1
|
Ommati MM, Jin Y, Zamiri MJ, Retana-Marquez S, Nategh Ahmadi H, Sabouri S, Song SZ, Heidari R, Wang HW. Sex-Specific Mechanisms of Fluoride-Induced Gonadal Injury: A Multi-Omics Investigation into Reproductive Toxicity and Gut Microbiota Disruption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39818830 DOI: 10.1021/acs.jafc.4c10190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Fluoride, a common agricultural additive used to enhance plant resilience and pest control, poses toxicity risks when exposure surpasses safe thresholds, affecting ecosystems and human health. While its reproductive toxicity is recognized, the sex-specific and cross-generational effects remain underexplored. To address this gap, we employed an integrative approach combining transcriptomics (next-generation sequencing (NGS)), bioinformatic network analysis, gut microbiota sequencing, and in vivo functional assays. ICR mice (F0 generation), both male and female, were exposed to fluoride (100 mg/L in drinking water) for 35 days, continuing through gestation and offspring weaning. Our transcriptomic analysis revealed significant upregulation of autophagy (via the PI3K-AKT-mTOR pathway) and oxidative stress-induced mitochondrial dysfunction in gonadal tissue, with more pronounced effects observed in males. Further integrated analyses of transcriptomic and metabolomic data, supported by in vivo experiments, highlighted oxidative stress, mitochondrial dysfunction, and PI3K-AKT-mTOR pathway activation with stronger effects in males. The principal component analysis confirmed sex-specific transcriptome alterations, with males showing more substantial disruption. Additionally, 16S rRNA sequencing identified significant gut dysbiosis, particularly in males, with an increased Firmicutes/Bacteroidetes ratio and higher abundances of Oscillospirales and Anaerovoracaceae. Moreover, our study identified significant correlations between specific gut microbiota (e.g., Firmicutes, Proteobacteria) and autophagy, oxidative stress, and mitochondrial dysfunction pathways, with notable sex-dependent differences. These findings suggest that gut microbiota may play a critical role in modulating fluoride-induced reproductive toxicity, particularly through their effects on oxidative stress and cellular homeostasis. The breakdown of the gut barrier and elevated serum/gonadal lipopolysaccharide (LPS) levels in fluoride-treated mice further established a link between gut dysbiosis and fluoride-induced reproductive toxicity. These findings underscore the importance of considering sex differences in xenobiotic-induced reproductive and developmental toxicity.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Ye Jin
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Mohammad Javad Zamiri
- Department of Animal Science, Shiraz Agricultural University, Shiraz 71946-84471, Iran
| | - Socorro Retana-Marquez
- Department of Biology of Reproduction, Autonomous Metropolitan University, Iztapalapa, Mexico City 09340, Mexico
| | - Hassan Nategh Ahmadi
- College of Animal Science and Veterinary Medicine, Shiraz University, Shiraz 71946-84471, Iran
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Samira Sabouri
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shu Zhe Song
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| |
Collapse
|
2
|
Rafi H, Rafiq H, Farhan M. Pharmacological profile of agmatine: An in-depth overview. Neuropeptides 2024; 105:102429. [PMID: 38608401 DOI: 10.1016/j.npep.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Agmatine, a naturally occurring polyamine derived from arginine via arginine decarboxylase, has been shown to play multifaceted roles in the mammalian body, impacting a wide range of physiological and pathological processes. This comprehensive review delineates the significant insights into agmatine's pharmacological profile, emphasizing its structure and metabolism, neurotransmission and regulation, and pharmacokinetics and function. Agmatine's biosynthesis is highly conserved across species, highlighting its fundamental role in cellular functions. In the brain, comparable to established neurotransmitters, agmatine acts as a neuromodulator, influencing the regulation, metabolism, and reabsorption of neurotransmitters that are key to mood disorders, learning, cognition, and the management of anxiety and depression. Beyond its neuromodulatory functions, agmatine exhibits protective effects across various cellular and systemic contexts, including neuroprotection, nephroprotection, cardioprotection, and cytoprotection, suggesting a broad therapeutic potential. The review explores agmatine's interaction with multiple receptor systems, including NMDA, α2-adrenoceptors, and imidazoline receptors, elucidating its role in enhancing cell viability, neuronal protection, and synaptic plasticity. Such interactions underpin agmatine's potential in treating neurological diseases and mood disorders, among other conditions. Furthermore, agmatine's pharmacokinetics, including its absorption, distribution, metabolism, and excretion, are discussed, underlining the complexity of its action and the potential for therapeutic application. The safety and efficacy of agmatine supplementation, demonstrated through various animal and human studies, affirm its potential as a beneficial therapeutic agent. Conclusively, the diverse physiological and therapeutic effects of agmatine, spanning neurotransmission, protection against cellular damage, and modulation of various receptor pathways, position it as a promising candidate for further research and clinical application. This review underscores the imperative for continued exploration into agmatine's mechanisms of action and its potential in pharmacology and medicine, promising advances in the treatment of numerous conditions.
Collapse
Affiliation(s)
- Hira Rafi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biochemistry, University of Karachi, Pakistan.
| | - Hamna Rafiq
- Department of Biochemistry, University of Karachi, Pakistan
| | | |
Collapse
|
3
|
Li D, Ye C, Liu P, Sun T, Qin Y, Wan X. PGC1α deficiency reverses cholestasis-induced liver injury via attenuating hepatic inflammation and promoting bile duct remodeling. Acta Histochem 2023; 125:152097. [PMID: 37813066 DOI: 10.1016/j.acthis.2023.152097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVES Cholestatic liver diseases are characterized by hepatocellular damage, cholangiocyte proliferation, and progressive fibrosis. Bile duct ligation (BDL) is widely used to resemble liver injuries induced by cholestasis. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) was reported to play a critical role in multiple biological responses. Nevertheless, whether PGC1α is involved in bile acid metabolism and biliary disorders remains unclear. This study aimed to investigate the effect of PGC1α on hepatic responses after cholestatic injury. MATERIALS AND METHODS Wild-type mice were subjected to BDL or sham surgery for 14 days and human liver specimens from patients with primary biliary cholangitis (PBC) were collected to detect the expression of PGC1α. Hepatic-specific PGC1α knockout mice (HKO) were constructed and subjected to BDL, in which the effects of PGC1α on cholestatic liver injury were demonstrated by biochemical and histopathological assessments, immunoblotting, and metabolomics. RESULTS The expression of PGC1α was upregulated in the liver of PBC patients and murine models. Both in vivo and in vitro experiments supported the protective effects of PGC1α on cholestasis-induced hepatocyte injury. Infiltrated inflammatory cells after BDL were decreased in HKO mice. Inhibited Wnt/β-Catenin pathway and enhanced Notch signaling promoted transdifferentiation of hepatic progenitor cells (HPC)/ hepatocytes into cholangiocytes, leading to the greater ductular reaction observed in the HKO mice. But bile acids metabolism and mitochondrial function were not affected due to hepatic PGC1α deficiency in cholestasis. CONCLUSIONS Hepatic-specific deletion of PGC1α regulated liver regeneration by promoting ductular reactions, thereby exerting protective effects against BDL-induced liver injury, which could be a new potential therapeutic target.
Collapse
Affiliation(s)
- Dingwu Li
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chenhui Ye
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Peihao Liu
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ting Sun
- Department of Pathology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yunsheng Qin
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Xingyong Wan
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
4
|
Ganjalikhan‐hakemi S, Asadi‐Shekaari M, Pourjafari F, Asadikaram G, Nozari M. Agmatine improves liver function, balance performance, and neuronal damage in a hepatic encephalopathy induced by bile duct ligation. Brain Behav 2023; 13:e3124. [PMID: 37337713 PMCID: PMC10498069 DOI: 10.1002/brb3.3124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/21/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION In the current study, we investigate whether oral administration of agmatine (AGM) could effectively reduce motor and cognitive deficits induced by bile duct ligation (BDL) in an animal model of hepatic encephalopathy (HE) through neuroprotective mechanisms. METHODS The Wistar rats were divided into four groups: sham, BDL, BDL+ 40 mg/kg AGM, and BDL+ 80 mg/kg AGM. The BDL rats were treated with AGM from 2 weeks after the surgery for 4 consecutive weeks. The open field, rotarod, and wire grip tests were used to assess motor function and muscle strength. The novel object recognition test (NOR) was performed to evaluate learning and memory. Finally, blood samples were collected for the analysis of the liver markers, the animals were sacrificed, and brain tissues were removed; the CA1 regions of the hippocampus and cerebellum were processed to identify apoptosis and neuronal damage rate using caspase-3 immunocytochemistry and Nissl staining. RESULTS The serological assay results showed that BDL severely impaired the function of the liver. Based on histochemical findings, BDL increased the neuronal damage in CA1 and Purkinje cells, whereas apoptosis was significantly observed only in the cerebellum. AGM treatment prevented the increase of serum liver enzymes, balance deficits, and neuronal damage in the brain areas. Apoptosis partially decreased by AGM, and there were no differences in the performance of animals in different groups in the NOR. CONCLUSIONS The study suggests AGM as a potential treatment candidate for HE because of its neuroprotective properties and/or its direct effects on liver function.
Collapse
Affiliation(s)
- Sepideh Ganjalikhan‐hakemi
- Student Research Committee, Department of Anatomical Sciences, Afzalipour School of MedicineKerman University of Medical SciencesKermanIran
| | - Majid Asadi‐Shekaari
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| | - Fahimeh Pourjafari
- Student Research Committee, Department of Anatomical Sciences, Afzalipour School of MedicineKerman University of Medical SciencesKermanIran
| | - Gholamreza Asadikaram
- Department of Biochemistry, Afzalipour School of MedicineKerman University of Medical SciencesKermanIran
| | - Masoumeh Nozari
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| |
Collapse
|
5
|
Ommati MM, Mobasheri A, Ma Y, Xu D, Tang Z, Manthari RK, Abdoli N, Azarpira N, Lu Y, Sadeghian I, Mousavifaraz A, Nadgaran A, Nikoozadeh A, Mazloomi S, Mehrabani PS, Rezaei M, Xin H, Mingyu Y, Niknahad H, Heidari R. Taurine mitigates the development of pulmonary inflammation, oxidative stress, and histopathological alterations in a rat model of bile duct ligation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1557-1572. [PMID: 36097067 DOI: 10.1007/s00210-022-02291-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Lung injury is a significant complication associated with cholestasis/cirrhosis. This problem significantly increases the risk of cirrhosis-related morbidity and mortality. Hence, finding effective therapeutic options in this field has significant clinical value. Severe inflammation and oxidative stress are involved in the mechanism of cirrhosis-induced lung injury. Taurine (TAU) is an abundant amino acid with substantial anti-inflammatory and antioxidative properties. The current study was designed to evaluate the role of TAU in cholestasis-related lung injury. For this purpose, bile duct ligated (BDL) rats were treated with TAU (0.5 and 1% w: v in drinking water). Significant increases in the broncho-alveolar lavage fluid (BALF) level of inflammatory cells (lymphocytes, neutrophils, basophils, monocytes, and eosinophils), increased IgG, and TNF-α were detected in the BDL animals (14 and 28 days after the BDL surgery). Alveolar congestion, hemorrhage, and fibrosis were the dominant pulmonary histopathological changes in the BDL group. Significant increases in the pulmonary tissue biomarkers of oxidative stress, including reactive oxygen species formation, lipid peroxidation, increased oxidized glutathione levels, and decreased reduced glutathione, were also detected in the BDL rats. Moreover, significant myeloperoxidase activity and nitric oxide levels were seen in the lung of BDL rats. It was found that TAU significantly blunted inflammation, alleviated oxidative stress, and mitigated lung histopathological changes in BDL animals. These data suggest TAU as a potential protective agent against cholestasis/cirrhosis-related lung injury.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mobasheri
- Physics, and Technology, Faculty of Medicine, Research Unit of Medical Imaging, University of Oulu, 90014, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
- Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, 08406, Vilnius, Lithuania
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Dongmei Xu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhongwei Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam-530045, Andhra Pradesh, India
| | - Narges Abdoli
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Negar Azarpira
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yu Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolghasem Mousavifaraz
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nadgaran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Nikoozadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooria Sayar Mehrabani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hu Xin
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yang Mingyu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Ommati MM, Li H, Jamshidzadeh A, Khoshghadam F, Retana-Márquez S, Lu Y, Farshad O, Nategh Ahmadi MH, Gholami A, Heidari R. The crucial role of oxidative stress in non-alcoholic fatty liver disease-induced male reproductive toxicity: the ameliorative effects of Iranian indigenous probiotics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:247-265. [PMID: 34994824 DOI: 10.1007/s00210-021-02177-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
Several studies have focused on the high potential effects of probiotics on the reproductive system. However, there is a paucity of information regarding the ameliorative intracellular roles of indigenous Iranian yogurt-extracted/cultured probiotics on animals' reproductive health suffering from obesity and/or fatty liver disease, such as non-alcoholic fatty liver disease (NAFLD). For this purpose, simultaneously with the consumption of D-fructose (200 g/1000 mL water, induction of NAFLD model), all pubertal animals were also gavaged every day for 63 consecutive days with extracted probiotics, including 1 × 109 CFU/mL of Lactobacillus acidophilus (LA), Bifidobacterium spp. (BIF), Bacillus coagulans (BC), Lactobacillus rhamnosus (LR), and a mixture form (LA + BIF + BC + LR). At the end of the ninth week, the indices of epididymal sperm, and oxidative stress, as well as histopathological changes, were assessed. The results show that NAFLD could induce robust oxidative stress, highlighted as considerable increments in ROS level, TBARS content, total oxidized protein levels, along with severe decrements in reduced glutathione reservoirs, total antioxidant capacity in the hepatic and testicular tissues, as well as testicular and hepatic histopathological alterations. Moreover, a significant decrease in the percentage of sperm progressive motility, sperm count, and membrane integrity along with an increment in the percentage of sperm abnormality was detected in NAFLD animals. The observed adverse effects were significantly reversed upon probiotics treatment, especially in the group challenged with a mixture of all probiotics. Taken together, these findings indicate that the indigenous yogurt-isolated/cultured probiotics had a high potential antioxidant activity and the ameliorative effect against reprotoxicity and blood biochemical alterations induced by the NAFLD model. Highlights: 1. Reproductive indices could be reversely affected by xenobiotics and diseases. 2. NAFLD and cholestasis considerably affect the reproductive system in both genders. 3. NAFLD induced hepatic and testicular oxidative stress (OS). 4. NAFLD induced histopathological alterations and spermatotoxicity through OS. 5. The adverse effects were significantly reversed upon exposure to probiotics.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| | - Huifeng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Khoshghadam
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Socorro Retana-Márquez
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Yu Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- College of Pharmacy and Nutrition, School of Pharmacy, University of Saskatchewan, Saskatoon, Canada
| | - Mohammad Hasan Nategh Ahmadi
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, 71345, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Darenskaya MA, Gubanov BG, Kolesnikova LI, Kolesnikov SI. Lipid peroxidation functional state changes in patients with obstructive jaundice depending on the level of bilirubin in the blood. Klin Lab Diagn 2021; 66:722-727. [PMID: 35020284 DOI: 10.51620/0869-2084-2021-66-12-722-727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obstructive jaundice (OJ) is the most common syndrome among diseases of the hepatopancreatoduodenal region and is found in 12-45% of cases. OJ may be benign and malignant etiology. Despite the evidence of the participation of bilirubin in reducing the bactericidal properties of neutrophils, there are no data currently on changes in the functioning of the antioxidant defense system depending on the level of bilirubin in the blood of patients with OJ of various origins. Research in this direction reveals the possibility for the development of pathogenetic recommendations for influencing these links of the pathogenesis of the disease. The study included men with OJ of non-malignant (OJNMG) (n = 47; mean age - 52.02 ± 5.18 years) and OJ of malignant genesis (OJMG) (I-II stages of the malignant process) (n = 45; mean age - 53.02 ± 4.8 years), divided into three subgroups, depending on the level of bilirubin in the blood. The indicators of practically healthy men as a control (n = 50, average age - 48.7 ± 3.9 years) were used. Spectrophotometric and statistical research methods were used. A statistically significant decrease of superoxide dismutase, glutathione-S-transferase, glutathione-peroxidase, ceruloplasmin, an increase in the values of diene conjugates, malondialdehyde in the group of patients with OJNMG relative to the control was revealed, regardless of the level of bilirubin in the blood. The presence of malignant genesis of the disease with more intense changes in the studied parameters relative to control is accompanied. Comparison of indicators between groups of patients with OJ of different genesis showed a decrease in the values of glutathione-S-transferase and an increase in the level of diene conjugates in patients with OJMG and the level of bilirubin less than 60 μmol / L, as well as an increase in the content of diene conjugates in patients with OJNMG and a level of bilirubin 60- 200 μmol / L in comparison with the corresponding groups of patients with OJNMG. Thus, both in the groups with OJNMG and in the groups with OJMG, there is a significant decrease in the activity of the main antioxidant enzymes and an increase in lipid peroxidation products, regardless of the level of bilirubin in the blood. The presence of malignant genesis is characterized by more intense differences. The revealed changes can serve as additional criteria for optimizing the diagnosis and treatment of this cohort of patients.
Collapse
Affiliation(s)
| | - B G Gubanov
- Scientific Centre for the Family Health and Human Reproduction Problems
| | - L I Kolesnikova
- Scientific Centre for the Family Health and Human Reproduction Problems
| | - S I Kolesnikov
- Scientific Centre for the Family Health and Human Reproduction Problems
| |
Collapse
|
8
|
Ahmadi A, Niknahad H, Li H, Mobasheri A, Manthari RK, Azarpira N, Mousavi K, Khalvati B, Zhao Y, Sun J, Zong Y, Ommati MM, Heidari R. The inhibition of NFкB signaling and inflammatory response as a strategy for blunting bile acid-induced hepatic and renal toxicity. Toxicol Lett 2021; 349:12-29. [PMID: 34089816 DOI: 10.1016/j.toxlet.2021.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
The cholestatic liver injury could occur in response to a variety of diseases or xenobiotics. Although cholestasis primarily affects liver function, it has been well-known that other organs such as the kidney could be influenced in cholestatic patients. Severe cholestasis could lead to tissue fibrosis and organ failure. Unfortunately, there is no specific therapeutic option against cholestasis-induced organ injury. Hence, finding the mechanism of organ injury during cholestasis could lead to therapeutic options against this complication. The accumulation of potentially cytotoxic compounds such as hydrophobic bile acids is the most suspected mechanism involved in the pathogenesis of cholestasis-induced organ injury. A plethora of evidence indicates a role for the inflammatory response in the pathogenesis of several human diseases. Here, the role of nuclear factor-kB (NFkB)-mediated inflammatory response is investigated in an animal model of cholestasis. Bile duct ligated (BDL) animals were treated with sulfasalazine (SSLZ, 10 and 100 mg/kg, i.p) as a potent inhibitor of NFkB signaling. The NFkB proteins family activity in the liver and kidney, serum and tissue levels of pro-inflammatory cytokines, tissue biomarkers of oxidative stress, serum markers of organ injury, and the liver and kidney histopathological alterations and fibrotic changes. The oxidative stress-mediated inflammatory-related indices were monitored in the kidney and liver at scheduled time intervals (3, 7, and 14 days after BDL operation). Significant increase in serum and urine markers of organ injury, besides changes in biomarkers of oxidative stress and tissue histopathology, were evident in the liver and kidney of BDL animals. The activity of NFkB proteins (p65, p50, p52, c-Rel, and RelB) was significantly increased in the liver and kidney of cholestatic animals. Serum and tissue levels of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-7, IL-12, IL-17, IL-18, IL-23, TNF-α, and INF-γ) were also higher than sham-operated animals. Moreover, TGF- β, α-SMA, and tissue fibrosis (Trichrome stain) were evident in cholestatic animals' liver and kidneys. It was found that SSLZ (10 and 100 mg/kg/day, i.p) alleviated cholestasis-induced hepatic and renal injury. The effect of SSLZ on NFkB signaling and suppression of pro-inflammatory cytokines could play a significant role in its protective role in cholestasis. Based on these data, NFkB signaling could receive special attention to develop therapeutic options to blunt cholestasis-induced organ injury.
Collapse
Affiliation(s)
- Asrin Ahmadi
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Huifeng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Jianyu Sun
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yuqi Zong
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Metformin alleviates cholestasis-associated nephropathy through regulating oxidative stress and mitochondrial function. LIVER RESEARCH 2021. [DOI: 10.1016/j.livres.2020.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Ghanbarinejad V, Ommati MM, Jia Z, Farshad O, Jamshidzadeh A, Heidari R. Disturbed mitochondrial redox state and tissue energy charge in cholestasis. J Biochem Mol Toxicol 2021; 35:e22846. [PMID: 34250697 DOI: 10.1002/jbt.22846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/23/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
The liver is the primary organ affected by cholestasis. However, the brain, skeletal muscle, heart, and kidney are also severely influenced by cholestasis/cirrhosis. However, little is known about the molecular mechanisms of organ injury in cholestasis. The current study was designed to evaluate the mitochondrial glutathione redox state as a significant index in cell death. Moreover, tissue energy charge (EC) was calculated. Rats underwent bile duct ligation (BDL) and the brain, heart, liver, kidney, and skeletal muscle mitochondria were assessed at scheduled time intervals (3, 7, 14, and 28 days after BDL). A significant decrease in mitochondrial glutathione redox state and EC was detected in BDL animals. Moreover, disturbed mitochondrial indices were evident in different organs of BDL rats. These data could offer new insight into the mechanisms of organ injury and the source of oxidative stress during cholestasis and might provide novel therapeutic strategies against these complications.
Collapse
Affiliation(s)
- Vahid Ghanbarinejad
- Toxicology Laboratory, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Ommati
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhipeng Jia
- Department of Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Omid Farshad
- Toxicology Laboratory, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Toxicology Laboratory, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Toxicology Laboratory, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Ommati MM, Arabnezhad MR, Farshad O, Jamshidzadeh A, Niknahad H, Retana-Marquez S, Jia Z, Nateghahmadi MH, Mousavi K, Arazi A, Azmoon MR, Azarpira N, Heidari R. The Role of Mitochondrial Impairment and Oxidative Stress in the Pathogenesis of Lithium-Induced Reproductive Toxicity in Male Mice. Front Vet Sci 2021; 8:603262. [PMID: 33842567 PMCID: PMC8025583 DOI: 10.3389/fvets.2021.603262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/29/2021] [Indexed: 11/18/2022] Open
Abstract
Lithium (Li+) is prescribed against a wide range of neurological disorders. Besides its excellent therapeutic properties, there are several adverse effects associated with Li+. The impact of Li+ on renal function and diabetes insipidus is the most common adverse effect of this drug. On the other hand, infertility and decreased libido is another complication associated with Li+. It has been found that sperm indices of functionality, as well as libido, is significantly reduced in Li+-treated men. These adverse effects might lead to drug incompliance and the cessation of drug therapy. Hence, the main aims of the current study were to illustrate the mechanisms of adverse effects of Li+ on the testis tissue, spermatogenesis process, and hormonal changes in two experimental models. In the in vitro experiments, Leydig cells (LCs) were isolated from healthy mice, cultured, and exposed to increasing concentrations of Li+ (0, 10, 50, and 100 ppm). In the in vivo section of the current study, mice were treated with Li+ (0, 10, 50, and 100 ppm, in drinking water) for five consecutive weeks. Testis and sperm samples were collected and assessed. A significant sign of cytotoxicity (LDH release and MTT assay), along with disrupted testosterone biosynthesis, impaired mitochondrial indices (ATP level and mitochondrial depolarization), and increased biomarkers of oxidative stress were detected in LCs exposed to Li+. On the other hand, a significant increase in serum and testis Li+ levels were detected in drug-treated mice. Moreover, ROS formation, LPO, protein carbonylation, and increased oxidized glutathione (GSSG) were detected in both testis tissue and sperm specimens of Li+-treated mice. Several sperm anomalies were also detected in Li+-treated animals. On the other hand, sperm mitochondrial indices (mitochondrial dehydrogenases activity and ATP levels) were significantly decreased in drug-treated groups where mitochondrial depolarization was increased dose-dependently. Altogether, these data mention oxidative stress and mitochondrial impairment as pivotal mechanisms involved in Li+-induced reproductive toxicity. Therefore, based on our previous publications in this area, therapeutic options, including compounds with high antioxidant properties that target these points might find a clinical value in ameliorating Li+-induced adverse effects on the male reproductive system.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Mohammad Reza Arabnezhad
- Department of Toxicology and Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Socorro Retana-Marquez
- Department of Biology and Reproduction, Autonomous Metropolitan University, Mexico City, Mexico
| | - Zhipeng Jia
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | | | - Khadijeh Mousavi
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aysooda Arazi
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Azmoon
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants (Basel) 2021; 10:364. [PMID: 33670839 PMCID: PMC7997318 DOI: 10.3390/antiox10030364] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), a tripeptide particularly concentrated in the liver, is the most important thiol reducing agent involved in the modulation of redox processes. It has also been demonstrated that GSH cannot be considered only as a mere free radical scavenger but that it takes part in the network governing the choice between survival, necrosis and apoptosis as well as in altering the function of signal transduction and transcription factor molecules. The purpose of the present review is to provide an overview on the molecular biology of the GSH system; therefore, GSH synthesis, metabolism and regulation will be reviewed. The multiple GSH functions will be described, as well as the importance of GSH compartmentalization into distinct subcellular pools and inter-organ transfer. Furthermore, we will highlight the close relationship existing between GSH content and the pathogenesis of liver disease, such as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), chronic cholestatic injury, ischemia/reperfusion damage, hepatitis C virus (HCV), hepatitis B virus (HBV) and hepatocellular carcinoma. Finally, the potential therapeutic benefits of GSH and GSH-related medications, will be described for each liver disorder taken into account.
Collapse
Affiliation(s)
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | | | | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | |
Collapse
|
13
|
Ommati MM, Farshad O, Azarpira N, Ghazanfari E, Niknahad H, Heidari R. Silymarin mitigates bile duct obstruction-induced cholemic nephropathy. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1301-1314. [PMID: 33538845 DOI: 10.1007/s00210-020-02040-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Bile duct obstruction or cholestasis can occur by several diseases or xenobiotics. Cholestasis and the accumulation of the bile constituents in the liver primarily damage this organ. On the other hand, extrahepatic organs are also affected by cholestasis. The kidney is the most affected tissue during cholestatic liver injury. Cholestasis-associated renal injury is known as cholemic nephropathy (CN). Several lines of evidence specify the involvement of oxidative stress and mitochondrial impairment in the pathogenesis of CN. The current study aimed to assess the role of silymarin as a potent antioxidant on CN-induced oxidative stress and mitochondrial dysfunction in the kidney. Bile duct ligated (BDL) rats were treated with silymarin (10 and 100 mg/kg, oral) for seven consecutive days. A significant increase in reactive oxygen species (ROS), lipid peroxidation, protein carbonylation, and oxidized glutathione (GSSG) levels were evident in the kidney of BDL animals. Moreover, reduced glutathione (GSH) content and total antioxidant capacity were significantly decreased in the kidney of cholestatic rats. Mitochondrial depolarization, decreased mitochondrial dehydrogenases activity, mitochondrial permeabilization, and depleted ATP stores were detected in the kidney mitochondria isolated from BDL animals. Kidney histopathological alterations, as well as serum and urine levels of renal injury biomarkers, were also significantly different in the BDL group. It was found that silymarin treatment significantly ameliorated CN-induced renal injury. The antioxidant effects of silymarin and its positive impact on mitochondrial indices seem to play a significant role in its renoprotective effects during cholestasis.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St., Shiraz, Fars, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elmira Ghazanfari
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St., Shiraz, Fars, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St., Shiraz, Fars, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Ghanbarinejad V, Jamshidzadeh A, Khalvati B, Farshad O, Li H, Shi X, Chen Y, Ommati MM, Heidari R. Apoptosis-inducing factor plays a role in the pathogenesis of hepatic and renal injury during cholestasis. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1191-1203. [PMID: 33527194 DOI: 10.1007/s00210-020-02041-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Cholestasis is a clinical complication with different etiologies. The liver is the primary organ influenced in cholestasis. Renal injury is also a severe clinical complication in cholestatic/cirrhotic patients. Several studies mentioned the importance of oxidative stress and mitochondrial impairment as two mechanistically interrelated events in cholestasis-induced organ injury. Apoptosis-inducing factor (AIF) is a flavoprotein located in the inner mitochondrial membrane. This molecule is involved in a distinct pathway of cell death. The current study aimed to evaluate the role of AIF in the pathophysiology of cholestasis-associated hepatic and renal injury. Bile duct ligation (BDL) was used as an animal model of cholestasis. Serum, urine, and tissue samples were collected at scheduled time intervals (3, 7, 14, and 28 days after BDL surgery). Tissues' AIF mRNA levels, as well as serum, urine, and tissue activity of AIF, were measured. Moreover, markers of DNA fragmentation and apoptosis were assessed in the liver and kidney of cholestatic animals. A significant increase in liver and kidney AIF mRNA levels, in addition to increased AIF activity in the liver, kidney, serum, and urine, was detected in BDL rats. DNA fragmentation and apoptosis were raised in the liver and kidney of cholestatic animals, especially at the early stage of the disease. The apoptotic mode of cell death in the liver and kidney was connected to a higher AIF level. These data mention the importance of AIF in the pathogenesis of cholestasis-induced organ injury, especially at the early stage of this disease. Mitochondrial release of apoptosis-inducing factor (AIF) seems to play a pathogenic role in cholestasis-associated hepatic and renal injury. AIF release is directly connected to oxidative stress and mitochondrial impairment in cholestatic animals.
Collapse
Affiliation(s)
- Vahid Ghanbarinejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran
- Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran
- Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran
| | - Huifeng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiong Shi
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yuanyu Chen
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran.
| |
Collapse
|
15
|
Abdoli N, Sadeghian I, Mousavi K, Azarpira N, Ommati MM, Heidari R. Suppression of cirrhosis-related renal injury by N-acetyl cysteine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2020; 1:30-38. [PMID: 34909640 PMCID: PMC8663932 DOI: 10.1016/j.crphar.2020.100006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 01/30/2023] Open
Abstract
Cirrhosis-induced renal injury or cholemic nephropathy (CN) is a serious clinical complication with poor prognosis. CN could finally lead to renal failure and the need for organ transplantation. Unfortunately, there is no specific pharmacological intervention against CN to date. On the other hand, various studies mentioned the role of oxidative stress and mitochondrial impairment in the pathogenesis of CN. The current study aimed to evaluate the potential protective effects of NAC as a thiol-reducing agent and antioxidant in CN. Bile duct ligation (BDL) was used as a reliable animal model of cholestasis. BDL animals received NAC (0.25% and 1% w: v) in drinking water for 28 consecutive days. Finally, urine, blood, and kidney samples were collected and analyzed. Significant elevation in serum biomarkers of renal injury, along with urine markers of kidney damage, was evident in the BDL group. Moreover, markers of oxidative stress, including reactive oxygen species (ROS) formation, lipid peroxidation, protein carbonylation, and increased oxidized glutathione (GSSG) were evident detected in the kidney of cholestatic rats. Renal tissue antioxidant capacity and reduced glutathione (GSH) were also significantly depleted in the BDL group. Significant mitochondrial depolarization, depleted ATP content, and mitochondrial permeabilization was also detected in mitochondria isolated from the kidney of cholestatic animals. Renal histopathological alterations consisted of significant tissue fibrosis, interstitial inflammation, and tubular atrophy. It was found that NAC (0.25 and 1% in drinking water for 28 consecutive days) blunted histopathological changes, decreased markers of oxidative stress, and improved mitochondrial indices in the kidney of cirrhotic rats. Moreover, serum and urine biomarkers of renal injury were also mitigated in upon NAC treatment. These data indicate a potential renoprotective role for NAC in cholestasis. The effects of NAC on cellular redox state and mitochondrial function seem to play a fundamental role in its renoprotective effects during CN.
Collapse
Affiliation(s)
- Narges Abdoli
- Iran Food and Drug Administration, Ministry of Health, Tehran, Iran
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Reza Heidari
- Iran Food and Drug Administration, Ministry of Health, Tehran, Iran
| |
Collapse
|