1
|
Wang J, Liao S, Lin H, Wei H, Mao X, Wang Q, Chen H. Fem-1 Gene of Chinese White Pine Beetle ( Dendroctonus armandi): Function and Response to Environmental Treatments. Int J Mol Sci 2024; 25:10349. [PMID: 39408677 PMCID: PMC11477363 DOI: 10.3390/ijms251910349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Dendroctonus armandi (Tsai and Li) (Coleoptera: Curculionidae: Scolytinae) is regarded as the most destructive forest pest in the Qinling and Bashan Mountains of China. The sex determination of Dendroctonus armandi plays a significant role in the reproduction of its population. In recent years, the role of the fem-1 gene in sex determination in other insects has been reported. However, the function and expression of the fem-1 gene in Dendroctonus armandi remain uncertain. In this study, three fem-1 genes were cloned and characterized. These were named Dafem-1A, Dafem-1B, and Dafem-1C, respectively. The expression levels of these three Dafem-1 genes vary at different stages of development and between the sexes. In response to different environmental treatments, including temperature, nutrients, terpenoids, and feeding duration, significant differences were observed between the three Dafem-1 genes at different developmental stages and between males and females. Furthermore, injection of double-stranded RNA (dsRNA) targeting the expressions of the Dafem-1A, Dafem-1B, and Dafem-1C genes resulted in increased mortality, deformity, and decreased emergence rates, as well as an imbalance in the sex ratio. Following the interference with Dafem-1A and Dafem-1C, no notable difference was observed in the expression of the Dafem-1B gene. Similarly, after the interference with the Dafem-1B gene, no significant difference was evident in the expression levels of the Dafem-1A and Dafem-1C genes. However, the interference of either the Dafem-1A or Dafem-1C gene results in the downregulation of the other gene. The aforementioned results demonstrate that the Dafem-1A, Dafem-1B, and Dafem-1C genes play a pivotal role in the regulation of life development and sex determination. Furthermore, it can be concluded that external factors such as temperature, nutrition, terpenoids, and feeding have a significant impact on the expression levels of the Dafem-1A, Dafem-1B, and Dafem-1C genes. This provides a crucial theoretical foundation for further elucidating the sex determination mechanism of Dendroctonus armandi.
Collapse
Affiliation(s)
- Jiajin Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Songkai Liao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Haoyu Lin
- Forest Protection Research Institute, Fujian Academy of Forestry, Fuzhou 350011, China;
| | - Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Xinjie Mao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Qi Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| |
Collapse
|
2
|
Xue M, Xia X, Deng Y, Teng F, Zhao S, Li H, Hao D, Chen WY. Identification and Functional Analysis of an Epsilon Class Glutathione S-Transferase Gene Associated with α-Pinene Adaptation in Monochamus alternatus. Int J Mol Sci 2023; 24:17376. [PMID: 38139205 PMCID: PMC10743883 DOI: 10.3390/ijms242417376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Alpha-pinene is one of the main defensive components in conifers. Monochamus alternatus (Coleoptera: Cerambycidae), a wood borer feeding on Pinaceae plants, relies on its detoxifying enzymes to resist the defensive terpenoids. Here, we assayed the peroxide level and GST activity of M. alternatus larvae treated with different concentrations of α-pinene. Meanwhile, a gst gene (MaGSTe3) was isolated and analyzed. We determined its expression level and verified its function. The results showed that α-pinene treatment led to membrane lipid peroxidation and thus increased the GST activity. Expression of MaGSTe3 was significantly upregulated in guts following exposure to α-pinene, which has a similar pattern with the malonaldehyde level. In vitro expression and disk diffusion assay showed that the MaGSTe3 protein had high antioxidant capacity. However, RNAi treatment of MaGSTe3 did not reduce the hydrogen peroxide and malonaldehyde levels, while GST activity was significantly reduced. These results suggested MaGSTe3 takes part in α-pinene adaptation, but it does not play a great role in the resistance of M. alternatus larvae to α-pinene.
Collapse
Affiliation(s)
- Mingyu Xue
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Xiaohong Xia
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Yadi Deng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Fei Teng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Shiyue Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Hui Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Wei-Yi Chen
- Soochow College, Soochow University, Suzhou 215006, China
| |
Collapse
|
3
|
Quijano-Barraza JM, Zúñiga G, Cano-Ramírez C, López MF, Ramírez-Salinas GL, Becerril M. Evolution and functional role prediction of the CYP6DE and CYP6DJ subfamilies in Dendroctonus (Curculionidae: Scolytinae) bark beetles. Front Mol Biosci 2023; 10:1274838. [PMID: 37877122 PMCID: PMC10593416 DOI: 10.3389/fmolb.2023.1274838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Dendroctonus-bark beetles are natural components and key ecological agents of coniferous forests. They spend most of their lives under the bark, where they are exposed to highly toxic terpenes present in the oleoresin. Cytochrome P450 (CYP) is a multigene family involved in the detoxification of these compounds. It has been demonstrated that CYP6DE and CYP6DJ subfamilies hydroxylate monoterpenes, whose derivatives can act as pheromone synergist compounds or be pheromones themselves in these insects. Given the diversity and functional role of CYPs, we investigated whether these cytochromes have retained their function throughout the evolution of these insects. To test this hypothesis, we performed a Bayesian phylogenetic analysis to determine phylogenetic subgroups of cytochromes in these subfamilies. Subgroups were mapped and reconciled with the Dendroctonus phylogeny. Molecular docking analyses were performed with the cytochromes of each subgroup and enantiomers of α-pinene and β-pinene, (+)-3-carene, β-myrcene and R-(+)-limonene. In addition, functional divergence analysis was performed to identify critical amino acid sites that influence changes in catalytic site conformation and/or protein folding. Three and two phylogenetic subgroups were recovered for the CYP6DE and CYP6DJ subfamilies, respectively. Mapping and reconciliation analysis showed different gain and loss patterns for cytochromes of each subgroup. Functional predictions indicated that the cytochromes analyzed are able to hydroxylate all monoterpenes; however, they showed preferential affinities to different monoterpenes. Functional divergence analyses indicated that the CYP6DE subfamily has experimented type I and II divergence, whereas the CYP6DJ subfamily has evolved under strong functional constraints. Results suggest cytochromes of the CYP6DE subfamily evolve to reinforce their detoxifying capacity hydroxylating mainly α- and β-pinene to (+) and (-)-trans-verbenol, being the negative enantiomer used as a pheromone by several Dendroctonus species; whereas cytochromes of the CYP6DJ subfamily appear to retain their original function related to the detoxification of these compounds.
Collapse
Affiliation(s)
- J. Manuel Quijano-Barraza
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Mexico City, Mexico
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Mexico City, Mexico
| | - Claudia Cano-Ramírez
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Mexico City, Mexico
| | - María Fernanda López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Mexico City, Mexico
| | - Gema L. Ramírez-Salinas
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Departamento de Bioquímica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Moises Becerril
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Mexico City, Mexico
| |
Collapse
|
4
|
Liu B, Chen H. Identification and functional characterization of insulin-like peptides in a pine beetle. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104521. [PMID: 37156359 DOI: 10.1016/j.jinsphys.2023.104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Insulin - including insulin-like peptides (ILPs), relaxins and insulin-like growth factors (IGFs) - is an evolutionarily conserved hormone in all metazoans It is involved in various physiological processes, such as metabolism, growth, reproduction, lifespan and stress resistance. However, there are no reports on the functional role of ILPs in the Chinese white pine beetle, Dendroctonus armandi. In this study, we have cloned and identified two ILP cDNAs in D. armandi. The expression levels of DaILP1 and DaILP2 were significantly changed in different developmental stages. Both ILPs were expressed mostly in the head and fat body. Moreover, starvation induces the reduction of ILP1 mRNA level in adults and larvae, while ILP2 only in larvae of D. armandi, respectively. Additionally, RNA-interference (RNAi) using double stranded RNA to knock down ILP1 and ILP2 reduced the mRNA levels of the target genes, and caused a significant reduction in body weight of D. armandi. Moreover, silencing ILP1 led to an increase of trehalose and glycogen and significantly enhanced starvation resistance in both adults and larvae. The results show that the ILP signaling pathway plays a significant role in growth and carbohydrate metabolism of D. armandi and may provide a potential molecular target for pest control.
Collapse
Affiliation(s)
- Bin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; College of Forestry, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|