1
|
Grammer J, Valles R, Bowles A, Zelikowsky M. SAUSI: a novel assay for measuring social anxiety and motivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594023. [PMID: 38798428 PMCID: PMC11118329 DOI: 10.1101/2024.05.13.594023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Social anxiety is one of the most prevalent mental health disorders, though the underlying neurobiology is poorly understood. Progress in understanding the etiology of social anxiety has been hindered by the lack of comprehensive tools to assess social anxiety in model systems. Here, we created a new behavioral task - Selective Access to Unrestricted Social Interaction (SAUSI), which combines elements of social motivation, hesitancy, decision-making, and free interaction to enable the wholistic assessment of social anxiety-like behaviors in mice. Using this novel assay, we found that social isolation-induced social anxiety-like behaviors in female mice are largely driven by increases in social fear, social hesitancy, and altered ultrasonic vocalizations. Deep learning analyses were able to computationally identify a unique behavioral footprint underlying the state produced by social isolation, demonstrating the compatibility of modern computational approaches with SAUSI. Finally, we compared the results of SAUSI to traditionally social assays including the 3-chamber sociability assay and the resident intruder task. This revealed that behavioral changes induced by isolation were highly context dependent, and that while fragments of social anxiety measured in SAUSI were replicable across other tasks, a wholistic assessment was not obtainable from these alternative assays. Our findings debut a novel task for the behavioral toolbox - one which overcomes limitations of previous assays, allowing for both social choice as well as free interaction, and offers a new approach for assessing social anxiety in rodents.
Collapse
Affiliation(s)
- Jordan Grammer
- Department of Neurobiology, University of Utah, United States
| | - Rene Valles
- Department of Neurobiology, University of Utah, United States
| | - Alexis Bowles
- Department of Neurobiology, University of Utah, United States
| | | |
Collapse
|
2
|
Speck ML, Gomes ALA, Rojas CS, Willig JB, Herrmann AP, Pilger DA, Rates SMK. Environmental enrichment affects behavioral and pharmacological response to antidepressants in CF1 mice. Neurosci Lett 2023; 813:137432. [PMID: 37549865 DOI: 10.1016/j.neulet.2023.137432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
It has been described that environmental enrichment (EE) exerts beneficial effects on cognitive and emotional performances, dendritic branching, synaptic density, neurogenesis and modulation of neurotrophic systems and neurotransmitters in rodents. However, the influence of EE on pharmacological and behavioral responses in animal models of psychiatric disorders has not been fully established. In this context, the aim of this study was to evaluate the influence of exposure to EE on mice behavior in the open field test (OFT) and forced swimming tests (FST), as well as the response to antidepressant drugs (fluoxetine 30 mg/kg and bupropion 30 mg/kg, p.o.). CF1 mice were exposed to an enriched housing condition at different developmental stages: from mating to postnatal day (PND) 55 (lifelong enrichment), from mating to PND21 (perinatal enrichment) and from PND21 to PND55 (post-weaning enrichment). At PND58 the male offspring were evaluated in the OFT and FST. BDNF gene expression in the hippocampus was determined through qPCR. Mice exposed to perinatal enrichment remained longer in the peripheral zone of the OFT and performed fewer grooming than mice housed under standard condition, and these effects were independent of drug treatment. Post-weaning and lifelong enrichment increased grooming behavior. Bupropion reduced grooming in all groups except in perinatal enriched. In turn, fluoxetine decreased grooming only in post-weaning enriched group. None of the enriched housing conditions altered the immobility time in the FST, which indicates that EE had no antidepressant-like effect. However, all enriched housing conditions abolished the anti-immobility effect of bupropion. None of the EE protocols affected BDNF hippocampal expression. The main conclusion is that mice behavior in the OFT is sensitive to alterations in the housing environment and depends on the developmental stage of exposure. Bupropion and fluoxetine yielded divergent responses depending on the housing condition, which suggests that EE modulates monoaminergic neurotransmission pathways.
Collapse
Affiliation(s)
- Marta Lorena Speck
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre, RS ZIP CODE 90610000, Brazil
| | - Ana Luiza Azevedo Gomes
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre, RS ZIP CODE 90610000, Brazil
| | - Camila Schafer Rojas
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre, RS ZIP CODE 90610000, Brazil
| | - Julia Biz Willig
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre, RS ZIP CODE 90610000, Brazil
| | - Ana Paula Herrmann
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics. Federal University of: Rio Grande do Sul. Rua Ramiro Barcelos, 2600, Porto Alegre, RS ZIP CODE 90035003, Brazil.
| | - Diogo André Pilger
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre, RS ZIP CODE 90610000, Brazil.
| | - Stela Maris Kuze Rates
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre, RS ZIP CODE 90610000, Brazil.
| |
Collapse
|
3
|
Sukegawa M, Yoshihara T, Hou S, Asano M, Hannan AJ, Wang DO. Long‐lasting Housing Environment Manipulation and Acute Loss of Environmental Enrichment Impact BALB/c Mice Behavior in Multiple Functional Domains. Eur J Neurosci 2022; 55:1118-1140. [PMID: 35060219 PMCID: PMC9306724 DOI: 10.1111/ejn.15602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 12/01/2022]
Abstract
Understanding environmental influences on individuals' behaviour is challenging. Here we have investigated the housing impact of 9 weeks of enriched environment (EE) and social isolation (SI) and the impact of abrupt deprivation of EE (enrichment removal: ER) on BALB/c mice. Compared with the widely used C57BL/6 strain in research, BALB/c synthesises serotonin less efficiently due to a genetic variation and thus may potentially represent human populations at higher risk of stress‐related disorders. We assessed the effects of EE and SI by conducting a behavioural test battery and the effects of acute ER by monitoring homecage activities and social behaviour. We found that EE and SI impact BALB/c's physiological states and behavioural performances from lower to higher cognitive processes: increased body weight, increased rectal temperature, altered performance in motor and sensory tasks, the activity level in a novel environment and altered performance in tests of anxiety‐like behaviour, stress‐coping strategies and learning and memory. Furthermore, acute ER triggered stress/frustration‐like behaviour in BALB/c, with increased aggression, increased social distancing and disrupted daily/nightly activities. Our results demonstrate that long‐lasting housing manipulation such as EE and SI, impact behaviour via multilayered processes over a wide range of functional domains, and unforeseen change to a negative environment, ER, is a major stressor that causes behavioural and psychological consequences through environment–gene interactions, a model of direct relevance to human health.
Collapse
Affiliation(s)
- Momoe Sukegawa
- Center for Biosystems Dynamics Research (BDR), RIKEN Japan
- Graduate School of Biostudies Kyoto University Japan
- Institute for Integrated Cell‐Material Sciences (iCeMS) Kyoto University Japan
| | - Toru Yoshihara
- Institute of Laboratory Animals, Graduate School of Medicine Kyoto University Japan
| | - Shengqun Hou
- Center for Biosystems Dynamics Research (BDR), RIKEN Japan
- Graduate School of Biostudies Kyoto University Japan
- Institute for Integrated Cell‐Material Sciences (iCeMS) Kyoto University Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine Kyoto University Japan
| | - Anthony J. Hannan
- Department of Anatomy and Neuroscience University of Melbourne Australia
- Melbourne Brain Centre Australia
| | - Dan Ohtan Wang
- Center for Biosystems Dynamics Research (BDR), RIKEN Japan
- Graduate School of Biostudies Kyoto University Japan
- Institute for Integrated Cell‐Material Sciences (iCeMS) Kyoto University Japan
| |
Collapse
|
4
|
Batschauer AR, Souza TL, Manuitt Brito PE, Neto FF, Oliveira Ribeiro CA, Ortolani-Machado CF. Behavioral and neurochemical effects in mice after one-generation exposure to low doses of manganese: Focus on offspring development. Chem Biol Interact 2021; 345:109532. [PMID: 34058180 DOI: 10.1016/j.cbi.2021.109532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
The risk of exposure to toxic metals is a known concern to human populations. The overexposure to Mn can lead to a pathological condition, with symptoms similar to Parkinson's disease. Although toxicity of Mn has been reported, studies in neonates are scarce but necessary, as Mn can cross biological barriers. The present study evaluated if chronic perinatal exposure to Mn at low doses lead to neurotoxic effects in mice, after direct and indirect exposure. Couples of mice were exposed to Mn (0.013, 0.13, and 1.3 mg kg-1.day-1) for 60 days prior to mating, as well as during gestation and lactation. The offspring was distributed into two groups: animals that were not exposed after weaning - parental exposure only (PE); and animals subject to additional 60-day exposure through gavages after weaning - parental and direct exposure (PDE). Neurological effects were evaluated by Mn quantification, behavior tests and biochemical markers in the brain. PDE animals had alterations in short/long-term memory and increased anxiety-like behavior. Exposure to Mn triggered a decrease of glutathione-s-transferase and increase of cholinesterase activity in different regions of the brain. These findings highlight the risk of exposure to low doses of Mn over a generation and at early stages of development.
Collapse
Affiliation(s)
- Amândia R Batschauer
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Tugstênio L Souza
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Patrícia E Manuitt Brito
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Ciro A Oliveira Ribeiro
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Claudia F Ortolani-Machado
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
5
|
Martín-López M, Muela AT, Cavas M, Navarro JF. Effects of para-methoxyamphetamine (PMA) on agonistic encounters between male mice. Pharmacol Biochem Behav 2018; 167:9-16. [PMID: 29453997 DOI: 10.1016/j.pbb.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 11/30/2022]
Abstract
Para-methoxyamphetamine (PMA) is a synthetic drug chemically similar to the recreational drug 3,4-methylenedioxy-methamphetamine (MDMA or "ecstasy") and often replaces MDMA in tablets that show an "ecstasy" logo. PMA displays a higher toxic potential than MDMA, but the behavioral profile of PMA has been scarcely studied in animal models. Here we evaluated the effects of PMA (2, 4, 8, and 12 mg/kg, i.p.) on agonist encounters between male mice using an ethopharmacological approach, the isolation-induced aggression model. Likewise, since PMA and MDMA share common mechanisms of action, we compared the behavioral profile of PMA with that induced by MDMA (8 mg/kg, i.p.) which behavioral effects in this model are well characterized. Individually housed mice were exposed to anosmic standard opponents 30 min after drug administration. The encounters were videotaped and evaluated using an ethologically based analysis. PMA (all doses) significantly reduced offensive behaviors (threat and attack), however, a detailed behavioral analysis suggests that the observed antiaggressive effect seems to be unspecific, showing a complex dose-dependent behavioral profile. Thus, antiaggresive actions observed after the administration of the lowest dose were accompanied by increases in social investigation, avoidance/flee behaviors and non-social explorations, together with a reduction of digging behavior. This pattern reflects both approach-contact behaviors and avoidance-flee behaviors. From 4 mg/kg to 12 mg/kg, the increase in social investigation previously observed disappears, and there is a slight increase in immobility, together with a different behavioral pattern that suggests anxiogenic effects of PMA, similar to those reported after the administration of MDMA. The higher doses of PMA exhibit a behavioral profile very similar to that observed in animals treated with MDMA, with the exception of the immobility produced by PMA. These findings show for the first time the non-specific antiaggressive profile of PMA in the model of aggression induced by isolation in male mice.
Collapse
Affiliation(s)
- Mercedes Martín-López
- Department of Psychobiology, Faculty of Psychology, Campus de Teatinos s/n, University of Málaga, 29071 Málaga, Spain.
| | - Ana T Muela
- Department of Psychobiology, Faculty of Psychology, Campus de Teatinos s/n, University of Málaga, 29071 Málaga, Spain
| | - María Cavas
- Department of Psychobiology, Faculty of Psychology, Campus de Teatinos s/n, University of Málaga, 29071 Málaga, Spain
| | - José Francisco Navarro
- Department of Psychobiology, Faculty of Psychology, Campus de Teatinos s/n, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|