with distinct target-site mutations and detoxification enzymes to test the efficacy and anti-resistance potential of novel mixture formulations (i.e. Fludora® Fusion consisting of deltamethrin and clothianidin), as well as emulsifiable concentrate transfluthrin, compared to alternative, currently used pyrethroid insecticide formulations for vector control. RESULTS The commercial mixture Fludora® Fusion, consisting of both a pyrethroid (deltamethrin) and a neonicotinoid (clothianidin), performed better than either of the single active ingredients against resistant transgenic flies. Transfluthrin, a highly volatile active ingredient with a different molecular structure and primary exposure route (respiration), was also efficient and less affected by the combination of metabolic and target-site resistance. Both formulations substantially reduced insecticide resistance across different pyrethroid-resistant Drosophila transgenic strains. CONCLUSIONS The use of mixtures containing two unrelated modes of action as well as a formulation based on transfluthrin showed increased efficacy and resistance-breaking potential against genetically defined highly resistant Drosophila flies. The experimental model remains to be validated with mosquito populations in the field. The possible introduction of new transfluthrin-based products and mixtures for indoor residual spraying, in line with other combination and mixture vector control products recently evaluated for use in public health, will provide solutions for better insecticide resistance management.
Collapse
Affiliation(s)
- Hang Ngoc Bao Luong
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | | | - Ralf Nauen
- Crop Science Division, R&D, Bayer AG, Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.
| | | |
Collapse
|
34
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
35
|
CRISPR/Cas9 modified An. gambiae carrying kdr mutation L1014F functionally validate its contribution in insecticide resistance and combined effect with metabolic enzymes. PLoS Genet 2021; 17:e1009556. [PMID: 34228718 PMCID: PMC8284791 DOI: 10.1371/journal.pgen.1009556] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/16/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
Insecticide resistance in Anopheles mosquitoes is a major obstacle in maintaining the momentum in reducing the malaria burden; mitigating strategies require improved understanding of the underlying mechanisms. Mutations in the target site of insecticides (the voltage gated sodium channel for the most widely used pyrethroid class) and over-expression of detoxification enzymes are commonly reported, but their relative contribution to phenotypic resistance remain poorly understood. Here we present a genome editing pipeline to introduce single nucleotide polymorphisms in An. gambiae which we have used to study the effect of the classical kdr mutation L1014F (L995F based on An. gambiae numbering), one of the most widely distributed resistance alleles. Introduction of 1014F in an otherwise fully susceptible genetic background increased levels of resistance to all tested pyrethroids and DDT ranging from 9.9-fold for permethrin to >24-fold for DDT. The introduction of the 1014F allele was sufficient to reduce mortality of mosquitoes after exposure to deltamethrin treated bednets, even as the only resistance mechanism present. When 1014F was combined with over-expression of glutathione transferase Gste2, resistance to permethrin increased further demonstrating the critical combined effect between target site resistance and detoxification enzymes in vivo. We also show that mosquitoes carrying the 1014F allele in homozygosity showed fitness disadvantages including increased mortality at the larval stage and a reduction in fecundity and adult longevity, which can have consequences for the strength of selection that will apply to this allele in the field. Escalation of pyrethroid resistance in Anopheles mosquitoes threatens to reduce the effectiveness of our most important tools in malaria control. Studying the mechanisms underlying insecticide resistance is critical to design mitigation strategies. Here, using genome modified mosquitoes, we functionally characterize the most prevalent mutation in resistant mosquitoes, showing that it confers substantial levels of resistance to all tested pyrethroids and undermines the performance of pyrethroid-treated nets. Furthermore, we show that combining this mutation with elevated levels of a detoxification enzyme further increases resistance. The pipeline we have developed provides a robust approach to quantifying the contribution of different combinations of resistance mechanisms to the overall phenotype, providing the missing link between resistance monitoring and predictions of resistance impact.
Collapse
|
36
|
Xue W, Mermans C, Papapostolou KM, Lamprousi M, Christou IK, Inak E, Douris V, Vontas J, Dermauw W, Van Leeuwen T. Untangling a Gordian knot: the role of a GluCl3 I321T mutation in abamectin resistance in Tetranychus urticae. PEST MANAGEMENT SCIENCE 2021; 77:1581-1593. [PMID: 33283957 DOI: 10.1002/ps.6215] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The cys-loop ligand-gated ion channels, including the glutamate-gated chloride channel (GluCl) and GABA-gated chloride channel (Rdl) are important targets for drugs and pesticides. The macrocyclic lactone abamectin primarily targets GluCl and is commonly used to control the spider mite Tetranychus urticae, an economically important crop pest. However, abamectin resistance has been reported for multiple T. urticae populations worldwide, and in several cases was associated with the mutations G314D in GluCl1 and G326E in GluCl3. Recently, an additional I321T mutation in GluCl3 was identified in several abamectin resistant T. urticae field populations. Here, we aim to functionally validate this mutation and determine its phenotypic strength. RESULTS The GluCl3 I321T mutation was introgressed into a T. urticae susceptible background by marker-assisted backcrossing, revealing contrasting results in phenotypic strength, ranging from almost none to 50-fold. Next, we used CRISPR-Cas9 to introduce I321T, G314D and G326E in the orthologous Drosophila GluCl. Genome modified flies expressing GluCl I321T were threefold less susceptible to abamectin, while CRISPRed GluCl G314D and G326E flies were lethal. Last, functional analysis in Xenopus oocytes revealed that the I321T mutation might reduce GluCl3 sensitivity to abamectin, but also suggested that all three T. urticae Rdls are affected by abamectin. CONCLUSION Three different techniques were used to characterize the role of I321T in GluCl3 in abamectin resistance and, combining all results, our analysis suggests that the I321T mutation has a complex role in abamectin resistance. Given the reported subtle effect, additional synergistic factors in resistance warrant more investigation. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenxin Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Catherine Mermans
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kyriaki-Maria Papapostolou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Mantha Lamprousi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Iason-Konstantinos Christou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Emre Inak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
Swevers L, Denecke S, Vogelsang K, Geibel S, Vontas J. Can the mammalian organoid technology be applied to the insect gut? PEST MANAGEMENT SCIENCE 2021; 77:55-63. [PMID: 32865304 DOI: 10.1002/ps.6067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Mammalian intestinal organoids are multicellular structures that closely resemble the structure of the intestinal epithelium and can be generated in vitro from intestinal stem cells under appropriate culture conditions. This technology has transformed pharmaceutical research and drug development in human medicine. For the insect gut, no biotechnological platform equivalent to organoid cultures has been described yet. Comparison of the regulation of intestinal homeostasis and growth between insects and mammals has revealed significant similarities but also important differences. In contrast to mammals, the differentiation potential of available insect cell lines is limited and can not be exploited for in vitro permeability assays to measure the uptake of insecticides. The successful development of in vitro models could be a result of the emergence of molecular mechanisms of self-organization and signaling in the intestine that are unique to mammals. It is nevertheless considered that the technology gap is a consequence of vast differences in knowledge, particularly with respect to culture conditions that maintain the differentation potential of insect midgut cells. From the viewpoint of pest control, advanced in vitro models of the insect midgut would be very desirable because of its key barrier function for orally ingested insecticides with hemolymphatic target and its role in insecticide resistance. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Agia Paraskevi, 15341, Greece
| | - Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | | | - Sven Geibel
- Bayer AG, Crop Science Devision, R&D Pest Control, Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
38
|
Co-Expression of a Homologous Cytochrome P450 Reductase Is Required for In Vivo Validation of the Tetranychus urticae CYP392A16-Based Abamectin Resistance in Drosophila. INSECTS 2020; 11:insects11120829. [PMID: 33255521 PMCID: PMC7761253 DOI: 10.3390/insects11120829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/20/2023]
Abstract
Simple Summary The two-spotted spider mite, Tetranychus urticae, is one of the most damaging agricultural pests worldwide, feeding on over 1100 plant species and causing extensive damage to several crops. Chemical acaricides remain the most widely used strategy to control this pest. However, T. urticae has developed significant resistance to numerous acaricide compounds, due to certain features of mite biology and extensive acaricide applications that lead to the selection of resistant pests and subsequently the emergence of resistant populations. Several molecular/genetic mechanisms may contribute to these highly resistant phenotypes. Such mechanisms frequently involve expression of P450 detoxification enzymes, which act together with a partner protein named cytochrome P450 reductase (CPR). In this study, we investigated the potential of a mite P450 enzyme, CYP392A16, to confer resistance to the acaricide abamectin in vivo, when expressed in tissues of the model fruit fly Drosophila melanogaster. We confirmed that expression of this enzyme contributes to abamectin resistance in the fruit fly model, but only when a homologous mite CPR is co-expressed. Our findings indicate that the Drosophila model system can be engineered to facilitate validation of the candidate mite P450s, in order to elucidate resistance mechanisms and their underlying interactions. Abstract Overexpression of the cytochrome P450 monooxygenase CYP392A16 has been previously associated with abamectin resistance using transcriptional analysis in the two-spotted spider mite Tetranychus urticae, an important pest species worldwide; however, this association has not been functionally validated in vivo despite the demonstrated ability of CYP392A16 to metabolize abamectin in vitro. We expressed CYP392A16 in vivo via a Gal4 transcription activator protein/Upstream Activating Sequence (GAL4/UAS) system in Drosophila melanogaster flies, driving expression with detoxification tissue-specific drivers. We demonstrated that CYP392A16 expression confers statistically significant abamectin resistance in toxicity bioassays in Drosophila only when its homologous redox partner, cytochrome P450 reductase (TuCPR), is co-expressed in transgenic flies. Our study shows that the Drosophila model can be further improved, to facilitate the functional analysis of insecticide resistance mechanisms acting alone or in combination.
Collapse
|
39
|
McLeman A, Troczka BJ, Homem RA, Duarte A, Zimmer C, Garrood WT, Pym A, Beadle K, Reid RJ, Douris V, Vontas J, Davies TGE, Ffrench Constant R, Nauen R, Bass C. Fly-Tox: A panel of transgenic flies expressing pest and pollinator cytochrome P450s. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104674. [PMID: 32828379 PMCID: PMC7482442 DOI: 10.1016/j.pestbp.2020.104674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 05/08/2023]
Abstract
There is an on-going need to develop new insecticides that are not compromised by resistance and that have improved environmental profiles. However, the cost of developing novel compounds has increased significantly over the last two decades. This is in part due to increased regulatory requirements, including the need to screen both pest and pollinator insect species to ensure that pre-existing resistance will not hamper the efficacy of a new insecticide via cross-resistance, or adversely affect non-target insect species. To add to this problem the collection and maintenance of toxicologically relevant pest and pollinator species and strains is costly and often difficult. Here we present Fly-Tox, a panel of publicly available transgenic Drosophila melanogaster lines each containing one or more pest or pollinator P450 genes that have been previously shown to metabolise insecticides. We describe the range of ways these tools can be used, including in predictive screens to avoid pre-existing cross-resistance, to identify potential resistance-breaking inhibitors, in the initial assessment of potential insecticide toxicity to bee pollinators, and identifying harmful pesticide-pesticide interactions.
Collapse
Affiliation(s)
- Amy McLeman
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Bartlomiej J Troczka
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
| | - Rafael A Homem
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Ana Duarte
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Christoph Zimmer
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - William T Garrood
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Adam Pym
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Katherine Beadle
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Rebecca J Reid
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Crete, Greece; Department of Biological Applications and Technology, University of Ioannina,45110 Ioannina, Greece
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Crete, Greece; Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - T G Emyr Davies
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Richard Ffrench Constant
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789.Monheim, Germany
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
| |
Collapse
|
40
|
Abstract
One of the fastest-moving fields in today's world of applied science, nanotechnology allows the control and design of matter on an extremely small scale, so it has now become an integral part of various industries and scientific areas, such as agriculture, food sector, healthcare and engineering. Understanding the interactions between nanopesticides and edible plants, as well as non-target animals, is crucial in assessing the potential impact of nanotechnology products on the environment, agriculture and human health. The dramatic increase in efforts to use nanopesticides renders the risk assessment of their toxicity and genotoxicity highly crucial due to the potential adverse impact of this relatively uncharted territory. Such widespread use naturally increases our exposure to nanopesticides, raising concerns over their possible adverse effects on humans and non-target organisms, which might include severe impairment of both male and female reproductive capacity. We therefore need better insight into such effects to derive conclusive evidence on the safety or toxicity/genotoxicity of nanopesticides, and Drosophila melanogaster (fruit fly) can prove an ideal model organism for the risk assessment and toxicological classification of nanopesticides, as it bears striking similarities to various systems in human body. This editorial review attempts to summarize our current knowledge derived from previous in vivo studies to examine the impact of several nanomaterials on various species of mammals and non-target model organisms at the genetic, cellular, and molecular levels, attracting attention to the possible mechanisms and potential toxic/genotoxic effects of nanopesticides widely used in agriculture on D. melanogaster as a non-target organism.
Collapse
Affiliation(s)
- Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Vocational School of Health Services, Antalya, Turkey
| |
Collapse
|
41
|
Nauen R, Van Leeuwen T. Preface to the special issue: Recent trends in insecticide mode of action and resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104635. [PMID: 32711769 DOI: 10.1016/j.pestbp.2020.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Germany.
| | | |
Collapse
|
42
|
Lueke B, Douris V, Hopkinson JE, Maiwald F, Hertlein G, Papapostolou KM, Bielza P, Tsagkarakou A, Van Leeuwen T, Bass C, Vontas J, Nauen R. Identification and functional characterization of a novel acetyl-CoA carboxylase mutation associated with ketoenol resistance in Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104583. [PMID: 32448413 DOI: 10.1016/j.pestbp.2020.104583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Insecticides of the tetronic/tetramic acid family (cyclic ketoenols) are widely used to control sucking pests such as whiteflies, aphids and mites. They act as inhibitors of acetyl-CoA carboxylase (ACC), a key enzyme for lipid biosynthesis across taxa. While it is well documented that plant ACCs targeted by herbicides have developed resistance associated with mutations at the carboxyltransferase (CT) domain, resistance to ketoenols in invertebrate pests has been previously associated either with metabolic resistance or with non-validated candidate mutations in different ACC domains. A recent study revealed high levels of spiromesifen and spirotetramat resistance in Spanish field populations of the whitefly Bemisia tabaci that was not thought to be associated with metabolic resistance. We confirm the presence of high resistance levels (up to >640-fold) against ketoenol insecticides in both Spanish and Australian B. tabaci strains of the MED and MEAM1 species, respectively. RNAseq analysis revealed the presence of an ACC variant bearing a mutation that results in an amino acid substitution, A2083V, in a highly conserved region of the CT domain. F1 progeny resulting from reciprocal crosses between susceptible and resistant lines are almost fully resistant, suggesting an autosomal dominant mode of inheritance. In order to functionally investigate the contribution of this mutation and other candidate mutations previously reported in resistance phenotypes, we used CRISPR/Cas9 to generate genome modified Drosophila lines. Toxicity bioassays using multiple transgenic fly lines confirmed that A2083V causes high levels of resistance to commercial ketoenols. We therefore developed a pyrosequencing-based diagnostic assay to map the spread of the resistance alleles in field-collected samples from Spain. Our screening confirmed the presence of target-site resistance in numerous field-populations collected in Sevilla, Murcia and Almeria. This emphasizes the importance of implementing appropriate resistance management strategies to prevent or slow the spread of resistance through global whitefly populations.
Collapse
Affiliation(s)
- Bettina Lueke
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece
| | - Jamie E Hopkinson
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD 4350, Australia
| | - Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Gillian Hertlein
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Kyriaki-Maria Papapostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece; Laboratory of Molecular Entomology, Department of Biology, University of Crete, 70013 Heraklion, Greece
| | - Pablo Bielza
- Department of Agricultural Engineering, Cartagena Polytechnical University, 30203 Cartagena, Spain
| | - Anastasia Tsagkarakou
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization "DEMETER", 70013 Heraklion, Greece
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Chris Bass
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany.
| |
Collapse
|