1
|
Yadav G, Megha, Yadav S, Tomar R. An overview: total synthesis of arborisidine, and arbornamine. Mol Divers 2024:10.1007/s11030-024-10978-7. [PMID: 39242485 DOI: 10.1007/s11030-024-10978-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Arborisidine and Arbornamine are two monoterpenoid indole alkaloids that were isolated from the Malayan Kopsia arborea plant. This review provides valuable information about the total and formal syntheses of these alkaloids. The synthesis strategies discussed in this review, such as Pictet-Spengler cyclization, chemo- and stereoselective oxidative cyclization, Michael/Mannich cascade process, and intramolecular N-alkylation, can be useful for developing new methods to synthesize these and other similar compounds.
Collapse
Affiliation(s)
- Gitanjali Yadav
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari, Haryana, 122502, India
- Department of Chemistry, Baba Mastnath University Asthal bohar, Rohtak, Haryana, 124021, India
| | - Megha
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari, Haryana, 122502, India
| | - Sangeeta Yadav
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka, Delhi, 110078, India
| | - Ravi Tomar
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, 201204, India.
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India.
| |
Collapse
|
2
|
Rahman MA, Sarker A, Ayaz M, Shatabdy AR, Haque N, Jalouli M, Rahman MDH, Mou TJ, Dey SK, Hoque Apu E, Zafar MS, Parvez MAK. An Update on the Study of the Molecular Mechanisms Involved in Autophagy during Bacterial Pathogenesis. Biomedicines 2024; 12:1757. [PMID: 39200221 PMCID: PMC11351677 DOI: 10.3390/biomedicines12081757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Autophagy is a unique catabolic process that degrades irrelevant or damaged components in eukaryotic cells to maintain homeostasis and eliminate infections from pathogenesis. Pathogenic bacteria have developed many autophagy manipulation techniques that affect host immune responses and intracellular bacterial pathogens have evolved to avoid xenophagy. However, reducing its effectiveness as an innate immune response has not yet been elucidated. Bacterial pathogens cause autophagy in infected cells as a cell-autonomous defense mechanism to eliminate the pathogen. However, harmful bacteria have learned to control autophagy and defeat host defenses. Intracellular bacteria can stimulate and control autophagy, while others inhibit it to prevent xenophagy and lysosomal breakdown. This review evaluates the putative functions for xenophagy in regulating bacterial infection, emphasizing that successful pathogens have evolved strategies to disrupt or exploit this defense, reducing its efficiency in innate immunity. Instead, animal models show that autophagy-associated proteins influence bacterial pathogenicity outside of xenophagy. We also examine the consequences of the complex interaction between autophagy and bacterial pathogens in light of current efforts to modify autophagy and develop host-directed therapeutics to fight bacterial infections. Therefore, effective pathogens have evolved to subvert or exploit xenophagy, although autophagy-associated proteins can influence bacterial pathogenicity outside of xenophagy. Finally, this review implies how the complex interaction between autophagy and bacterial pathogens affects host-directed therapy for bacterial pathogenesis.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Amily Sarker
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Mohammed Ayaz
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ananya Rahman Shatabdy
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Nabila Haque
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Taslin Jahan Mou
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ehsanul Hoque Apu
- Department of Biomedical Science, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia;
- School of Dentistry, University of Jordan, Amman 11942, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Md. Anowar Khasru Parvez
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| |
Collapse
|
3
|
Calaf GM, Crispin LA, Quisbert-Valenzuela EO. Noscapine and Apoptosis in Breast and Other Cancers. Int J Mol Sci 2024; 25:3536. [PMID: 38542508 PMCID: PMC10970989 DOI: 10.3390/ijms25063536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 06/15/2024] Open
Abstract
Breast cancer is the second leading contributor to the age-standardized mortality rate, for both sexes and all ages worldwide. In Europe and the United States, it is the second leading cause of mortality, with an incidence rate of about 2.6 million cases per year. Noscapine, a well-known alkaloid used as a cough suppressant, demonstrated anti-tumor effects by triggering apoptosis in various cancer cell lines and has the potential to become another ally against breast, ovarian, colon, and gastric cancer, among other types of malignancy. Apoptosis plays a crucial role in the treatment of cancer. Noscapine affected BAX, CASP8, CASP9, NFKBIA, and RELA gene and protein expression in the MCF-7 and MDA-MB-231 cell lines. Gene expression was higher in tumor than in normal tissue, including the BAX expression levels in lung, ovary, endometrium, colon, stomach, and glioblastoma patients; BCL2L1 expression in endometrium, colon, and stomach patients; CASP8 gene expression levels in lung, endometrium, colon, stomach, and glioblastoma patients; RELA in colon, stomach, and glioblastoma patients; and NFKBIA in glioblastoma patients. It can be concluded that noscapine affected genes and proteins related to apoptosis in cancer cell lines and several types of cancer patients.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.)
| | | | | |
Collapse
|
4
|
Aghaali Z, Naghavi MR. Engineering of CYP82Y1, a cytochrome P450 monooxygenase: a key enzyme in noscapine biosynthesis in opium poppy. Biochem J 2023; 480:2009-2022. [PMID: 38063234 DOI: 10.1042/bcj20230243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Protein engineering provides a powerful base for the circumvention of challenges tied with characteristics accountable for enzyme functions. CYP82Y1 introduces a hydroxyl group (-OH) into C1 of N-methylcanadine as the substrate to yield 1-hydroxy-N-methylcanadine. This chemical process has been found to be the gateway to noscapine biosynthesis. Owning to the importance of CYP82Y1 in this biosynthetic pathway, it has been selected as a target for enzyme engineering. The insertion of tags to the N- and C-terminal of CYP82Y1 was assessed for their efficiencies for improvement of the physiological performances of CYP82Y1. Although these attempts achieved some positive results, further strategies are required to dramatically enhance the CYP82Y1 activity. Here methods that have been adopted to achieve a functionally improved CYP82Y1 will be reviewed. In addition, the possibility of recruitment of other techniques having not yet been implemented in CYP82Y1 engineering, including the substitution of the residues located in the substrate recognition site, formation of the synthetic fusion proteins, and construction of the artificial lipid-based scaffold will be discussed. Given the fact that the pace of noscapine synthesis is constrained by the CYP82Y1-catalyzing step, the methods proposed here are capable of accelerating the rate of reaction performed by CYP82Y1 through improving its properties, resulting in the enhancement of noscapine accumulation.
Collapse
Affiliation(s)
- Zahra Aghaali
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Naghavi
- Division of Plant Biotechnology, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| |
Collapse
|
5
|
Liu R, Liang X, Guo H, Li S, Yao W, Dong C, Wu J, Lu Y, Tang J, Zhang H. STNM1 in human cancers: role, function and potential therapy sensitizer. Cell Signal 2023:110775. [PMID: 37331415 DOI: 10.1016/j.cellsig.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
STMN1 belongs to the stathmin gene family, it encodes a cytoplasmic phosphorylated protein, stathmin1, which is commonly observed in vertebrate cells. STMN1 is a structural microtubule-associated protein (MAP) that binds to microtubule protein dimers rather than microtubules, with each STMN1 binding two microtubule protein dimers and preventing their aggregation, leading to microtubule instability. STMN1 expression is elevated in a number of malignancies, and inhibition of its expression can interfere with tumor cell division. Its expression can change the division of tumor cells, thereby arresting cell growth in the G2/M phase. Moreover, STMN1 expression affects tumor cell sensitivity to anti-microtubule drug analogs, including vincristine and paclitaxel. The research on MAPs is limited, and new insights on the mechanism of STMN1 in different cancers are emerging. The effective application of STMN1 in cancer prognosis and treatment requires further understanding of this protein. Here, we summarize the general characteristics of STMN1 and outline how STMN1 plays a role in cancer development, targeting multiple signaling networks and acting as a downstream target for multiple microRNAs, circRNAs, and lincRNAs. We also summarize recent findings on the function role of STMN1 in tumor resistance and as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Chenfang Dong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Wu
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
An overview on the exploring the interaction of inorganic nanoparticles with microtubules for the advancement of cancer therapeutics. Int J Biol Macromol 2022; 212:358-369. [PMID: 35618086 DOI: 10.1016/j.ijbiomac.2022.05.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 01/01/2023]
Abstract
Targeting microtubules (MTs), dynamic and stable proteins in cells, by different ligands have been reported to be a potential strategy to combat cancer cells. Inorganic nanoparticles (NPs) have been widely used as anticancer, antibacterial, and free radical scavenging agents, where the come in contact with biological macromolecules. The interaction between the NPs and biological macromolecules like MTs frequently occurs through different mechanisms. A prerequisite for a detailed exploration of MT structures and functions for biomedical applications like cancer therapy is to investigate profoundly the mechanisms involved in MT-NP interactions, for which the full explanation and characterization of the parameters that are responsible for the formation of a NP-protein complex are crucial. Therefore, in view of the fact that the goal of the rational NP-based future drug design and new therapies is to rely on the information of the structural details and protein-NPs binding mechanisms to manipulate the process of developing new potential drugs, a comprehensive investigation of the essence of the molecular recognition/interaction is also of considerable importance. In the present review, first, the microtubule (MT) structure and its binding sites upon interaction with MT stabilizing agents (MSAs) and MT destabilizing agents (MDAs) are introduced and rationalized. Next, MT targeting in cancer therapy and interaction of NPs with MTs are discussed. Furthermore, interaction of NPs with proteins and the manipulation of protein corona (PC), experimental techniques, and direct interaction of NPs with MTs, are discussed, and finally the challenges and future perspective of the field are introduced. We envision this review can provide useful information on the manipulation of the MT lattice for the progress of cancer nanomedicine.
Collapse
|
7
|
Rahmanian-Devin P, Baradaran Rahimi V, Jaafari MR, Golmohammadzadeh S, Sanei-far Z, Askari VR. Noscapine, an Emerging Medication for Different Diseases: A Mechanistic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8402517. [PMID: 34880922 PMCID: PMC8648453 DOI: 10.1155/2021/8402517] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
Noscapine is a benzylisoquinoline alkaloid isolated from poppy extract, used as an antitussive since the 1950s, and has no addictive or euphoric effects. Various studies have shown that noscapine has excellent anti-inflammatory effects and potentiates the antioxidant defences by inhibiting nitric oxide (NO) metabolites and reactive oxygen species (ROS) levels and increasing total glutathione (GSH). Furthermore, noscapine has indicated antiangiogenic and antimetastatic effects. Noscapine induces apoptosis in many cancerous cell types and provides favourable antitumour activities and inhibitory cell proliferation in solid tumours, even drug-resistant strains, via mitochondrial pathways. Moreover, this compound attenuates the dynamic properties of microtubules and arrests the cell cycle in the G2/M phase. Noscapine can reduce endothelial cell migration in the brain by inhibiting endothelial cell activator interleukin 8 (IL-8). In fact, this study aimed to elaborate on the possible mechanisms of noscapine against different disorders.
Collapse
Affiliation(s)
- Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sanei-far
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Nourbakhsh F, Askari VR. Biological and pharmacological activities of noscapine: Focusing on its receptors and mechanisms. Biofactors 2021; 47:975-991. [PMID: 34534373 DOI: 10.1002/biof.1781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
Noscapine has been mentioned as one of the effective drugs with potential therapeutic applications. With few side effects and amazing capabilities, noscapine can be considered different from other opioids-like structure compounds. Since 1930, extensive studies have been conducted in the field of pharmacological treatments from against malaria to control cough and cancer treatment. Furthermore, recent studies have shown that noscapine and some analogues, like 9-bromonoscapine, amino noscapine, and 9-nitronoscapine, can be used to treat polycystic ovaries syndrome, stroke, and other diseases. Given the numerous results presented in this field and the role of different receptors in the therapeutic effects of noscapine, we aimed to review the properties, therapeutic effects, and the role of receptors in the treatment of noscapine.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Verma P, Manchukonda NK, Kantevari S, Lopus M. Induction of microtubule hyper stabilization and robust G 2 /M arrest by N-4-CN in human breast carcinoma MDA-MB-231 cells. Fundam Clin Pharmacol 2021; 35:955-967. [PMID: 33576046 DOI: 10.1111/fcp.12660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
AIM Elucidation of the antiproliferative efficacy and mechanism of action of a design-optimized noscapine analog, N-4-CN. METHODS Cell viability was studied using an MTT assay. The drug-tubulin interactions were investigated using spectrofluorometry. The architectural defects, hyper stabilization, and recovery competence of cellular microtubules were studied using immunofluorescence microscopy. DCF-DH and rhodamine 123 were used as probes to to examine the levels of reactive oxygen species and the loss of mitochondrial membrane potential, respectively. Flow cytometry revealed the cell cycle progression pattern of the drug-treated cells. KEY FINDINGS Among the cell lines tested, N-4-CN showed the strongest inhibition of the viability of the triple-negative breast cancer (TNBC) cell line MDA-MB-231(IC50 , 2.7 ± 0.1 µmol/L) and weakest inhibition of the noncancerous epithelial cell line, VERO (IC50 , 60.2 ± 3 µmol/L). It perturbed tertiary structure of tubulin and stabilized colchicine binding to the protein. In cells, N-4-CN hyperstabilized the microtubules, and prevented the recovery of cold-depolymerized microtubules. Its multitude of effects on tubulin and microtubules facilitated cell cycle arrest and subsequent cell death that were complemented by elevated levels of reactive oxygen species (ROS). SIGNIFICANCE Owing to its ability to perturb a well-defined cancer drug target, tubulin, and to promote ROS-facilitated apoptosis, N-4-CN could be investigated further as a potential therapeutic against many neoplasms, including TNBC.
Collapse
Affiliation(s)
- Prachi Verma
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, India
| | | | - Srinivas Kantevari
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai, India
| |
Collapse
|
10
|
Discovery of noscapine derivatives as potential β-tubulin inhibitors. Bioorg Med Chem Lett 2020; 30:127489. [PMID: 32784088 DOI: 10.1016/j.bmcl.2020.127489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Twenty novel 1,2,3-triazole noscapine derivatives were synthesized starting from noscapine by consecutive N-demethylation, reduction of lactone ring, N-propargylation and Huisgen 1,3-dipolar cycloaddition reaction. In order to select the most promising molecules to subject to further biophysical and biological evaluation, a molecular docking analysis round was performed using noscapine as reference compound. The molecules featuring docking predicted binding affinity better than that of noscapine were then subjected to MTT assay against MCF7 cell line. The obtained results disclosed that all the selected triazole derivatives exhibited a remarkably lower cell viability compared to noscapine in the range of 20 μM in 48 h. In an attempt to correlate the biological activity with the ability to bind tubulin, the surface plasmon resonance (SPR) assay was employed. Compounds 8a, 8h, 9c, 9f and 9j were able to bind tubulin with affinity constant values in the nanomolar range and higher if compared to noscapine. Integrating computational predictions and experimental evaluation, two promising compounds (8h and 9c) were identified, whose relevant cytotoxicity was supposed to be correlated with tubulin binding affinity. These findings shed lights onto structural modifications of noscapine toward the identification of more potent cytotoxic agents targeting tubulin.
Collapse
|
11
|
Verma P, Nagireddy PKR, Prassanawar SS, Nirmala JG, Gupta A, Kantevari S, Lopus M. 9-PAN promotes tubulin- and ROS-mediated cell death in human triple-negative breast cancer cells. J Pharm Pharmacol 2020; 72:1585-1594. [PMID: 32959391 DOI: 10.1111/jphp.13349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To examine the antiproliferative effect of a rationally designed, novel noscapine analogue, 9-((perfluorophenyl)methylene) aminonoscapine, '9-PAN') on MDA-MB-231 breast cancer cell line, and to elucidate the underlying mechanism of action. METHODS The rationally designed Schiff base-containing compound, 9-PAN, was characterized using IR, NMR and mass spectra analysis. The effect of the compound on cell viability was studied using an MTT assay. Cell cycle and cell death analyses were performed using flow cytometry. Binding interactions of 9-PAN with tubulin were studied using spectrofluorometry. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were investigated using the probes, DCFDA and rhodamine-123, respectively. Immunofluorescence imaging was used to visualize cellular microtubules. KEY FINDINGS 9-PAN inhibited cell proliferation (IC50 of 20 ± 0.3 µm) and colony formation (IC50 , 6.2 ± 0.3 µm) by arresting the cells at G2 /M phase of the cell cycle. It bound to tubulin in a concentration-dependent manner without considerably altering the tertiary conformation of the protein or the polymer mass of the microtubules in vitro. The noscapinoid substantially damaged cellular microtubule network and induced cell death, facilitated by elevated levels of ROS. CONCLUSIONS 9-PAN exerts its antiproliferative effect by targeting tubulin and elevating ROS level in the cells.
Collapse
Affiliation(s)
- Prachi Verma
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | | | - Shweta Shyam Prassanawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Jesuthankaraj Grace Nirmala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Ankita Gupta
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| |
Collapse
|
12
|
Nambiar N, Nagireddy PKR, Pedapati R, Kantevari S, Lopus M. Tubulin- and ROS-dependent antiproliferative mechanism of a potent analogue of noscapine, N-propargyl noscapine. Life Sci 2020; 258:118238. [PMID: 32791146 DOI: 10.1016/j.lfs.2020.118238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 11/15/2022]
Abstract
AIM To rationally-design, synthesize, characterize, biologically evaluate, and to elucidate the anticancer mechanism of action of a novel analogue of noscapine, N-propargyl noscapine (NPN), as a potential drug candidate against triple-negative breast cancer (TNBC). MATERIALS AND METHODS After the synthesis and IR, 1H, 13C NMR and mass spectral characterization of NPN, its antiproliferative efficacy against different cancer cell lines was investigated using Sulforhodamine B assay. Cell cycle progression was analysed using flow cytometry. The drug-tubulin interactions were studied using tryptophan-quenching assay, ANS-binding assay, and colchicine-binding assay. Immunofluorescence imaging was used to examine the effect of NPN on cellular microtubules. Levels of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP), and cell death were studied by staining the cells with DCFDA, Rhodamine 123, and acridine orange/ethidium bromide, respectively. KEY FINDINGS NPN strongly inhibited the viability (IC50, 1.35 ± 0.2 μM) and clonogenicity (IC50, 0.56 ± 0.06 μM) of the TNBC cell line, MDA-MB-231, with robust G2/M arrest. In vitro, the drug bound to tubulin and disrupted the latter's structural integrity and promoted colchicine binding to tubulin. NPN triggered an unusual form of microtubule disruption in cells, repressed recovery of cold-depolymerized cellular microtubules and suppressed their dynamicity. These effects on microtubules were facilitated by elevated levels of ROS and loss of MMP. SIGNIFICANCE NPN can be explored further as a chemotherapeutic agent against TNBC.
Collapse
Affiliation(s)
- Nayana Nambiar
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Mumbai 400098, India
| | - Praveen Kumar Reddy Nagireddy
- Fluoro & Agrochemicals Division (Organic Chemistry Division-II), CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Ravikumar Pedapati
- Fluoro & Agrochemicals Division (Organic Chemistry Division-II), CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals Division (Organic Chemistry Division-II), CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Mumbai 400098, India.
| |
Collapse
|
13
|
Kumar Reddy Nagireddy P, Krishna Kommalapati V, Siva Krishna V, Sriram D, Devi Tangutur A, Kantevari S. Anticancer Potential of
N
‐Sulfonyl Noscapinoids: Synthesis and Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.202000142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - Vagolu Siva Krishna
- Medicinal Chemistry and Antimycobacterial Research LaboratoryPharmacy GroupBirla Institute of Technology & Science Pilani Hyderabad Campus Hyderabad 500078 India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research LaboratoryPharmacy GroupBirla Institute of Technology & Science Pilani Hyderabad Campus Hyderabad 500078 India
| | - Anjana Devi Tangutur
- Department of Applied BiologyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| |
Collapse
|
14
|
Deng S, Krutilina RI, Wang Q, Lin Z, Parke DN, Playa HC, Chen H, Miller DD, Seagroves TN, Li W. An Orally Available Tubulin Inhibitor, VERU-111, Suppresses Triple-Negative Breast Cancer Tumor Growth and Metastasis and Bypasses Taxane Resistance. Mol Cancer Ther 2019; 19:348-363. [PMID: 31645441 DOI: 10.1158/1535-7163.mct-19-0536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/27/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 15% of breast cancer cases in the United States. TNBC has poorer overall prognosis relative to other molecular subtypes due to rapid onset of drug resistance to conventional chemotherapies and increased risk of visceral metastases. Taxanes like paclitaxel are standard chemotherapies that stabilize microtubules, but their clinical efficacy is often limited by drug resistance and neurotoxicities. We evaluated the preclinical efficacy of a novel, potent, and orally bioavailable tubulin inhibitor, VERU-111, in TNBC models. VERU-111 showed potent cytotoxicity against TNBC cell lines, inducing apoptosis and cell-cycle arrest in a concentration-dependent manner. VERU-111 also efficiently inhibited colony formation, cell migration, and invasion. Orally administered VERU-111 inhibited MDA-MB-231 xenograft growth in a dose-dependent manner, with similar efficacies to paclitaxel, but without acute toxicity. VERU-111 significantly reduced metastases originating from the mammary fat pad into lung, liver, and kidney metastasis in an experimental metastasis model. Moreover, VERU-111, but not paclitaxel, suppressed growth of luciferase-labeled, taxane-resistant, patient-derived metastatic TNBC tumors. In this model, VERU-111 repressed growth of preestablished axillary lymph node metastases and lung, bone, and liver metastases at study endpoint, whereas paclitaxel enhanced liver metastases relative to vehicle controls. Collectively, these studies strongly suggest that VERU-111 is not only a potent inhibitor of aggressive TNBC phenotypes, but it is also efficacious in a taxane-resistant model of metastatic TNBC. Thus, VERU-111 is a promising new generation of tubulin inhibitor for the treatment of TNBC and may be effective in patients who progress on taxanes.Results presented in this study demonstrate the efficacy of VERU-111 in vivo and provide strong rationale for future development of VERU-111 as an effective treatment for metastatic breast cancer.
Collapse
Affiliation(s)
- Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Raisa I Krutilina
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Qinghui Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Zongtao Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Deanna N Parke
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hilaire C Playa
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Tiffany N Seagroves
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee. .,Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
15
|
Nagireddy PKR, Sridhar B, Kantevari S. Copper‐Catalyzed Glaser‐Hey‐Type Cross Coupling of 9‐Ethynyl‐α‐Noscapine Leading to Unsymmetrical 1,3‐Diynyl Noscapinoids. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Praveen K. R. Nagireddy
- Fluoro& Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Balasubramanian Sridhar
- Laboratory of X-ray CrystallographyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Srinivas Kantevari
- Fluoro& Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| |
Collapse
|
16
|
Reddy Nagireddy PK, Kommalapati VK, Manchukonda NK, Sridhar B, Tangutur AD, Kantevari S. Synthesis and Antiproliferative Activity of 9‐Formyl and 9‐Ethynyl Noscapines. ChemistrySelect 2019. [DOI: 10.1002/slct.201900666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Naresh K. Manchukonda
- Fluoro & Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
| | - Balasubramanian Sridhar
- X-Ray crystallographyDepartment of Analytical ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
| | - Anjana Devi Tangutur
- Department of Applied BiologyCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad- 500007 India
| |
Collapse
|
17
|
Luna MA, Gutierrez JA, Cobo Solis AK, Molina PG, Correa NM. Vehiculization of noscapine in large unilamellar vesicles. Study of its protective role against lipid peroxidation by electrochemical techniques. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Cheriyamundath S, Mahaddalkar T, Reddy Nagireddy PK, Sridhar B, Kantevari S, Lopus M. Insights into the structure and tubulin-targeted anticancer potential of N-(3-bromobenzyl) noscapine. Pharmacol Rep 2018; 71:48-53. [PMID: 30465924 DOI: 10.1016/j.pharep.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/06/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Noscapine is a non-narcotic, antitussive alkaloid isolated from plants of Papaveraceae family. This benzylisoquinoline alkaloid and its synthetic derivatives, called noscapinoids, are being evaluated for their anticancer potential. METHODS The structure of a novel analogue, N-(3-bromobenzyl) noscapine (N-BBN) was elucidated by X-ray crystallography. Effect of N-BBN on cancer cell proliferation and cellular microtubules were studied by sulphorhodamine B assay and immunofluorescence, respectively. Binding interactions of the alkaloid with tubulin was studied using spectrofluorimetry. RESULTS N-BBN, synthesized by introducing modification at site B ('N' in isoquinoline unit) and a bromo group at the 9th position of the parent compound noscapine, was found to be superior to many of the past-generation noscapinoids in inhibiting cancer cell viability and it showed a strong inhibition of the clonogenic potential of an aggressively metastatic breast tumour cell line, MDA-MB-231. The compound perturbed the tertiary structure of purified tubulin as indicated by an anilinonaphthalene sulfonic acid-binding assay. However, substantiating the common feature of noscapinoids, it did not alter microtubule polymer mass considerably. In cells, the drug-treatment showed a peculiar type of disruption of normal microtubule architecture. CONCLUSION N-BBN may be considered for further investigations as a potent antiproliferative agent.
Collapse
Affiliation(s)
- Sanith Cheriyamundath
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Mumbai, 400098, India
| | - Tejashree Mahaddalkar
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Mumbai, 400098, India
| | - Praveen Kumar Reddy Nagireddy
- Organic Chemistry Division-II (C P C Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Balasubramanian Sridhar
- X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Srinivas Kantevari
- Organic Chemistry Division-II (C P C Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Mumbai, 400098, India.
| |
Collapse
|
19
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
20
|
Esnaashari SS, Amani A. Optimization of Noscapine-Loaded mPEG-PLGA Nanoparticles and Release Study: a Response Surface Methodology Approach. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9318-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Cheriyamundath S, Mahaddalkar T, Kantevari S, Lopus M. Induction of acetylation and bundling of cellular microtubules by 9-(4-vinylphenyl) noscapine elicits S-phase arrest in MDA-MB-231 cells. Biomed Pharmacother 2017; 86:74-80. [DOI: 10.1016/j.biopha.2016.11.143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/14/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022] Open
|
22
|
Pradhan M, Suri C, Choudhary S, Naik PK, Lopus M. Elucidation of the anticancer potential and tubulin isotype-specific interactions of β-sitosterol. J Biomol Struct Dyn 2016; 36:195-208. [DOI: 10.1080/07391102.2016.1271749] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Madhura Pradhan
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Santacruz (E), Mumbai 400098, India
| | - Charu Suri
- Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India
| | - Sinjan Choudhary
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Santacruz (E), Mumbai 400098, India
| | - Pradeep Kumar Naik
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur 768019, Odisha, India
| | - Manu Lopus
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
23
|
Harati K, Behr B, Wallner C, Daigeler A, Hirsch T, Jacobsen F, Renner M, Harati A, Lehnhardt M, Becerikli M. Anti‑proliferative activity of epigallocatechin‑3‑gallate and silibinin on soft tissue sarcoma cells. Mol Med Rep 2016; 15:103-110. [PMID: 27909727 PMCID: PMC5355719 DOI: 10.3892/mmr.2016.5969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
Disseminated soft tissue sarcomas (STS) present a therapeutic dilemma. The first-line cytostatic doxorubicin demonstrates a response rate of 30% and is not suitable for elderly patients with underlying cardiac disease, due to its cardiotoxicity. Well‑tolerated alternative treatment options, particularly in palliative situations, are rare. Therefore, the present study assessed the anti‑proliferative effects of the natural compounds epigallocatechin-3-gallate (EGCG), silibinin and noscapine on STS cells. A total of eight different human STS cell lines were used in the study: Fibrosarcoma (HT1080), liposarcoma (SW872, T778 and MLS‑402), synovial sarcoma (SW982, SYO1 and 1273) and pleomorphic sarcoma (U2197). Cell proliferation and viability were analysed by 5‑bromo-2'-deoxyuridine and MTT assays and real‑time cell analysis (RTCA). RTCA indicated that noscapine did not exhibit any inhibitory effects. By contrast, EGCG decreased proliferation and viability of all cell lines except for the 1273 synovial sarcoma cell line. Silibinin exhibited anti‑proliferative effects on all synovial sarcoma, liposarcoma and fibrosarcoma cell lines. Liposarcoma cell lines responded particularly well to EGCG while synovial sarcoma cell lines were more sensitive to silibinin. In conclusion, the green tea polyphenol EGCG and the natural flavonoid silibinin from milk thistle suppressed the proliferation and viability of liposarcoma, synovial sarcoma and fibrosarcoma cells. These compounds are therefore potential candidates as mild therapeutic options for patients that are not suitable for doxorubicin‑based chemotherapy and require palliative treatment. The findings from the present study provide evidence to support in vivo trials assessing the effect of these natural compounds on solid sarcomas.
Collapse
Affiliation(s)
- Kamran Harati
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Adrien Daigeler
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Tobias Hirsch
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Frank Jacobsen
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Marcus Renner
- Institute of Pathology, University of Heidelberg, D‑69120 Heidelberg, Germany
| | - Ali Harati
- Department of Neurosurgery, Klinikum Dortmund, D‑44145 Dortmund, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| |
Collapse
|
24
|
Cheng YT, Yang CC, Shyur LF. Phytomedicine-Modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacol Res 2016; 114:128-143. [PMID: 27794498 DOI: 10.1016/j.phrs.2016.10.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022]
Abstract
In spite of the current advances and achievements in systems biology and translational medicinal research, the current strategies for cancer therapy, such as radiotherapy, targeted therapy, immunotherapy and chemotherapy remain palliative or unsatisfactory due to tumor metastasis or recurrence after surgery/therapy, drug resistance, adverse side effects, and so on. Oxidative stress (OS) plays a critical role in chronic/acute inflammation, carcinogenesis, tumor progression, and tumor invasion/metastasis which is also attributed to the dynamic and complex properties and activities in the tumor microenvironment (TME). Re-educating or reprogramming tumor-associated stromal or immune cells in the TME provides an approach for restoring immune surveillance impaired by disease in cancer patients to increase overall survival and reduce drug resistance. Herbal medicines or plant-derived natural products have historically been a major source of anti-cancer drugs. Delving into the lore of herbal medicine may uncover new leads for anti-cancer drugs. Phytomedicines have been widely documented to directly or indirectly target multiple signaling pathways and networks in cancer cells. A combination of anti-cancer drugs and polypharmacological plant-derived extracts or compounds may offer a significant advantage in sensitizing the efficacy of monotherapy and overcoming drug-induced resistance in cancer patients. This review introduces several phytochemicals and phytoextracts derived from medicinal plants or dietary vegetables that have been studied for their efficacy in preclinical cancer models. We address the underlying modes of action of induction of OS and deregulation of TME-associated stromal cells, mediators and signaling pathways, and reference the related clinical investigations that look at the single or combination use of phytochemicals and phytoextracts to sensitize anti-cancer drug effects and/or overcome drug resistance.
Collapse
Affiliation(s)
- Yu-Ting Cheng
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Chun-Chih Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taiwan
| | - Lie-Fen Shyur
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
25
|
Mahaddalkar T, Manchukonda N, Choudhary S, Cheriyamundath S, Mohanpuria N, Kantevari S, Lopus M. Subtle Alterations in Microtubule Assembly Dynamics by Br-TMB-Noscapine Strongly Suppress Triple-Negative Breast Cancer Cell Viability Without Mitotic Arrest. ChemistrySelect 2016. [DOI: 10.1002/slct.201600959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tejashree Mahaddalkar
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences; University of Mumbai Kalina Campus; Mumbai- 400098 India
| | - Naresh Manchukonda
- Organic Chemistry Division-II (CPC Division); CSIR-Indian Institute of Chemical Technology; Hyderabad, Telangana India
| | - Sinjan Choudhary
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences; University of Mumbai Kalina Campus; Mumbai- 400098 India
| | - Sanith Cheriyamundath
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences; University of Mumbai Kalina Campus; Mumbai- 400098 India
| | - Neha Mohanpuria
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences; University of Mumbai Kalina Campus; Mumbai- 400098 India
| | - Srinivas Kantevari
- Organic Chemistry Division-II (CPC Division); CSIR-Indian Institute of Chemical Technology; Hyderabad, Telangana India
| | - Manu Lopus
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences; University of Mumbai Kalina Campus; Mumbai- 400098 India
| |
Collapse
|
26
|
Mahaddalkar T, Naik PK, Choudhary S, Manchukonda N, Kantevari S, Lopus M. Structural investigations into the binding mode of a novel noscapine analogue, 9-(4-vinylphenyl) noscapine, with tubulin by biochemical analyses and molecular dynamic simulations. J Biomol Struct Dyn 2016; 35:2475-2484. [DOI: 10.1080/07391102.2016.1222969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tejashree Mahaddalkar
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Santacruz (E), Mumbai 400098, India
| | - Pradeep Kumar Naik
- Department of Biotechnology, Guru Ghasidas Central University, Bilaspur, Chattisgarh 495009, India
| | - Sinjan Choudhary
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Santacruz (E), Mumbai 400098, India
| | - Naresh Manchukonda
- Organic Chemistry Division-II (CPC Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Srinivas Kantevari
- Organic Chemistry Division-II (CPC Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Manu Lopus
- Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
27
|
Li Y, Smolke CD. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat Commun 2016; 7:12137. [PMID: 27378283 PMCID: PMC4935968 DOI: 10.1038/ncomms12137] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/03/2016] [Indexed: 01/22/2023] Open
Abstract
Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4'-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery.
Collapse
Affiliation(s)
- Yanran Li
- Shriram Center, Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, California 94305, USA
| | - Christina D. Smolke
- Shriram Center, Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, California 94305, USA
| |
Collapse
|
28
|
Rida PCG, LiVecche D, Ogden A, Zhou J, Aneja R. The Noscapine Chronicle: A Pharmaco-Historic Biography of the Opiate Alkaloid Family and its Clinical Applications. Med Res Rev 2015; 35:1072-96. [PMID: 26179481 DOI: 10.1002/med.21357] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Given its manifold potential therapeutic applications and amenability to modification, noscapine is a veritable "Renaissance drug" worthy of commemoration. Perhaps the only facet of noscapine's profile more astounding than its versatility is its virtual lack of side effects and addictive properties, which distinguishes it from other denizens of Papaver somniferum. This review intimately chronicles the rich intellectual and pharmacological history behind the noscapine family of compounds, the length of whose arms was revealed over decades of patient scholarship and experimentation. We discuss the intriguing story of this family of nontoxic alkaloids, from noscapine's purification from opium at the turn of the 19th century in Paris to the recent torrent of rationally designed analogs with tremendous anticancer potential. In between, noscapine's unique pharmacology; impact on cellular signaling pathways, the mitotic spindle, and centrosome clustering; use as an antimalarial drug and cough suppressant; and exceptional potential as a treatment for polycystic ovarian syndrome, strokes, and diverse malignancies are catalogued. Seminal experiments involving some of its more promising analogs, such as amino-noscapine, 9-nitronoscapine, 9-bromonoscapine, and reduced bromonoscapine, are also detailed. Finally, the bright future of these oftentimes even more exceptional derivatives is described, rounding out a portrait of a truly remarkable family of compounds.
Collapse
Affiliation(s)
- Padmashree C G Rida
- Novazoi Theranostics, Inc, Plano, Texas, 75025, USA.,Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Dillon LiVecche
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
29
|
Mahaddalkar T, Suri C, Naik PK, Lopus M. Biochemical characterization and molecular dynamic simulation of β-sitosterol as a tubulin-binding anticancer agent. Eur J Pharmacol 2015; 760:154-62. [PMID: 25912799 DOI: 10.1016/j.ejphar.2015.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/19/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Βeta-sitosterol (β-SITO), a phytosterol present in pomegranate, peanut, corn oil, almond, and avocado, has been recognized to offer health benefits and potential clinical uses. β-SITO is orally bioavailable and, as a constituent of edible natural products, is considered to have no undesired side effects. It has also been considered as a potent anticancer agent. However, the molecular mechanism of action of β-SITO as a tubulin-binding anticancer agent and its binding site on tubulin are poorly understood. Using a combination of biochemical analyses and molecular dynamic simulation, we investigated the molecular details of the binding interactions of β-SITO with tubulin. A polymer mass assay comparing the effects of β-SITO and of taxol and vinblastine on tubulin assembly showed that this phytosterol stabilized microtubule assembly in a manner similar to taxol. An 8-anilino-1-naphthalenesulfonic acid assay confirmed the direct interaction of β-SITO with tubulin. Although β-SITO did not show direct binding to the colchicine site on tubulin, it stabilized the colchicine binding. Interestingly, no sulfhydryl groups of tubulin were involved in the binding interaction of β-SITO with tubulin. Based on the results from the biochemical assays, we computationally modeled the binding of β-SITO with tubulin. Using molecular docking followed by molecular dynamic simulations, we found that β-SITO binds tubulin at a novel site (which we call the 'SITO site') adjacent to the colchicine and noscapine sites. Our data suggest that β-SITO is a potent anticancer compound that interferes with microtubule assembly dynamics by binding to a novel site on tubulin.
Collapse
Affiliation(s)
- Tejashree Mahaddalkar
- Experimental Cancer Therapeutics and Chemical Biology, Department of Biology, UM-DAE Centre for Excellence in Basic Sciences, Kalina, Santacruz (E), Mumbai 400098, India
| | - Charu Suri
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India
| | - Pradeep Kumar Naik
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India
| | - Manu Lopus
- Experimental Cancer Therapeutics and Chemical Biology, Department of Biology, UM-DAE Centre for Excellence in Basic Sciences, Kalina, Santacruz (E), Mumbai 400098, India.
| |
Collapse
|
30
|
Katsetos CD, Reginato MJ, Baas PW, D'Agostino L, Legido A, Tuszyn Ski JA, Dráberová E, Dráber P. Emerging microtubule targets in glioma therapy. Semin Pediatr Neurol 2015; 22:49-72. [PMID: 25976261 DOI: 10.1016/j.spen.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Major advances in the genomics and epigenomics of diffuse gliomas and glioblastoma to date have not been translated into effective therapy, necessitating pursuit of alternative treatment approaches for these therapeutically challenging tumors. Current knowledge of microtubules in cancer and the development of new microtubule-based treatment strategies for high-grade gliomas are the topic in this review article. Discussed are cellular, molecular, and pharmacologic aspects of the microtubule cytoskeleton underlying mitosis and interactions with other cellular partners involved in cell cycle progression, directional cell migration, and tumor invasion. Special focus is placed on (1) the aberrant overexpression of βIII-tubulin, a survival factor associated with hypoxic tumor microenvironment and dynamic instability of microtubules; (2) the ectopic overexpression of γ-tubulin, which in addition to its conventional role as a microtubule-nucleating protein has recently emerged as a transcription factor interacting with oncogenes and kinases; (3) the microtubule-severing ATPase spastin and its emerging role in cell motility of glioblastoma cells; and (4) the modulating role of posttranslational modifications of tubulin in the context of interaction of microtubules with motor proteins. Specific antineoplastic strategies discussed include downregulation of targeted molecules aimed at achieving a sensitization effect on currently used mainstay therapies. The potential role of new classes of tubulin-binding agents and ATPase inhibitors is also examined. Understanding the cellular and molecular mechanisms underpinning the distinct behaviors of microtubules in glioma tumorigenesis and drug resistance is key to the discovery of novel molecular targets that will fundamentally change the prognostic outlook of patients with diffuse high-grade gliomas.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA.
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Luca D'Agostino
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Agustin Legido
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Jack A Tuszyn Ski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|