1
|
Xu Z, Sha W, Hou C, Amakye WK, Yao M, Ren J. Comparison of 3 hyperuricemia mouse models and evaluation of food-derived anti-hyperuricemia compound with spontaneous hyperuricemia mouse model. Biochem Biophys Res Commun 2022; 630:41-49. [PMID: 36137324 DOI: 10.1016/j.bbrc.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/04/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
Hyperuricemia animal models have long been used for evaluating food-derived anti-hyperuricemia compounds. Fructose and potassium oxonate are commonly used for developing hyperuricemia mouse model. Recent research also developed spontaneous hyperuricemia model by uricase knockout (Uox-/-). In this work, we evaluated 3 kinds of models with the same gene background to illustrate the differences between the treatments. Unlike the uric acid levels in potassium oxonate (224.79 ± 33.62 μmol/L) and Uox-/- groups (458.39 ± 38.29 μmol/L), fructose treatment did not lead to higher serum uric acid level (174.93 ± 30.46 μmol/L) comparing to the control group (153.53 ± 40.96 μmol/L). However, abnormal glycometabolism only developed in the fructose and the Uox-/- group. In addition, anemia, inflammasome and severe renal injury occurred in the Uox-/- group. The Uox-/- mice were then treated with puerarin and allopurinol, and found that puerarin could reduce serum uric acid and alleviated the serious renal damage associated with high uric acid. Thus, the Uox-/- mice could be a suitable model for screening and evaluating anti-hyperuricemia compounds.
Collapse
Affiliation(s)
- Zhenzhen Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Huangpu District, Guangzhou, 510663, China
| | - Wanqian Sha
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chuanli Hou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Huangpu District, Guangzhou, 510663, China.
| |
Collapse
|
2
|
Gonçalves AS, Andrade N, Martel F. Intestinal fructose absorption: Modulation and relation to human diseases. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Sayehmiri K, Ahmadi I, Anvari E. Fructose Feeding and Hyperuricemia: a Systematic Review and Meta-Analysis. Clin Nutr Res 2020; 9:122-133. [PMID: 32395442 PMCID: PMC7192665 DOI: 10.7762/cnr.2020.9.2.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022] Open
Abstract
High fructose feeding has been suggested to involve in several features of metabolic syndrome including hyperuricemia (HP). We designed and implemented a study to determine the effect size of fructose intake and the relative risk of HP based on the type of fructose feeding (diet or solution), duration of treatment (2–6, 7–10, and > 10 weeks), and animal race. The required information was accepted from international databases, including PubMed/MEDLINE, Science Direct, Scopus, and etc., from 2009 until 2019 on the basis of predetermined eligibility criteria. The data selection and extraction and quality assessment were performed independently by two researchers. Results were pooled as random effects weighting and reported as standardized mean differences with 95% confidence intervals. Thirty-five studies including 244 rats with fructose consumption were included in the final analysis. The heterogeneity rate of parameters was high (I2 = 81.3%, p < 0.001) and estimated based on; 1) type of fructose feeding (diet; I2 = 79.3%, solution 10%; I2 = 83.4%, solution 20%; I2 = 81.3%), 2) duration of treatment (2–6 weeks; I2 = 86.8%, 7–10 weeks; I2 = 76.3%, and > 10 weeks; I2 = 82.8%), 3) the animal race (Wistar; I2 = 78.6%, Sprague-Dawley; I2 = 83.9%). Overall, the pooled estimate for the all parameters was significant (p < 0.001). The results of this study indicated that a significant relationship between HP and fructose intake regardless of the treatment duration, animal race, fructose concentration and route of consumption.
Collapse
Affiliation(s)
- Kourosh Sayehmiri
- Department of Social Medicine, Faculty of Medicine, Ilam University of Medical Sciences, Ilam 6931851147, Iran
| | - Iraj Ahmadi
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam 6931851147, Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam 6931851147, Iran
| |
Collapse
|
4
|
Cai L, Li Q, Deng Y, Liu X, Du W, Jiang X. Construction and expression of recombinant uricase‑expressing genetically engineered bacteria and its application in rat model of hyperuricemia. Int J Mol Med 2020; 45:1488-1500. [PMID: 32323736 PMCID: PMC7138262 DOI: 10.3892/ijmm.2020.4512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
At present, the treatment of hyperuricemia is designed primarily to decrease the production of uric acid using xanthine oxidase inhibitors; however, the therapeutic effect is not satisfactory. Therefore, the key to the successful treatment of hyperuricemia is to increase the excretion of uric acid. The aim of present study was to construct uricase-expressing genetically engineered bacteria and analyze the effects of these engineered bacteria on the lowering of uric acid levels in a rat model of hyperuricemia. The uricase expression vector was constructed by gene recombination technology and transfected into Escherichia coli. The expression and activity of uricase were analyzed by SDS-PAGE analysis and Bradford assay. The water consumption, food intake, body weight, eosinophil count and intestinal histology, in addition to the levels of serum uric acid (SUA) and allantoin in the feces of the rats, were assessed. The intestinal contents of the rats were analyzed by 16S rDNA sequencing technology. The results demonstrated that uricase-expressing genetically engineered bacteria secreted active uricase. All rats exhibited a natural growth trend during the entire experiment, and the SUA of hyperuricemic rats treated with uricase-expressing engineered bacteria was significantly decreased. In conclusion, these results indicate that uricase secreted by recombinant uricase-expressing genetically engineered bacteria served an important role in decreasing SUA levels in a rat model of hyperuricemia.
Collapse
Affiliation(s)
- Liming Cai
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qin Li
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| | - Xianjun Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weihong Du
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xue Jiang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
5
|
Xiang W, Wang L, Cheng S, Zhou Y, Ma L. Protective Effects of α-Lipoic Acid on Vascular Oxidative Stress in Rats with Hyperuricemia. Curr Med Sci 2019; 39:920-928. [PMID: 31845223 DOI: 10.1007/s11596-019-2124-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 10/06/2019] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to observe the protective effects of α-lipoic acid (ALA) on vascular injury in rats with hyperuricemia (HUA). The ALA treatment groups (10, 30 and 90 mg/kg, respectively) were administered with ALA via gavage for 2 weeks. Subsequently, the levels of blood urea nitrogen (BUN), creatinine (CREA), uric acid (UA), total cholesterol (TC), high density lipoprotein-C (HDL-C) and low density lipoprotein-C (LDL-C) were measured; the activities of glutathione peroxidase (GSH-Px), catalase (CAT), malonaldehyde (MDA), superoxide dismutase (SOD) and xanthine oxidase (XOD) were also determined. The thoracic aorta of rats in each experimental group was observed under a light microscope; ultrastructural analysis was performed. SOD and CAT protein contents were investigated by Western blotting. The results revealed that: i) Compared with the model group, the levels of UA were decreased in the ALA groups and the levels of BUN, CREA, TC, and LDL-C decreased in the 30 and 90 mg/kg ALA groups (P<0.05); ii) compared with the model group, the activities of GSH-Px, SOD and XOD were increased and the levels of MDA were reduced in the 90 mg/kg ALA group (P<0.05); and iii) in the model and 10 mg/kg ALA groups, edema and shedding were observed in endothelial cells. Compared with the model and 10 mg/kg ALA groups, the 30 and 90 mg/kg ALA groups exhibited fewer swollen endothelial cells. In summary, the results of the present study indicated that HUA resulted in vascular oxidative stress injury and decreased the activity of antioxidative enzymes, which leads to endothelial cell damage and vascular lesions. ALA may serve as a therapeutic agent for the treatment of HUA-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Li Wang
- Community Health Service Management Center, Dong cheng District, Beijing, 100000, China
| | - Shi Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Yong Zhou
- Department of Medical Cell Biology and Genetics, College of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
6
|
Tan J, Wan L, Chen X, Li X, Hao X, Li X, Li J, Ding H. Conjugated Linoleic Acid Ameliorates High Fructose-Induced Hyperuricemia and Renal Inflammation in Rats via NLRP3 Inflammasome and TLR4 Signaling Pathway. Mol Nutr Food Res 2019; 63:e1801402. [PMID: 30913372 DOI: 10.1002/mnfr.201801402] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/07/2019] [Indexed: 12/16/2022]
Abstract
SCOPE Conjugated linoleic acid (CLA), a bioactive substance predominantly found in ruminant products, improves insulin resistance and exhibits anti-inflammatory activity. The chief objective of the study is to investigate the effects and potential mechanisms of CLA on high fructose-induced hyperuricemia and renal inflammation. METHODS AND RESULTS Hyperuricemia and renal inflammation are induced in rats by 10% fructose. Hyperuricemia, insulin resistance, and renal inflammation are evaluated. CLA potently ameliorates fructose-induced hyperuricemia with insulin resistance and significantly reduces the levels of inflammation factors in serum and kidney. It reverses fructose-induced upregulation of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) in the kidney. Moreover, CLA dramatically inhibits the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. Additionally, CLA suppresses toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling activation to inhibit nuclear factor-kB (NF-kB) signaling in the kidney of fructose-fed rats. CONCLUSION CLA ameliorates hyperuricemia along with insulin resistance and renal inflammatory, which may be associated with the suppression of renal GLUT9 and URAT1 in fructose-fed rats. Its molecular mechanism may be related to the inhibition of NLRP3 inflammasome and TLR4/MyD88 signaling pathway. Therefore, CLA may be a promising candidate for preventing fructose-induced hyperuricemia and renal inflammation.
Collapse
Affiliation(s)
- Jianyang Tan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, P. R. China
| | - Liping Wan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, P. R. China
| | - Xiaofang Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, P. R. China
| | - Xiaolei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, P. R. China
| | - Xiaoxu Hao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, P. R. China
| | - Xiaofei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, P. R. China
| | - Jian Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, P. R. China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei, P. R. China
| |
Collapse
|
7
|
Prado VC, Quines CB, Rosa SG, Cechella JL, Nogueira CW. Oxidative stress and metabolic parameters are differently affected by fructose when rats were kept sedentary or underwent swimming exercise. Can J Physiol Pharmacol 2019; 97:721-728. [PMID: 30933668 DOI: 10.1139/cjpp-2018-0620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The current study evaluated whether fructose supplementation affects oxidative stress and metabolic parameters in the liver and gastrocnemius muscle of rats subjected to swimming exercise. Male adult Wistar rats received a fructose solution (10%) or water during 1 h before exercise and during the rest interval by the intragastric route. The swimming protocol consisted of 6 days: each day, rats underwent 3 sessions of 17 min each, with a load of 5% of body mass, and rest intervals of 3 min. Fructose supplementation changed metabolic and oxidative parameters in the liver and gastrocnemius muscle of sedentary rats. Swimming exercise counteracted the increase of triglyceride levels in plasma and liver induced by fructose supplementation. It also reduced thiobarbituric acid reactive species levels in the liver, and catalase and superoxide dismutase activities in the gastrocnemius muscle of supplemented rats. However, fructose supplementation worsened metabolic (hepatic triglyceride levels) and oxidative parameters (thiobarbituric acid reactive species levels) in the liver and gastrocnemius of exercised rats. This study demonstrates that oxidative stress and metabolic parameters were differently affected by fructose supplementation when rats were kept sedentary or underwent swimming exercise. The present results indicate the need of a new insight of the role of fructose supplementation during physical exercise.
Collapse
Affiliation(s)
- Vinicius Costa Prado
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil.,Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Caroline Brandão Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil.,Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Suzan Gonçalves Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil.,Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - José Luiz Cechella
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil.,Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil.,Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| |
Collapse
|
8
|
Wang T, Li D, Yu B, Qi J. Screening inhibitors of xanthine oxidase from natural products using enzyme immobilized magnetic beads by high-performance liquid chromatography coupled with tandem mass spectrometry. J Sep Sci 2018; 40:1877-1886. [PMID: 28261954 DOI: 10.1002/jssc.201601438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 01/12/2023]
Abstract
In this study, high-performance liquid chromatography coupled with tandem mass spectrometry was used to assess the results of bioactive compound screening from natural products using immobilized enzyme magnetic beads. We compared three commercial magnetic beads with modified amino, carboxy, and N-hydroxysuccinimide groups, respectively. Amino magnetic beads performed best for immobilization and were selected for further experiments. Xanthine oxidase was immobilized on amino magnetic beads and applied to screen potential inhibitors in fresh Zingiber officinale Roscoe, extracts of Scutellaria baicalensis Georgi, and Pueraria lobata Ohwi. In total, 12 potential xanthine oxidase ligands were identified from fresh Zingiber root and Scutellaria root extracts, of which eight were characterized and the concentration required for 50% inhibition was determined. Preliminary structure-function relationships were discussed based on these results. A convenient and effective method was therefore developed for the identification of active compounds from complex natural product mixtures.
Collapse
Affiliation(s)
- Ting Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P.R. China
| | - Dapeng Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P.R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P.R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Jin Qi
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P.R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| |
Collapse
|
9
|
Liu N, Xu L, Shi Y, Fang L, Gu H, Wang H, Ding X, Zhuang S. Pharmacologic targeting ERK1/2 attenuates the development and progression of hyperuricemic nephropathy in rats. Oncotarget 2018; 8:33807-33826. [PMID: 28442634 PMCID: PMC5464913 DOI: 10.18632/oncotarget.16995] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of hyperuricemia-induced chronic kidney disease is largely unknown. In this study, we investigated whether extracellular signal–regulated kinases1/2 (ERK1/2) would contribute to the development of hyperuricemic nephropathy (HN). In a rat model of HN induced by feeding mixture of adenine and potassium oxonate, increased ERK1/2 phosphorylation and severe glomerular sclerosis and renal interstitial fibrosis were evident, in parallel with diminished levels of renal function and increased urine microalbumin excretion. Administration of U0126, which is a selective inhibitor of the ERK1/2 pathway, improved renal function, decreased urine microalbumin and inhibited activation of renal interstitial fibroblasts as well as accumulation of extracellular proteins. U0126 also inhibited hyperuricemia-induced expression of multiple profibrogenic cytokines/chemokines and infiltration of macrophages in the kidney. Furthermore, U0126 treatment suppressed xanthine oxidase, which mediates uric acid production. It also reduced expression of the urate anion exchanger 1, which promotes reabsorption of uric acid, and preserved expression of organic anion transporters 1 and 3, which accelerate uric acid excretion in the kidney of hyperuricemic rats. Finally, U0126 inhibited phosphorylation of Smad3, a key mediator in transforming growth factor (TGF-β) signaling. In cultured renal interstitial fibroblasts, inhibition of ERK1/2 activation by siRNA suppressed uric acid-induced activation of renal interstitial fibroblasts. Collectively, pharmacologic targeting of ERK1/2 can alleviate HN by suppressing TGF-β signaling, reducing inflammation responses, and inhibiting the molecular processes associated with elevation of blood uric acid levels in the body. Thus, ERK1/2 inhibition may be a potential approach for the prevention and treatment of hyperuricemic nephropathy.
Collapse
Affiliation(s)
- Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Liuqing Xu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lu Fang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hongwei Gu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hongrui Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, RI 02903, USA
| |
Collapse
|
10
|
Fructose malabsorption in people with and without gout: A case-control study. Semin Arthritis Rheum 2017; 47:257-263. [PMID: 28457529 DOI: 10.1016/j.semarthrit.2017.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Higher fructose intake has been associated with hyperuricaemia and gout. Some individuals malabsorb fructose in the small intestine. The aims of this study were to determine the rate of fructose malabsorption and the effects of gout and fructose malabsorption on serum urate in people with and without gout. METHODS A total of 100 people with gout (cases) were age and gender matched with one control without gout. After a low fructose diet, fructose malabsorption was measured using a hydrogen and methane breath test with a 35g fructose load. In a subgroup of 35 cases and 35 controls, serum urate response to the fructose load over 240 minutes was measured. RESULTS There was no significant difference in the rate of fructose malabsorption between cases and controls (48% vs. 52%; p = 0.67). Cases had a significantly lower mean (SEM) serum urate cumulative incremental concentration from baseline-240 minutes (iAUC0-240) compared to controls 0.97 (0.56) vs. 4.78 (0.55); p < 0.001. Cmax was significantly lower in cases compared to controls [0.38 (0.003) vs. 0.40 (0.003); p < 0.001]. 95% of cases were receiving allopurinol. There was no significant difference between iAUC0-240 or Cmax for malabsorbers compared to normal absorbers irrespective of case-control status. The mean (SEM) increase in serum urate between baseline and 30 minutes was 0.04 (0.004)mmol/l in the controls compared to 0.009 (0.002) in the cases (p < 0.001). CONCLUSION The rates of fructose malabsorption are similar in people with and without gout. Allopurinol inhibits the increase in serum urate induced by a fructose load suggesting that people with gout receiving allopurinol may not need to restrict dietary intake of fructose.
Collapse
|