1
|
Penazzi L, Freire TGB, Theodoro SDS, Frias JL, Ala U, Carciofi AC, Prola L. Lentils pasta by-product in a complete extruded diet for dogs and its effect on extrusion, digestibility, and carbohydrate metabolism. Front Vet Sci 2024; 11:1429218. [PMID: 38993281 PMCID: PMC11238134 DOI: 10.3389/fvets.2024.1429218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction Recently, increasing effort has been directed toward environmental sustainability in pet food. The aim of this study was to evaluate the extrusion parameters, nutrient digestibility, fecal characteristics, palatability and insulinemic and glycaemic curves of a complete diet for dogs in which the main carbohydrate source was a red lentil pasta by-product (LP). Methods Five experimental diets were formulated: a basal diet (CO) based on rice and a poultry by-product meal; three experimental diets where LP substituted rice at 33, 66, or 100% (LP33, LP66, and LP100, respectively); and a diet formulated on 70% of the basal diet (CO) plus 30% LP (LPS) to evaluate the digestibility of LP ingredient. Results and discussion The extruder pressure, hardness and bulk density of the kibble increased in a linear manner with increasing LP percentage (P < 0.05), without affecting starch gelatinization. According to polynomial contrast analysis, rice replacement with LP at 33 and 66% caused no reduction in apparent total tract digestibility coefficient (ATTDC), with similar or higher values compared with the CO diet. Nitrogen balance did not change (P > 0.05), but we observed a linear increase in feces production and moisture content as the LP inclusion rate rose and a linear decrease in feces pH (P < 0.05). Nevertheless, the fecal score was unaffected. Fecal acetate, propionate, total short-chain fatty acids (SCFA), branched-chain fatty acids, and lactate all increased linearly as the LP inclusion rate increased (P < 0.05), without altering ammonia concentration in feces. Feces concentrations of cadaverine, tyramine, histamine, and spermidine also increased in a linear manner with increasing LP inclusion (P < 0.05). The fermentation of LP dietary fiber by the gut microbiota increased the concentration of desirable fermentation by-products, including SCFA and spermidine. The post-prandial glucose and insulin responses were lower in the dogs fed the LP100 diet compared with CO, suggesting the possible use of this ingredient in diets designed to generate a low glycaemic response. Finally, the palatability study results showed a preference for the LP100 ration in both the "first choice" and the "consumption rate" evaluation (P < 0.05). This trial reveals how a by-product discarded from the human-grade food chain retains both its nutritional and organoleptic properties.
Collapse
Affiliation(s)
- Livio Penazzi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Veterinary Clinic and Surgery, Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | | | - Stephanie de Souza Theodoro
- Department of Veterinary Clinic and Surgery, Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Juliana Lopes Frias
- Department of Veterinary Clinic and Surgery, Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Aulus Cavalieri Carciofi
- Department of Veterinary Clinic and Surgery, Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Liviana Prola
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
2
|
Zhou Y, Yan M, Pan R, Wang Z, Tao X, Li C, Xia T, Liu X, Chang Q. Radix Polygalae extract exerts antidepressant effects in behavioral despair mice and chronic restraint stress-induced rats probably by promoting autophagy and inhibiting neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113317. [PMID: 32861821 DOI: 10.1016/j.jep.2020.113317] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Polygalae (RP) has been traditionally used for the treatment of various psychiatric disorders in East Asia. AIM OF THE STUDY Depression is a severe mental disease with high prevalence in people, and neurobiology changes of depression are not fully clarified yet. The present study aimed to investigate the antidepressant effect and underlying mechanism of RP in behavioral despair mice and chronic restraint stress (CRS)-induced rats. MATERIALS AND METHODS ICR mice were treated with various doses of RP (0.13-1.0 g/kg) for 14 days and then subjected to forced swimming test (FST). Wistar rats were exposed to 6-hour restraint stress daily for 28 days, and RP (0.5 and 1 g/kg) was administered by gavage 1 h prior to CRS procedure. Subsequently, behavioral tests were performed and brains were collected for biochemical analysis. RESULTS RP reduced immobility time of mice in FST and reversed abnormal behaviors of rats induced by CRS in sucrose preference test, novelty-suppressed feeding test, open field test and FST. Moreover, RP could enhance the expression of LC3-II and beclin1 and decrease the level of p62 both in cortex of mice and prefrontal cortex (PFC) of rats, and regulate the dysfunction of AMPK-mTOR pathway in PFC of CRS rats. Activated microglia, impaired astrocyte, elevated protein expression of NLRP3, ASC and caspase-1, and increased mRNA levels of proinflammatory cytokines were observed in PFC of CRS rats, all of which were corrected by RP treatment. CONCLUSION RP exerted remarkable antidepressant activity in behavioral despair mice and CRS-induced rats, probably by promoting autophagy and inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Yunfeng Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Mingzhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Ruile Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zhi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xue Tao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Chenchen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Tianji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xinmin Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
3
|
Verma MK, Goel R, Nandakumar K, Nemmani KV. Bilateral quinolinic acid-induced lipid peroxidation, decreased striatal monoamine levels and neurobehavioral deficits are ameliorated by GIP receptor agonist D-Ala 2 GIP in rat model of Huntington's disease. Eur J Pharmacol 2018; 828:31-41. [DOI: 10.1016/j.ejphar.2018.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/04/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
|
4
|
Urinary Metabolomic Study of Chlorogenic Acid in a Rat Model of Chronic Sleep Deprivation Using Gas Chromatography-Mass Spectrometry. Int J Genomics 2018; 2018:1361402. [PMID: 29607310 PMCID: PMC5828092 DOI: 10.1155/2018/1361402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/24/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
The urinary metabolomic study based on gas chromatography-mass spectrometry (GC-MS) had been developed to investigate the possible antidepressant mechanism of chlorogenic acid (CGA) in a rat model of sleep deprivation (SD). According to pattern recognition analysis, there was a clear separation among big platform group (BP), sleep deprivation group (SD), and the CGA (model + CGA), and CGA group was much closer to the BP group by showing a tendency of recovering towards BP group. Thirty-six significantly changed metabolites related to antidepressant by CGA were identified and used to explore the potential mechanism. Combined with the result of the classic behavioral tests and biochemical indices, CGA has significant antidepressant effects in a rat model of SD, suggesting that the mechanism of action of CGA might be involved in regulating the abnormal pathway of nicotinate and nicotinamide metabolism; glyoxylate and dicarboxylate metabolism; glycine, serine, and threonine metabolism; and arginine and proline metabolism. Our results also show that metabolomics analysis based on GC-MS is a useful tool for exploring biomarkers involved in depression and elucidating the potential therapeutic mechanisms of Chinese medicine.
Collapse
|
5
|
Verma MK, Goel R, Nandakumar K, Nemmani KV. Effect of D-Ala 2 GIP, a stable GIP receptor agonist on MPTP-induced neuronal impairments in mice. Eur J Pharmacol 2017; 804:38-45. [DOI: 10.1016/j.ejphar.2017.03.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 01/30/2023]
|
6
|
Antidepressant and anxiolytic-like behavioral effects of erucamide, a bioactive fatty acid amide, involving the hypothalamus–pituitary–adrenal axis in mice. Neurosci Lett 2017; 640:6-12. [DOI: 10.1016/j.neulet.2016.12.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/16/2016] [Accepted: 12/30/2016] [Indexed: 12/19/2022]
|
7
|
Guerra GP, Rubin MA, Mello CF. Modulation of learning and memory by natural polyamines. Pharmacol Res 2016; 112:99-118. [PMID: 27015893 DOI: 10.1016/j.phrs.2016.03.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/08/2023]
Abstract
Spermine and spermidine are natural polyamines that are produced mainly via decarboxylation of l-ornithine and the sequential transfer of aminopropyl groups from S-adenosylmethionine to putrescine by spermidine synthase and spermine synthase. Spermine and spermidine interact with intracellular and extracellular acidic residues of different nature, including nucleic acids, phospholipids, acidic proteins, carboxyl- and sulfate-containing polysaccharides. Therefore, multiple actions have been suggested for these polycations, including modulation of the activity of ionic channels, protein synthesis, protein kinases, and cell proliferation/death, within others. In this review we summarize these neurochemical/neurophysiological/morphological findings, particularly those that have been implicated in the improving and deleterious effects of spermine and spermidine on learning and memory of naïve animals in shock-motivated and nonshock-motivated tasks, from a historical perspective. The interaction with the opioid system, the facilitation and disruption of morphine-induced reward and the effect of polyamines and putative polyamine antagonists on animal models of cognitive diseases, such as Alzheimer's, Huntington, acute neuroinflammation and brain trauma are also reviewed and discussed. The increased production of polyamines in Alzheimer's disease and the biphasic nature of the effects of polyamines on memory and on the NMDA receptor are also considered. In light of the current literature on polyamines, which include the description of an inborn error of the metabolism characterized by mild-to moderate mental retardation and polyamine metabolism alterations in suicide completers, we can anticipate that polyamine targets may be important for the development of novel strategies and approaches for understanding the etiopathogenesis of important central disorders and their pharmacological treatment.
Collapse
Affiliation(s)
- Gustavo Petri Guerra
- Department of Food Technology, Federal Technological University of Paraná, Campus Medianeira, Medianeira, PR 85884-000, Brazil
| | - Maribel Antonello Rubin
- Department of Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| | - Carlos Fernando Mello
- Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
8
|
Yu HL, Sun LP, Li MM, Quan ZS. Involvement of norepinephrine and serotonin system in antidepressant-like effects of oleoylethanolamide in the mice models of behavior despair. Neurosci Lett 2015; 593:24-8. [PMID: 25778418 DOI: 10.1016/j.neulet.2015.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/16/2015] [Accepted: 03/11/2015] [Indexed: 01/18/2023]
Abstract
Oleoylethanolamide (OEA) is an endocannabinoid analogy that belongs to a family of endogenous acylethanolamides. Increasing evidence suggests that OEA may act as an endogenous neuroprotective factor and participate in the control of mental disorder-related behaviors. In the present study, we investigated the antidepressant- like potential of OEA in mice in comparison with clomipramine (Cp). 50 mice were randomly divided into 5 groups, and treated with a vehicle (0.3% methyl cellulose, 20 mL/kg, p.o.), OEA (2.5, 5-10mg/kg, p.o.), or Cp (10mg/kg, p.o.) for 7 days. The immobility was used to evaluate depressive-like behaviors in tail suspension test (TST) and forced swimming test (FST). ELISA detected changes in cerebral noradrenaline (NE) and serotonin (5-HT) levels. Likewise, in the drug-induced model of depression, OEA was given once daily at 10mg/kg (p.o.) for 7 consecutive days. Then, the mice received reserpine (4 mg/kg, i.p.) and the rectal temperature was measured at different time points. Consequently, head twitch behavior induced by intraperitoneal injection of 5-hydroxy-tryptophan (5-HTP; 300 mg/kg) were determined. The experimental data showed that OEA (2.5-10mg/kg) treatment significantly decreased the immobility as compared to the control group, and OEA (10mg/kg) treatment significantly increased 5-HTP-induced head twitch behavior and reversed reserpine-induced hypothermia and increased cerebral levels of NE and 5-HT. Thus, the antidepressant effects of OEA may be related to regulating central monoamine neurotransmitters.
Collapse
Affiliation(s)
- Hai-Ling Yu
- College of Medicine, Yanbian University, Park street 977, Yanji 133002, Jilin, PR China.
| | - Lian-Ping Sun
- College of Medicine, Yanbian University, Park street 977, Yanji 133002, Jilin, PR China
| | - Miao-Miao Li
- College of Medicine, Yanbian University, Park street 977, Yanji 133002, Jilin, PR China
| | - Zhe-Shan Quan
- College of Pharmacy, Yanbian University, Park street 977, Yanji 133002, Jilin, PR China.
| |
Collapse
|
9
|
Patel KN, Joharapurkar AA, Patel V, Kshirsagar SG, Bahekar R, Srivastava BK, Jain MR. Cannabinoid receptor 1 antagonist treatment induces glucagon release and shows an additive therapeutic effect with GLP-1 agonist in diet-induced obese mice. Can J Physiol Pharmacol 2014; 92:975-83. [PMID: 25361428 DOI: 10.1139/cjpp-2014-0310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cannabinoid 1 (CB1) receptor antagonists reduce body weight and improve insulin sensitivity. Preclinical data indicates that an acute dose of CB1 antagonist rimonabant causes an increase in blood glucose. A stable analog of glucagon-like peptide 1 (GLP-1), exendin-4 improves glucose-stimulated insulin secretion in pancreas, and reduces appetite through activation of GLP-1 receptors in the central nervous system and liver. We hypothesized that the insulin secretagogue effect of GLP-1 agonist exendin-4 may synergize with the insulin-sensitizing action of rimonabant. Intraperitoneal as well as intracerebroventricular administration of rimonabant increased serum glucose upon glucose challenge in overnight fasted, diet-induced obese C57 mice, with concomitant rise in serum glucagon levels. Exendin-4 reversed the acute hyperglycemia induced by rimonabant. The combination of exendin-4 and rimonabant showed an additive effect in the food intake, and sustained body weight reduction upon repeated dosing. The acute efficacy of both the compounds was additive for inducing nausea-like symptoms in conditioned aversion test in mice, whereas exendin-4 treatment antagonized the effect of rimonabant on forced swim test upon chronic dosing. Thus, the addition of exendin-4 to rimonabant produces greater reduction in food intake owing to increased aversion, but reduces the other central nervous system side effects of rimonabant. The hyperglucagonemia induced by rimonabant is partially responsible for enhancing the antiobesity effect of exendin-4.
Collapse
Affiliation(s)
- Kartikkumar Navinchandra Patel
- a Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad 382210, India
| | | | | | | | | | | | | |
Collapse
|