1
|
Yang R, Yu H, Wu J, Wang S, Chen H, Wang M, Qin X, Wu T, Wu Y, Hu Y. Association of benzodiazepine and Z-hypnotic use with cardiovascular disease risk: insights from a prospective study of 10 million people in China. Psychiatry Clin Neurosci 2024. [PMID: 39290083 DOI: 10.1111/pcn.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
AIM To assess the association between Benzodiazepines (BZDs) or Z-hypnotic use and cardiovascular diseases (CVD) incidence in residents in Beijing, China. METHODS We included 2,415,573 individuals with a prescription record for BZDs or Z-hypnotics in the Beijing Medical Claim Data for Employees database during 2010-2017, and 8,794,356 non-users with other prescriptions for the same period. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated using Cox proportional risk models for 712,850 exposed and 712,850 unexposed participants who were matched 1:1 by propensity score. RESULTS BZDs or Z-hypnotics users had a higher risk of CVD than non-users, with an HR of 1.11 (95% CI: 1.10, 1.13). Compared with non-users, those who used them for less than 3 months had the lowest risk of CVD, and those for more than 5 years had the highest risk, with HRs of 0.50 (0.48, 0.51) and 1.78 (1.72, 1.83), respectively. The risk of CVD was relatively low in those who used only one of the long-acting BZDs, short-acting BZDs, or Z-hypnotics compared to unexposed individuals. Individuals exposed to all three types of drugs had the highest risk, 2.33 (2.22, 2.44) times that of non-users. Users below the median dose had a lower risk of CVD compared to non-users, whereas users exceeding the median dose had an increased risk. CONCLUSION BZD or Z-hypnotic use in general was nominally associated with an elevated risk of CVD. However, for short-term, single-type, and low-to-moderate-dose users, not only did this elevated risk disappear, but drug use also demonstrated a protective effect.
Collapse
Affiliation(s)
- Ruotong Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Huan Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Junhui Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- School of Nursing, Peking Univeity, Beijing, China
| | - Siyue Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Hongbo Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- School of Nursing, Peking Univeity, Beijing, China
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Xueying Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Medical Informatics Center, Peking University, Beijing, China
| |
Collapse
|
2
|
Salerno S, Viviano M, Baglini E, Poggetti V, Giorgini D, Castagnoli J, Barresi E, Castellano S, Da Settimo F, Taliani S. TSPO Radioligands for Neuroinflammation: An Overview. Molecules 2024; 29:4212. [PMID: 39275061 PMCID: PMC11397380 DOI: 10.3390/molecules29174212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The translocator protein (TSPO) is predominately localized on the outer mitochondrial membrane in steroidogenic cells. In the brain, TSPO expression, low under normal conditions, results upregulated in response to glial cell activation, that occurs in neuroinflammation. As a consequence, TSPO has been extensively studied as a biomarker of such conditions by means of TSPO-targeted radiotracers. Although [11C]-PK11195, the prototypical TSPO radioligand, is still widely used for in vivo studies, it is endowed with severe limitations, mainly low sensitivity and poor amenability to quantification. Consequently, several efforts have been focused on the design of new radiotracers for the in vivo imaging of TSPO. The present review will provide an outlook on the latest advances in TSPO radioligands for neuroinflammation imaging. The final goal is to pave the way for (radio)chemists in the future design and development of novel effective and sensitive radiopharmaceuticals targeting TSPO.
Collapse
Affiliation(s)
- Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Doralice Giorgini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Jacopo Castagnoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| |
Collapse
|
3
|
Omata R, Asami A, Hara A, Urushihara H. Prescribing Cascades of Loop Diuretics and Anti-vertigo Drugs Following Treatment with Gabapentinoids and Benzodiazepines: Prescription Sequence Symmetry Analysis of a Large-Scale Claims Database Including Japanese Older Adults. Drugs Real World Outcomes 2024; 11:529-540. [PMID: 39115607 PMCID: PMC11365892 DOI: 10.1007/s40801-024-00446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Gabapentinoids (GBP) and benzodiazepines (BZ) are commonly prescribed in older adults and their package inserts list edema and vertigo as adverse drug reactions. These adverse drug reactions may be treated with symptomatic drug therapies without discontinuing the culprit drugs or decreasing their dose, thereby initiating a prescribing cascade and often resulting in polypharmacy. Whether prescribing cascades occur in the treatment of edema and dizziness among Japanese patients treated with GBP and BZ has not been investigated, including treatment with mirogabalin, a class drug of GBP marketed in Japan. OBJECTIVE We aimed to investigate prescribing cascades with GBP-induced and BZ-induced edema and dizziness treated with loop diuretics (LD) and anti-vertigo drugs (AVD), respectively, among older adults. METHODS A prescription sequence symmetry analysis design was used to detect signals of prescribing cascades associated with edema and dizziness induced by GBP and BZ (exposure drugs). Loop diuretics and AVD were the outcome drugs used to identify prescribing cascades following the initiation of exposure drugs. The study population consisted of enrollees of a large-scale health claims database provided by DeSC Healthcare, Inc., between April 2014 and March 2021. Subjects eligible for a prescription sequence symmetry analysis were patients aged ≥ 65 years prescribed an outcome drug within 90 days before and after exposure drug initiation. A signal of a prescribing cascade was detected if secular trend-adjusted sequence ratios were statistically significant on comparison of the frequencies of outcome drug initiation before and after exposure drug initiation. RESULTS We identified 2671 patients with prescriptions of a GBP-LD combination, 4009 with a GBP-AVD combination, 8675 with a BZ-LD combination, and 9462 with a BZ-AVD combination. The adjusted sequence ratios for GBP-LD and BZ-LD cascades were significantly larger than one (adjusted sequence ratio [95% confidence interval], 1.69 [1.56-1.83]; 1.35 [1.29-1.41], respectively), indicating positive signals of prescribing cascades. No signal was detected for the GBP-AVD or BZ-AVD cascade (0.89 [0.83-0.94]; 0.90 [0.87-0.94], respectively). The adjusted sequence ratio for the mirogabalin cascade was higher than that for pregabalin (2.23 [1.84-2.71] vs 1.59 [1.46-1.73]). CONCLUSIONS Our study provides good evidence that LD-prescribing cascades associated with edema would be a class effect of GBP and BZ. Edema emerging around 1 month after GBP initiation should be carefully differentiated from pathological edema, and undue LD prescription as a prescribing cascade should be avoided.
Collapse
Affiliation(s)
- Rina Omata
- Division of Drug Development and Regulatory Science, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, Japan
| | - Akane Asami
- Division of Drug Development and Regulatory Science, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, Japan
| | - Azusa Hara
- Division of Drug Development and Regulatory Science, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, Japan
| | - Hisashi Urushihara
- Division of Drug Development and Regulatory Science, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Li Y, Chen L, Papadopoulos V. The mitochondrial translocator protein (TSPO, 18 kDa): A key multifunctional molecule in liver diseases. Biochimie 2024; 224:91-103. [PMID: 38065288 DOI: 10.1016/j.biochi.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 08/23/2024]
Abstract
Translocator protein (TSPO, 18 kDa), previously known as peripheral-type benzodiazepine receptor, is an evolutionarily conserved and tryptophan-rich 169-amino-acid protein located on the outer mitochondrial membrane. TSPO plays a crucial role in various fundamental physiological functions and cellular processes. Its expression is altered in pathological conditions, thus rendering TSPO a potential tool for diagnostic imaging and an appealing therapeutic target. The investigation of synthetic TSPO ligands as both agonists and antagonists has provided valuable insights into the regulatory mechanisms and functional properties of TSPO. Recently, accumulating evidence has highlighted the significance of TSPO in liver diseases. However, a comprehensive summary of TSPO function in the normal liver and diverse liver diseases is lacking. This review aims to provide an overview of recent advances in understanding TSPO function in both normal liver cells and various liver diseases, with a particular emphasis on its involvement in liver fibrosis and inflammation and addresses the existing knowledge gaps in the field that require further investigation.
Collapse
Affiliation(s)
- Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
5
|
Zorova LD, Abramicheva PA, Andrianova NV, Babenko VA, Zorov SD, Pevzner IB, Popkov VA, Semenovich DS, Yakupova EI, Silachev DN, Plotnikov EY, Sukhikh GT, Zorov DB. Targeting Mitochondria for Cancer Treatment. Pharmaceutics 2024; 16:444. [PMID: 38675106 PMCID: PMC11054825 DOI: 10.3390/pharmaceutics16040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
There is an increasing accumulation of data on the exceptional importance of mitochondria in the occurrence and treatment of cancer, and in all lines of evidence for such participation, there are both energetic and non-bioenergetic functional features of mitochondria. This analytical review examines three specific features of adaptive mitochondrial changes in several malignant tumors. The first feature is characteristic of solid tumors, whose cells are forced to rebuild their energetics due to the absence of oxygen, namely, to activate the fumarate reductase pathway instead of the traditional succinate oxidase pathway that exists in aerobic conditions. For such a restructuring, the presence of a low-potential quinone is necessary, which cannot ensure the conventional conversion of succinate into fumarate but rather enables the reverse reaction, that is, the conversion of fumarate into succinate. In this scenario, complex I becomes the only generator of energy in mitochondria. The second feature is the increased proliferation in aggressive tumors of the so-called mitochondrial (peripheral) benzodiazepine receptor, also called translocator protein (TSPO) residing in the outer mitochondrial membrane, the function of which in oncogenic transformation stays mysterious. The third feature of tumor cells is the enhanced retention of certain molecules, in particular mitochondrially directed cations similar to rhodamine 123, which allows for the selective accumulation of anticancer drugs in mitochondria. These three features of mitochondria can be targets for the development of an anti-cancer strategy.
Collapse
Affiliation(s)
- Ljubava D. Zorova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Polina A. Abramicheva
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Nadezda V. Andrianova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Valentina A. Babenko
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Savva D. Zorov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Dmitry S. Semenovich
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Elmira I. Yakupova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Denis N. Silachev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Egor Y. Plotnikov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Gennady T. Sukhikh
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
6
|
Yu M, Zhao S. Functional role of translocator protein and its ligands in ocular diseases (Review). Mol Med Rep 2024; 29:33. [PMID: 38186312 PMCID: PMC10804439 DOI: 10.3892/mmr.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
The 18 kDa translocator protein (TSPO) is an essential outer mitochondrial membrane protein that is responsible for mitochondrial transport, maintenance of mitochondrial homeostasis and normal physiological cell function. The role of TSPO in the pathogenesis of ocular diseases is a growing area of interest. More notably, TSPO exerts positive effects in regulating various pathophysiological processes, such as the inflammatory response, oxidative stress, steroid synthesis and modulation of microglial function, in combination with a variety of specific ligands such as 1‑(2‑chlorophenyl‑N‑methylpropyl)‑3‑isoquinolinecarboxamide, 4'‑chlorodiazepam and XBD173. In the present review, the expression of TSPO in ocular tissues and the functional role of TSPO and its ligands in diverse ocular diseases was discussed.
Collapse
Affiliation(s)
- Mingyi Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 30384, P.R. China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 30384, P.R. China
| |
Collapse
|
7
|
Baglini E, Poggetti V, Cavallini C, Petroni D, Forini F, Nicolini G, Barresi E, Salerno S, Costa B, Iozzo P, Neglia D, Menichetti L, Taliani S, Da Settimo F. Targeting the Translocator Protein (18 kDa) in Cardiac Diseases: State of the Art and Future Opportunities. J Med Chem 2024; 67:17-37. [PMID: 38113353 PMCID: PMC10911791 DOI: 10.1021/acs.jmedchem.3c01716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Mitochondria dysfunctions are typical hallmarks of cardiac disorders (CDs). The multiple tasks of this energy-producing organelle are well documented, but its pathophysiologic involvement in several manifestations of heart diseases, such as altered electromechanical coupling, excitability, and arrhythmias, is still under investigation. The human 18 kDa translocator protein (TSPO) is a protein located on the outer mitochondrial membrane whose expression is altered in different pathological conditions, including CDs, making it an attractive therapeutic and diagnostic target. Currently, only a few TSPO ligands are employed in CDs and cardiac imaging. In this Perspective, we report an overview of the emerging role of TSPO at the heart level, focusing on the recent literature concerning the development of TSPO ligands used for fighting and imaging heart-related disease conditions. Accordingly, targeting TSPO might represent a successful strategy to achieve novel therapeutic and diagnostic strategies to unravel the fundamental mechanisms and to provide solutions to still unanswered questions in CDs.
Collapse
Affiliation(s)
- Emma Baglini
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Valeria Poggetti
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Chiara Cavallini
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Debora Petroni
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Francesca Forini
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Giuseppina Nicolini
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Elisabetta Barresi
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Silvia Salerno
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Barbara Costa
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Patricia Iozzo
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Danilo Neglia
- Fondazione
CNR/Regione Toscana Gabriele Monasterio, Cardiovascular and Imaging
Departments, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Luca Menichetti
- Institute
of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Sabrina Taliani
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Federico Da Settimo
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| |
Collapse
|
8
|
McCabe JJ, Evans NR, Gorey S, Bhakta S, Rudd JHF, Kelly PJ. Imaging Carotid Plaque Inflammation Using Positron Emission Tomography: Emerging Role in Clinical Stroke Care, Research Applications, and Future Directions. Cells 2023; 12:2073. [PMID: 37626883 PMCID: PMC10453446 DOI: 10.3390/cells12162073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis is a chronic systemic inflammatory condition of the vasculature and a leading cause of stroke. Luminal stenosis severity is an important factor in determining vascular risk. Conventional imaging modalities, such as angiography or duplex ultrasonography, are used to quantify stenosis severity and inform clinical care but provide limited information on plaque biology. Inflammatory processes are central to atherosclerotic plaque progression and destabilization. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a validated technique for quantifying plaque inflammation. In this review, we discuss the evolution of FDG-PET as an imaging modality to quantify plaque vulnerability, challenges in standardization of image acquisition and analysis, its potential application to routine clinical care after stroke, and the possible role it will play in future drug discovery.
Collapse
Affiliation(s)
- John J. McCabe
- Health Research Board Stroke Clinical Trials Network Ireland, Catherine McAuley Centre, Nelson Street, D07 KX5K Dublin, Ireland; (S.G.); (P.J.K.)
- Neurovascular Unit for Applied Translational and Therapeutics Research, Catherine McAuley Centre, Nelson Street, D07 KX5K Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Stroke Service, Department of Medicine for the Elderly, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland
| | - Nicholas R. Evans
- Department of Clinical Neurosciences, Box 83, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK; (N.R.E.); (S.B.)
| | - Sarah Gorey
- Health Research Board Stroke Clinical Trials Network Ireland, Catherine McAuley Centre, Nelson Street, D07 KX5K Dublin, Ireland; (S.G.); (P.J.K.)
- Neurovascular Unit for Applied Translational and Therapeutics Research, Catherine McAuley Centre, Nelson Street, D07 KX5K Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Stroke Service, Department of Medicine for the Elderly, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland
| | - Shiv Bhakta
- Department of Clinical Neurosciences, Box 83, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK; (N.R.E.); (S.B.)
| | - James H. F. Rudd
- Division of Cardiovascular Medicine, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK;
| | - Peter J. Kelly
- Health Research Board Stroke Clinical Trials Network Ireland, Catherine McAuley Centre, Nelson Street, D07 KX5K Dublin, Ireland; (S.G.); (P.J.K.)
- Neurovascular Unit for Applied Translational and Therapeutics Research, Catherine McAuley Centre, Nelson Street, D07 KX5K Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Stroke Service, Department of Medicine for the Elderly, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland
| |
Collapse
|
9
|
Okulevičiūtė A, Sakalauskienė GL. Narrative Literature Review of Potential Atrial Fibrillation Mechanism of Action Induced by Discontinuation of Benzodiazepines. Acta Med Litu 2023; 30:216-221. [PMID: 38516516 PMCID: PMC10952418 DOI: 10.15388/amed.2023.30.2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 03/23/2024] Open
Abstract
Introduction Benzodiazepines are commonly prescribed but often misused, leading to dependence and withdrawal symptoms. Increased worldwide prescriptions raise adverse effects and overdose concerns, especially for the elderly. Caution is needed in prescribing and considering alternative treatments to minimize risks. Aim Narrative literature review of potential atrial fibrillation mechanism of action induced by discontinuation of benzodiazepines. Materials and methods Database PubMed was searched using the combinations of keywords - "Benzodiazepine AND atrial fibrillation OR peripheral benzodiazepine receptors", "history of benzodiazepines", "benzodiazepines mechanism of action", "benzodiazepines indications", "benzodiazepines adverse effects" and "benzodiazepines withdrawal effects". Non-full-text and non-English scientific publications were removed. A total of 31 publication was included. Discussion Benzodiazepines (BZDs) were synthesized in 1955 and initially considered less toxic than barbiturates. They interact with GABA-A receptors, causing hyperpolarization and inhibitory effects in the central nervous system. BZDs are used to treat various clinical disorders, but long-term use can lead to adverse effects and withdrawal symptoms. There is evidence that genetic diversity can influence the response to BZDs through GABA receptors. The interaction between benzodiazepines and peripheral benzodiazepine receptors may influence calcium ion channels, affecting cardiac action potential and contractility, and discontinuation of these medications can potentially contribute to atrial fibrillation. Additionally, benzodiazepines may directly affect calcium channels, causing antiarrhythmic effects and vasodilation. Conclusion In summary, benzodiazepines, once considered safer sedatives, now raise concerns about misuse, dependence, and withdrawal symptoms. While there is a potential link between discontinuing benzodiazepines and atrial fibrillation through mechanisms involving peripheral benzodiazepine receptors and cardiac calcium channels, causality remains uncertain and multifaceted. Further research is needed to clarify these mechanisms, and healthcare providers should exercise caution in long-term benzodiazepine prescriptions while exploring alternative treatment strategies to mitigate risks.
Collapse
Affiliation(s)
| | - Gabija Laubner Sakalauskienė
- Centre of Toxicology, Republican Vilnius University Hospital, Faculty of Medicine, Vilnius University, Clinic of Anaesthesiology and Intensive Care,Vilnius, Lithuania
| |
Collapse
|
10
|
Elifranji ZO, Al-Ajlouni JM, Al-Saber MG, Hammad YS, Baniatta BA, Alshoubaki SN, Jabaiti MS, Alkhatib AM, Abu awad AM, Altarazi AE, Abdin AN, Al-Ani A, Alshrouf MA. Effect of Preoperative Antianxiety Medications on Blood Pressure and Blood Loss in Total Knee Arthroplasty: A Case-Control Study. Adv Orthop 2023; 2023:6355849. [PMID: 37456533 PMCID: PMC10349676 DOI: 10.1155/2023/6355849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/14/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023] Open
Abstract
Background The increasing number of canceled operations in patients undergoing total knee arthroplasty (TKA) due to high blood pressure readings has put a considerable burden on surgeons. In this study, we aim to assess the effect of giving antianxiety drugs preoperatively on maintaining blood pressure (BP) and blood loss for patients undergoing TKA surgery. Methods This retrospective case-control study included patients who underwent total knee arthroplasty and divided them into two main groups: those who had taken a 3 mg bromazepam oral tablet at the night preoperatively and the control group. The blood pressure of patients was then measured preoperatively (baseline), in the morning of surgery, in the operating room before anesthesia, and during the surgery. The percentage of measured BP was calculated by dividing the measured BP by the baseline, then multiplying by 100. Results 301 patients were included in our study: 137 received bromazepam and 164 as a control group. The ratio of systolic BP (SBP) in the morning of surgery to the baseline (percentage of morning SBP) decreased significantly in the bromazepam group compared with the controls. The ratio of SBP, in the operating room before anesthesia (percentage of preanesthesia SBP) also decreased significantly in the bromazepam group. However, the percentage of SBP in the middle of surgery did not change significantly. In addition, there was a significant difference change from the baseline in diastolic BP and mean arterial BP between the two groups in the morning of surgery, inside the theatre, and in the middle of the operation. The bromazepam group also showed a significant decrease in blood loss. Conclusion Preoperative oral antianxiety drugs (bromazepam) helps in controlling hemodynamic changes associated with anxiety, including maintaining BP in well-controlled hypertensive and healthy patients undergoing TKA, and it plays a role in decreasing the total blood loss.
Collapse
Affiliation(s)
- Zuhdi O. Elifranji
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Jihad M. Al-Ajlouni
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Munther G. Al-Saber
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Yazan S. Hammad
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Basel A. Baniatta
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Sara N. Alshoubaki
- Medical Internship, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| | - Mohammad S. Jabaiti
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmad M. Alkhatib
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Abdelrahman M. Abu awad
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Abdelrahman E. Altarazi
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Aseel N. Abdin
- Medical Internship, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| | - Abdallah Al-Ani
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11942, Jordan
| | - Mohammad Ali Alshrouf
- Medical Internship, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
11
|
Chen R, Cui Y, Mak JCW. Novel treatments against airway inflammation in COPD based on drug repurposing. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:225-247. [PMID: 37524488 DOI: 10.1016/bs.apha.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of death and reduces quality of life that contributes to a health problem worldwide. Chronic airway inflammation is a hallmark of COPD, which occurs in response to exposure of inhaled irritants like cigarette smoke. Despite accessible to the most up-to-date medications, none of the treatments is currently available to decrease the disease progression. Therefore, it is believed that drugs which can reduce airway inflammation will provide effective disease modifying therapy for COPD. There are many broad-range anti-inflammatory drugs including those that inhibit cell signaling pathways like inhibitors of p38 mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), and phosphoinositide-3-kinase (PI3K), are now in phase III development for COPD. In this chapter, we review recent basic research data in the laboratory that may indicate novel therapeutic pathways arisen from currently used drugs such as selective monoamine oxidase (MAO)-B inhibitors and drugs targeting peripheral benzodiazepine receptors [also known as translocator protein (TSPO)] to reduce airway inflammation. Considering the impact of chronic airway inflammation on the lives of COPD patients, the potential pharmacological candidates for new anti-inflammatory targets should be further investigated. In addition, it is crucial to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target novel therapies. This review will enhance our knowledge on how cigarette smoke affects MAO-B activity and TSPO activation/inactivation with specific ligands through regulation of mitochondrial function, and will help to identify new potential treatment for COPD in future.
Collapse
Affiliation(s)
- Rui Chen
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China; Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, P.R. China
| | - Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, P.R. China
| | - Judith C W Mak
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China.
| |
Collapse
|
12
|
Singh P, kumari N, Kaul A, Srivastava A, Singh VK, Srivastava K, Tiwari AK. Acetamidobenzoxazolone conjugated DOTA system for assessing 18 kDa translocator protein during pulmonary inflammation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Zhang H, Yang K, Chen F, Liu Q, Ni J, Cao W, Hua Y, He F, Liu Z, Li L, Fan G. Role of the CCL2-CCR2 axis in cardiovascular disease: Pathogenesis and clinical implications. Front Immunol 2022; 13:975367. [PMID: 36110847 PMCID: PMC9470149 DOI: 10.3389/fimmu.2022.975367] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The CCL2-CCR2 axis is one of the major chemokine signaling pathways that has received special attention because of its function in the development and progression of cardiovascular disease. Numerous investigations have been performed over the past decades to explore the function of the CCL2-CCR2 signaling axis in cardiovascular disease. Laboratory data on the CCL2-CCR2 axis for cardiovascular disease have shown satisfactory outcomes, yet its clinical translation remains challenging. In this article, we describe the mechanisms of action of the CCL2-CCR2 axis in the development and evolution of cardiovascular diseases including heart failure, atherosclerosis and coronary atherosclerotic heart disease, hypertension and myocardial disease. Laboratory and clinical data on the use of the CCL2-CCR2 pathway as a targeted therapy for cardiovascular diseases are summarized. The potential of the CCL2-CCR2 axis in the treatment of cardiovascular diseases is explored.
Collapse
Affiliation(s)
- Haixia Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Ke Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qianqian Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Weilong Cao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, China
| | - Zhihao Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lan Li, ; Guanwei Fan,
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, China
- *Correspondence: Lan Li, ; Guanwei Fan,
| |
Collapse
|
14
|
Viviano M, Barresi E, Siméon FG, Costa B, Taliani S, Da Settimo F, Pike VW, Castellano S. Essential Principles and Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging. Curr Med Chem 2022; 29:4862-4890. [PMID: 35352645 PMCID: PMC10080361 DOI: 10.2174/0929867329666220329204054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The translocator protein 18kDa (TSPO) is expressed in the outer mitochondrial membrane and is implicated in several functions, including cholesterol transport and steroidogenesis. Under normal physiological conditions, TSPO is present in very low concentrations in the human brain but is markedly upregulated in response to brain injury and inflammation. This upregulation is strongly associated with activated microglia. Therefore, TSPO is particularly suited for assessing active gliosis associated with brain lesions following injury or disease. For over three decades, TSPO has been studied as a biomarker. Numerous radioligands for positron emission tomography (PET) that target TSPO have been developed for imaging inflammatory progression in the brain. Although [11C]PK11195, the prototypical first-generation PET radioligand, is still widely used for in vivo studies, mainly now as its single more potent R-enantiomer, it has severe limitations, including low sensitivity and poor amenability to quantification. Second-generation radioligands are characterized by higher TSPO specific signals but suffer from other drawbacks, such as sensitivity to the TSPO single nucleotide polymorphism (SNP) rs6971. Therefore, their applications in human studies have the burden of needing to genotype subjects. Consequently, recent efforts are focused on developing improved radioligands that combine the optimal features of the second generation with the ability to overcome the differences in binding affinities across the population. This review presents essential principles in the design and development of TSPO PET ligands and discusses prominent examples among the main chemotypes.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | | | - Fabrice G. Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| |
Collapse
|
15
|
Hines RM, Aquino EA, Khumnark MI, Dávila MP, Hines DJ. Comparative Assessment of TSPO Modulators on Electroencephalogram Activity and Exploratory Behavior. Front Pharmacol 2022; 13:750554. [PMID: 35444539 PMCID: PMC9015213 DOI: 10.3389/fphar.2022.750554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Network communication in the CNS relies upon multiple neuronal and glial signaling pathways. In addition to synaptic transmission, other organelles such as mitochondria play roles in cellular signaling. One highly conserved mitochondrial signaling mechanism involves the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane. Originally, TSPO was identified as a binding site for benzodiazepines in the periphery. It was later discovered that TSPO is found in mitochondria, including in CNS cells. TSPO is implicated in multiple cellular processes, including the translocation of cholesterol and steroidogenesis, porphyrin transport, cellular responses to stress, inflammation, and tumor progression. Yet the impacts of modulating TSPO signaling on network activity and behavioral performance have not been characterized. In the present study, we assessed the effects of TSPO modulators PK11195, Ro5-4864, and XBD-173 via electroencephalography (EEG) and the open field test (OFT) at low to moderate doses. Cortical EEG recordings revealed increased power in the δ and θ frequency bands after administration of each of the three modulators, as well as compound- and dose-specific changes in α and γ. Behaviorally, these compounds reduced locomotor activity in the OFT in a dose-dependent manner, with XBD-173 having the subtlest behavioral effects while still strongly modulating the EEG. These findings indicate that TSPO modulators, despite their diversity, exert similar effects on the EEG while displaying a range of sedative/hypnotic effects at moderate to high doses. These findings bring us one step closer to understanding the functions of TSPO in the brain and as a target in CNS disease.
Collapse
Affiliation(s)
| | | | | | | | - Dustin J. Hines
- Department of Psychology, Psychological and Brain Sciences & Interdisciplinary Neuroscience Programs, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
16
|
Kumari N, Kaul A, Deepika, Srivastava K, Mishra G, Bhagat S, Singh VK, KumarTiwari A. [99mTc-BBPA]: A possible SPECT agent to understand role of 18-kDa translocator protein (PBR/TSPO) during neuro-glial interaction. Bioorg Chem 2022; 121:105678. [DOI: 10.1016/j.bioorg.2022.105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/11/2021] [Accepted: 02/08/2022] [Indexed: 11/02/2022]
|
17
|
Jia H, Xie T. Tracers progress for positron emission tomography imaging of glial-related disease. J Biomed Res 2022; 36:321-335. [PMID: 36131689 PMCID: PMC9548440 DOI: 10.7555/jbr.36.20220017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glial cells play an essential part in the neuron system. They can not only serve as structural blocks in the human brain but also participate in many biological processes. Extensive studies have shown that astrocytes and microglia play an important role in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, as well as glioma, epilepsy, ischemic stroke, and infections. Positron emission tomography is a functional imaging technique providing molecular-level information before anatomic changes are visible and has been widely used in many above-mentioned diseases. In this review, we focus on the positron emission tomography tracers used in pathologies related to glial cells, such as glioma, Alzheimer's disease, and neuroinflammation.
Collapse
Affiliation(s)
- Haoran Jia
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Tianwu Xie
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
- Tianwu Xie, Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China. Tel: +86-21-64048363, E-mail:
| |
Collapse
|
18
|
Nutma E, Ceyzériat K, Amor S, Tsartsalis S, Millet P, Owen DR, Papadopoulos V, Tournier BB. Cellular sources of TSPO expression in healthy and diseased brain. Eur J Nucl Med Mol Imaging 2021; 49:146-163. [PMID: 33433698 PMCID: PMC8712293 DOI: 10.1007/s00259-020-05166-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a highly conserved protein located in the outer mitochondrial membrane. TSPO binding, as measured with positron emission tomography (PET), is considered an in vivo marker of neuroinflammation. Indeed, TSPO expression is altered in neurodegenerative, neuroinflammatory, and neuropsychiatric diseases. In PET studies, the TSPO signal is often viewed as a marker of microglial cell activity. However, there is little evidence in support of a microglia-specific TSPO expression. This review describes the cellular sources and functions of TSPO in animal models of disease and human studies, in health, and in central nervous system diseases. A discussion of methods of analysis and of quantification of TSPO is also presented. Overall, it appears that the alterations of TSPO binding, their cellular underpinnings, and the functional significance of such alterations depend on many factors, notably the pathology or the animal model under study, the disease stage, and the involved brain regions. Thus, further studies are needed to fully determine how changes in TSPO binding occur at the cellular level with the ultimate goal of revealing potential therapeutic pathways.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, VUmc, Amsterdam, The Netherlands
| | - Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland
- Division of Nuclear medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
- Division of Radiation Oncology, Department of Oncology, University Hospitals of Geneva, Geneva, Switzerland
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, VUmc, Amsterdam, The Netherlands
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Stergios Tsartsalis
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - David R Owen
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland.
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
19
|
Seidlmayer LK, Hanson BJ, Thai PN, Schaefer S, Bers DM, Dedkova EN. PK11195 Protects From Cell Death Only When Applied During Reperfusion: Succinate-Mediated Mechanism of Action. Front Physiol 2021; 12:628508. [PMID: 34149440 PMCID: PMC8212865 DOI: 10.3389/fphys.2021.628508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: Reperfusion after myocardial ischemia causes cellular injury, in part due to changes in mitochondrial Ca2+ handling, oxidative stress, and myocyte energetics. We have previously shown that the 18-kDa translocator protein of the outer mitochondrial membrane (TSPO) can modulate Ca2+ handling. Here, we aim to evaluate the role of the TSPO in ischemia/reperfusion (I/R) injury. Methods: Rabbit ventricular myocytes underwent simulated acute ischemia (20 min) and reperfusion (at 15 min, 1 h, and 3 h) in the absence and presence of 50 μM PK11195, a TSPO inhibitor. Cell death was measured by lactate dehydrogenase (LDH) assay, while changes in mitochondrial Ca2+, membrane potential (ΔΨm), and reactive oxygen species (ROS) generation were monitored using confocal microscopy in combination with fluorescent indicators. Substrate utilization was measured with Biolog mitochondrial plates. Results: Cell death was increased by ~200% following I/R compared to control untreated ventricular myocytes. Incubation with 50 μM PK11195 during both ischemia and reperfusion did not reduce cell death but increased mitochondrial Ca2+ uptake and ROS generation. However, application of 50 μM PK11195 only at the onset and during reperfusion effectively protected against cell death. The large-scale oscillations in ΔΨm observed after ~1 h of reperfusion were significantly delayed by 1 μM cyclosporin A and almost completely prevented by 50 μM PK11195 applied during 3 h of reperfusion. After an initial increase, mitochondrial Ca2+, measured with Myticam, rapidly declined during 3 h of reperfusion after the initial transient increase. This decline was prevented by application of PK11195 at the onset and during reperfusion. PK11195 prevented a significant increase in succinate utilization following I/R and succinate-induced forward-mode ROS generation. Treatment with PK11195 was also associated with a significant increase in glutamate and a decrease in leucine utilization. Conclusion: PK11195 administered specifically at the moment of reperfusion limited ROS-induced ROS release and cell death, likely in part, by a shift from succinate to glutamate utilization. These data demonstrate a unique mechanism to limit cardiac injury after I/R.
Collapse
Affiliation(s)
- Lea K Seidlmayer
- Department of Cardiology, University Hospital Olbenburg, Olbenburg, Germany
| | - Benjamin J Hanson
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Phung N Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Saul Schaefer
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Donald M Bers
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Elena N Dedkova
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
20
|
Zeineh N, Nagler RM, Gabay M, Obeid F, Kahana M, Weizman A, Gavish M. The TSPO Ligands MGV-1 and 2-Cl-MGV-1 Differentially Inhibit the Cigarette Smoke-Induced Cytotoxicity to H1299 Lung Cancer Cells. BIOLOGY 2021; 10:biology10050395. [PMID: 34063262 PMCID: PMC8147464 DOI: 10.3390/biology10050395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/17/2021] [Accepted: 04/29/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary In this study, we investigated the impact of CS on various TSPO-related mitochondrial processes, and the protective ability of our novel TSPO ligands against such CS-induced cellular damages. Our results support the previously reported role of TSPO in apoptotic cell death. Moreover, the present data demonstrate the protective effect of our TSPO ligands against CS-induced cellular damage. Abstract TSPO is involved in cigarette smoke (CS)-induced cellular toxicity, which may result in oral and pulmonary diseases and lung cancer. H1299 lung cancer cells were exposed directly to CS. The H1299 cells were pretreated with our TSPO ligands MGV-1 and 2-Cl-MGV-1 (Ki = 825 nM for both) at a concentration of 25 µM 24 h prior to CS exposure. Cell death and apoptotic markers were measured, in addition to TSPO expression levels, ATP synthase activity, generation of reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (ΔΨm), cAMP and LDH levels. Pretreatment with MGV-1 and 2-Cl-MGV-1 (25 µM), 24 h prior to CS exposure, differentially attenuated the CS-induced cellular insult as well as cell death in H1299 lung cancer cells. These protective effects included prevention of ATP synthase reversal, ROS generation, depolarization of the mitochondrial membrane and elevation in LDH. The preventive efficacy of 2-Cl-MGV-1 was superior to that achieved by MGV-1. Both ligands did not prevent the elevation in cAMP. These findings may indicate a mild protective effect of these TSPO ligands in CS-related pulmonary and keratinocyte cellular pathology.
Collapse
Affiliation(s)
- Nidal Zeineh
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel; (N.Z.); (R.M.N.); (M.G.); (F.O.); (M.K.)
| | - Rafael M. Nagler
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel; (N.Z.); (R.M.N.); (M.G.); (F.O.); (M.K.)
| | - Martin Gabay
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel; (N.Z.); (R.M.N.); (M.G.); (F.O.); (M.K.)
| | - Fadi Obeid
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel; (N.Z.); (R.M.N.); (M.G.); (F.O.); (M.K.)
| | - Meygal Kahana
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel; (N.Z.); (R.M.N.); (M.G.); (F.O.); (M.K.)
| | - Abraham Weizman
- Research Unit, Geha Mental Health Center and Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tikva 4910002, Israel;
- Departments of Psychiatry, Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moshe Gavish
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel; (N.Z.); (R.M.N.); (M.G.); (F.O.); (M.K.)
- Correspondence: ; Tel.: +972-4829-5275; Fax: +972-4829-5330
| |
Collapse
|
21
|
Najbauer EE, Becker S, Giller K, Zweckstetter M, Lange A, Steinem C, de Groot BL, Griesinger C, Andreas LB. Structure, gating and interactions of the voltage-dependent anion channel. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:159-172. [PMID: 33782728 PMCID: PMC8071794 DOI: 10.1007/s00249-021-01515-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
The voltage-dependent anion channel (VDAC) is one of the most highly abundant proteins found in the outer mitochondrial membrane, and was one of the earliest discovered. Here we review progress in understanding VDAC function with a focus on its structure, discussing various models proposed for voltage gating as well as potential drug targets to modulate the channel's function. In addition, we explore the sensitivity of VDAC structure to variations in the membrane environment, comparing DMPC-only, DMPC with cholesterol, and near-native lipid compositions, and use magic-angle spinning NMR spectroscopy to locate cholesterol on the outside of the β-barrel. We find that the VDAC protein structure remains unchanged in different membrane compositions, including conditions with cholesterol.
Collapse
Affiliation(s)
- Eszter E Najbauer
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Markus Zweckstetter
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- Senior Research Group of Translational Structural Biology in Dementia, Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut Für Molekulare Pharmakologie, 13125, Berlin, Germany
- Institut Für Biologie, Humboldt-Universität Zu Berlin, 10115, Berlin, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
22
|
Zhang L, Hu K, Shao T, Hou L, Zhang S, Ye W, Josephson L, Meyer JH, Zhang MR, Vasdev N, Wang J, Xu H, Wang L, Liang SH. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B 2021; 11:373-393. [PMID: 33643818 PMCID: PMC7893127 DOI: 10.1016/j.apsb.2020.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
- ANT, adenine nucleotide transporter
- Am, molar activities
- BBB, blood‒brain barrier
- BMSC, bone marrow stromal cells
- BP, binding potential
- BPND, non-displaceable binding potential
- BcTSPO, Bacillus cereus TSPO
- CBD, corticobasal degeneration
- CNS disorders
- CNS, central nervous system
- CRAC, cholesterol recognition amino acid consensus sequence
- DLB, Lewy body dementias
- EP, epilepsy
- FTD, frontotemporal dementia
- HAB, high-affinity binding
- HD, Huntington's disease
- HSE, herpes simplex encephalitis
- IMM, inner mitochondrial membrane
- KA, kainic acid
- LAB, low-affinity binding
- LPS, lipopolysaccharide
- MAB, mixed-affinity binding
- MAO-B, monoamine oxidase B
- MCI, mild cognitive impairment
- MDD, major depressive disorder
- MMSE, mini-mental state examination
- MRI, magnetic resonance imaging
- MS, multiple sclerosis
- MSA, multiple system atrophy
- Microglial activation
- NAA/Cr, N-acetylaspartate/creatine
- Neuroinflammation
- OCD, obsessive compulsive disorder
- OMM, outer mitochondrial membrane
- P2X7R, purinergic receptor P2X7
- PAP7, RIa-associated protein
- PBR, peripheral benzodiazepine receptor
- PCA, posterior cortical atrophy
- PD, Parkinson's disease
- PDD, PD dementia
- PET, positron emission tomography
- PKA, protein kinase A
- PRAX-1, PBR-associated protein 1
- PSP, progressive supranuclear palsy
- Positron emission tomography (PET)
- PpIX, protoporphyrin IX
- QA, quinolinic acid
- RCYs, radiochemical yields
- ROS, reactive oxygen species
- RRMS, relapsing remitting multiple sclerosis
- SA, specific activity
- SAH, subarachnoid hemorrhage
- SAR, structure–activity relationship
- SCIDY, spirocyclic iodonium ylide
- SNL, selective neuronal loss
- SNR, signal to noise ratio
- SUV, standard uptake volume
- SUVR, standard uptake volume ratio
- TBAH, tetrabutyl ammonium hydroxide
- TBI, traumatic brain injury
- TLE, temporal lobe epilepsy
- TSPO
- TSPO, translocator protein
- VDAC, voltage-dependent anion channel
- VT, distribution volume
- d.c. RCYs, decay-corrected radiochemical yields
- dMCAO, distal middle cerebral artery occlusion
- fP, plasma free fraction
- n.d.c. RCYs, non-decay-corrected radiochemical yields
- p.i., post-injection
Collapse
|
23
|
Role of PPARs in Progression of Anxiety: Literature Analysis and Signaling Pathways Reconstruction. PPAR Res 2020; 2020:8859017. [PMID: 33312191 PMCID: PMC7721491 DOI: 10.1155/2020/8859017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) group includes three isoforms encoded by PPARG, PPARA, and PPARD genes. High concentrations of PPARs are found in parts of the brain linked to anxiety development, including hippocampus and amygdala. Among three PPAR isoforms, PPARG demonstrates the highest expression in CNS, where it can be found in neurons, astrocytes, and glial cells. Herein, the highest PPARG expression occurs in amygdala. However, little is known considering possible connections between PPARs and anxiety behavior. We reviewed possible connections between PPARs and anxiety. We used the Pathway Studio software (Elsevier). Signal pathways were created according to previously developed algorithms. SNEA was performed in Pathway Studio. Current study revealed 14 PPAR-regulated proteins linked to anxiety. Possible mechanism of PPAR involvement in neuroinflammation protection is proposed. Signal pathway reconstruction and reviewing aimed to reveal possible connection between PPARG and CCK-ergic system was conducted. Said analysis revealed that PPARG-dependent regulation of MME and ACE peptidase expression may affect levels of nonhydrolysed, i.e., active CCK-4. Impairments in PPARG regulation and following MME and ACE peptidase expression impairments in amygdala may be the possible mechanism leading to pathological anxiety development, with brain CCK-4 accumulation being a key link. Literature data analysis and signal pathway reconstruction and reviewing revealed two possible mechanisms of peroxisome proliferator-activated receptors involvement in pathological anxiety: (1) cytokine expression and neuroinflammation mechanism and (2) regulation of peptidases targeted to anxiety-associated neuropeptides, primarily CCK-4, mechanism.
Collapse
|
24
|
Détriché G, Goudot G, Khider L, Galloula A, Guillet M, Lillo-Le Louët A, Messas E, Mirault T. Acute Digital Ischemia After Arterial Injection of Crushed Zolpidem Tablets: Role of Microcrystalline Cellulose? A Case Report. Front Pharmacol 2020; 11:560382. [PMID: 33390940 PMCID: PMC7775664 DOI: 10.3389/fphar.2020.560382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Literature is scarce on acute ischemia after intra-arterial injection of crushed tablets and no effective medical treatment against the progression of lesions is reported. The only factor able to modify the outcome is the delay between injection and management by a specialized vascular team. Moreover the risk of necrosis seems higher after benzodiazepine intra-arterial injection than with other drugs. We tried to find out mechanistic explanations. We report on the case of a 31-year-old drug addict woman who self-injected into her left brachial artery crushed tablets of zolpidem. She developed an acute ischemia of the left hand, with necrosis of the intermediate and distal phalanges of fingers II, III, and IV. Angiogram of the left upper arm confirmed the distal arterial occlusions with no run-off after the palmar arch in the necrotic fingers. Once she was admitted into our vascular unit, intravenous vasodilator therapy by iloprost, heparin and local protective care were rapidly introduced. After delineation between living and necrotic tissues, she required distal amputations of the affected fingers. The clinical severity of arterial injections of benzodiazepine tablets is linked to the association of several pathophysiological mechanisms. Rather than related benzodiazepine pharmacologic effects with tissue ischemia, by the inhibition of phosphodiesterase, a vasodilator intermediate, or through the peripheral benzodiazepine-type receptor, the predominant mechanism is more likely in relation with microcrystalline cellulose, one component of zolpidem tablets, known as potential embolic agents. They are insoluble and resistant to degradation in water. These properties are probably prominent in the case we described here. Through this case report we want to drag attention of physicians in charge of a patient with acute ischemia after crushed tablet accidental intra-arterial injection, not only to look at the drug injected but also the other components of the tablet and especially to microcrystalline cellulose.
Collapse
Affiliation(s)
- Grégoire Détriché
- Vascular Medicine, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, APHP centre Université de Paris, Paris, France.,INSERM U970, Paris Cardiovascular Research Center, Paris, France
| | - Guillaume Goudot
- Vascular Medicine, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, APHP centre Université de Paris, Paris, France.,Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Lina Khider
- Vascular Medicine, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, APHP centre Université de Paris, Paris, France.,Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Alexandre Galloula
- Vascular Medicine, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, APHP centre Université de Paris, Paris, France
| | - Matthieu Guillet
- Vascular Medicine, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, APHP centre Université de Paris, Paris, France
| | - Agnès Lillo-Le Louët
- Centre Régional de Pharmacovigilance de Paris-Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, APHP centre Université de Paris, Paris, France
| | - Emmanuel Messas
- Vascular Medicine, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, APHP centre Université de Paris, Paris, France.,INSERM U970, Paris Cardiovascular Research Center, Paris, France.,Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France.,VASC European Research Network, Centre de Référence des Maladies Vasculaires Rares, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, APHP centre Université de Paris, Paris, France
| | - Tristan Mirault
- Vascular Medicine, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, APHP centre Université de Paris, Paris, France.,INSERM U970, Paris Cardiovascular Research Center, Paris, France.,Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France.,VASC European Research Network, Centre de Référence des Maladies Vasculaires Rares, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, APHP centre Université de Paris, Paris, France
| |
Collapse
|
25
|
Ammer LM, Vollmann-Zwerenz A, Ruf V, Wetzel CH, Riemenschneider MJ, Albert NL, Beckhove P, Hau P. The Role of Translocator Protein TSPO in Hallmarks of Glioblastoma. Cancers (Basel) 2020; 12:cancers12102973. [PMID: 33066460 PMCID: PMC7602186 DOI: 10.3390/cancers12102973] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The translocator protein (TSPO) has been under extensive investigation as a specific marker in positron emission tomography (PET) to visualize brain lesions following injury or disease. In recent years, TSPO is increasingly appreciated as a potential novel therapeutic target in cancer. In Glioblastoma (GBM), the most malignant primary brain tumor, TSPO expression levels are strongly elevated and scientific evidence accumulates, hinting at a pivotal role of TSPO in tumorigenesis and glioma progression. The aim of this review is to summarize the current literature on TSPO with respect to its role both in diagnostics and especially with regard to the critical hallmarks of cancer postulated by Hanahan and Weinberg. Overall, our review contributes to a better understanding of the functional significance of TSPO in Glioblastoma and draws attention to TSPO as a potential modulator of treatment response and thus an important factor that may influence the clinical outcome of GBM. Abstract Glioblastoma (GBM) is the most fatal primary brain cancer in adults. Despite extensive treatment, tumors inevitably recur, leading to an average survival time shorter than 1.5 years. The 18 kDa translocator protein (TSPO) is abundantly expressed throughout the body including the central nervous system. The expression of TSPO increases in states of inflammation and brain injury due to microglia activation. Not least due to its location in the outer mitochondrial membrane, TSPO has been implicated with a broad spectrum of functions. These include the regulation of proliferation, apoptosis, migration, as well as mitochondrial functions such as mitochondrial respiration and oxidative stress regulation. TSPO is frequently overexpressed in GBM. Its expression level has been positively correlated to WHO grade, glioma cell proliferation, and poor prognosis of patients. Several lines of evidence indicate that TSPO plays a functional part in glioma hallmark features such as resistance to apoptosis, invasiveness, and proliferation. This review provides a critical overview of how TSPO could regulate several aspects of tumorigenesis in GBM, particularly in the context of the hallmarks of cancer proposed by Hanahan and Weinberg in 2011.
Collapse
Affiliation(s)
- Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig Maximilians University of Munich, 81377 Munich, Germany;
| | - Christian H. Wetzel
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | | | - Nathalie L. Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI) and Department Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
- Correspondence:
| |
Collapse
|
26
|
Yvan-Charvet L, Bonacina F, Guinamard RR, Norata GD. Immunometabolic function of cholesterol in cardiovascular disease and beyond. Cardiovasc Res 2020; 115:1393-1407. [PMID: 31095280 DOI: 10.1093/cvr/cvz127] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/20/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation represents the driving feature of many diseases, including atherosclerosis, cancer, autoimmunity and infections. It is now established that metabolic processes shape a proper immune response and within this context the alteration in cellular cholesterol homeostasis has emerged as a culprit of many metabolic abnormalities observed in chronic inflammatory diseases. Cholesterol accumulation supports the inflammatory response of myeloid cells (i.e. augmentation of toll-like receptor signalling, inflammasome activation, and production of monocytes and neutrophils) which is beneficial in the response to infections, but worsens diseases associated with chronic metabolic inflammation including atherosclerosis. In addition to the innate immune system, cells of adaptive immunity, upon activation, have also been shown to undergo a reprogramming of cellular cholesterol metabolism, which results in the amplification of inflammatory responses. Aim of this review is to discuss (i) the molecular mechanisms linking cellular cholesterol metabolism to specific immune functions; (ii) how cellular cholesterol accumulation sustains chronic inflammatory diseases such as atherosclerosis; (iii) the immunometabolic profile of patients with defects of genes affecting cholesterol metabolism including familial hypercholesterolaemia, cholesteryl ester storage disease, Niemann-Pick type C, and immunoglobulin D syndrome/mevalonate kinase deficiency. Available data indicate that cholesterol immunometabolism plays a key role in directing immune cells function and set the stage for investigating the repurposing of existing 'metabolic' drugs to modulate the immune response.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rodolphe Renè Guinamard
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Giuseppe Danilo Norata
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France.,Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| |
Collapse
|
27
|
Zeineh N, Denora N, Laquintana V, Franco M, Weizman A, Gavish M. Efficaciousness of Low Affinity Compared to High Affinity TSPO Ligands in the Inhibition of Hypoxic Mitochondrial Cellular Damage Induced by Cobalt Chloride in Human Lung H1299 Cells. Biomedicines 2020; 8:biomedicines8050106. [PMID: 32370132 PMCID: PMC7277862 DOI: 10.3390/biomedicines8050106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022] Open
Abstract
The 18 kDa translocator protein (TSPO) plays an important role in apoptotic cell death, including apoptosis induced by the hypoxia mimicking agent cobalt chloride (CoCl2). In this study, the protective effects of a high (CB86; Ki = 1.6 nM) and a low (CB204; Ki = 117.7 nM) affinity TSPO ligands were investigated in H1299 lung cancer cell line exposed to CoCl2. The lung cell line H1299 was chosen in the present study since they express TSPO and able to undergo programmed cell death. The examined cell death markers included: ATP synthase reversal, reactive oxygen species (ROS) generation, mitochondrial membrane potential (Δψm) depolarization, cellular toxicity, and cellular viability. Pretreatment of the cells with the low affinity ligand CB204 at a concentration of 100 µM suppressed significantly (p < 0.05 for all) CoCl2-induced cellular cytotoxicity (100%), ATP synthase reversal (67%), ROS generation (82%), Δψm depolarization (100%), reduction in cellular density (97%), and also increased cell viability (85%). Furthermore, the low affinity TSPO ligand CB204, was harmless when given by itself at 100 µM. In contrast, the high affinity ligand (CB86) was significantly effective only in the prevention of CoCl2–induced ROS generation (39%, p < 0.001), and showed significant cytotoxic effects when given alone at 100 µM, as reflected in alterations in ADP/ATP ratio, oxidative stress, mitochondrial membrane potential depolarization and cell death. It appears that similar to previous studies on brain-derived cells, the relatively low affinity for the TSPO target enhances the potency of TSPO ligands in the protection from hypoxic cell death. Moreover, the high affinity TSPO ligand CB86, but not the low affinity ligand CB204, was lethal to the lung cells at high concentration (100 µM). The low affinity TSPO ligand CB204 may be a candidate for the treatment of pulmonary diseases related to hypoxia, such as pulmonary ischemia and chronic obstructive pulmonary disease COPD.
Collapse
Affiliation(s)
- Nidal Zeineh
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel;
| | - Nunzio Denora
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (N.D.); (V.L.); (M.F.)
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (N.D.); (V.L.); (M.F.)
| | - Massimo Franco
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (N.D.); (V.L.); (M.F.)
| | - Abraham Weizman
- Research Unit at Geha Mental Health Center and Laboratory of Biological Psychiatry at Felsenstein Medical Research Center, Petah Tikva 4910002, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moshe Gavish
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel;
- Correspondence: ; Tel.: +972-4829-5275; Fax: +972-4829-5330
| |
Collapse
|
28
|
Monga S, Denora N, Laquintana V, Franco M, Marek I, Singh S, Nagler R, Weizman A, Gavish M. The protective effect of the TSPO ligands 2,4-Di-Cl-MGV-1, CB86, and CB204 against LPS-induced M1 pro-inflammatory activation of microglia. Brain Behav Immun Health 2020; 5:100083. [PMID: 34589858 PMCID: PMC8474401 DOI: 10.1016/j.bbih.2020.100083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 01/20/2023] Open
Abstract
We have shown previously, that the 18 kDa translocator protein (TSPO) synthetic ligands quinazoline derivatives (2-Cl-MGV-1 and MGV-1) can inhibit activation of in BV-2 microglial cells. In the present study we assessed the impact of novel TSPO ligands on lipopolysaccharide (LPS)-induced microglial activation as expressed by release of pro-inflammatory molecules, including cytokines [interleukin-6 (IL-6), IL-1β, interferon- γ (IFN-γ)] nitric oxide (NO), CD8, and cyclo-oxygenase-2 (COX-2). The TSPO ligands 2,4-Di-Cl-MGV-1, CB86, and CB204 counteracted with the LPS-induced microglial activation. Exposure to LPS along with the TSPO ligand 2,4-Di-Cl-MGV-1 (25 μM) reduced significantly the release of NO by 24-, IL-6 by 14-, IL-β by 14-, IFN- γ by 6-, and TNF-α by 29-folds, respectively. In contrast to the anti-neuroinflammatory effect of the TSPO ligands, the effect of diclofenac sodium (DS; 25 μM) did not reach statistical significance. No alterations in IL-10 and IL-13 were detected (M2 anti-inflammatory pathway) during the inhibition of M1 pro-inflammatory pathway.
Collapse
Affiliation(s)
- Sheelu Monga
- Technion- Israel Institute of Technology, Ruth and Bruce Rappaport Faculty of Medicine, Israel
| | - Nunzio Denora
- Dipartimento di Farmacia – Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Italy
| | - Valentino Laquintana
- Dipartimento di Farmacia – Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Italy
| | - Massimo Franco
- Dipartimento di Farmacia – Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Italy
| | - Ilan Marek
- Technion- Israel Institute of Technology, Schulich Faculty of Chemistry, Israel
| | - Sukhdev Singh
- Technion- Israel Institute of Technology, Schulich Faculty of Chemistry, Israel
| | - Rafi Nagler
- Technion- Israel Institute of Technology, Ruth and Bruce Rappaport Faculty of Medicine, Israel
| | - Abraham Weizman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Research Unit, Geha Mental Health Center and Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Moshe Gavish
- Technion- Israel Institute of Technology, Ruth and Bruce Rappaport Faculty of Medicine, Israel
- Corresponding author.
| |
Collapse
|
29
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
30
|
Nagler R, Zeineh N, Azrad M, Yassin N, Weizman A, Gavish M. 18-kDa Translocator Protein Ligands Protect H9C2 Cardiomyocytes from Cigarette Smoke-induced Cell Death: In Vitro Study. In Vivo 2020; 34:549-556. [PMID: 32111753 PMCID: PMC7157870 DOI: 10.21873/invivo.11807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cigarette smoke (CS) can induce cellular damage via alterations in 18 kDa translocator protein (TSPO)-related functions, leading to cardiovascular diseases. The current study focused on the possible protective effect of TSPO ligands against CS-induced damage to cardiac cells. MATERIALS AND METHODS H9C2 Cardiomyocyte cell line of rat origin was pre-treated with TSPO ligands. Cell death, TSPO binding, and TSPO protein expression levels were assessed following 30-min CS exposure with/without TSPO ligands. RESULTS CS exposure of H9C2 cells significantly incensed cell death (by 26%, p<0.001). Pre-treatment with TSPO ligands at two concentrations prevented cell death. Neither CS nor ligands affected TSPO protein expression in H9C2 cells. CS led to increased cell death and reduced TSPO binding. CONCLUSION Reduced TSPO binding may have a role in CS-induced cell death, and TSPO ligand MGV-1 can prevent suppression of TSPO binding and corresponding cell death. These results may be relevant to treatment of cardiovascular diseases associated with CS.
Collapse
Affiliation(s)
- Rafael Nagler
- Department of Neuroscience, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nidal Zeineh
- Department of Neuroscience, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maya Azrad
- Department of Neuroscience, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nasra Yassin
- Department of Neuroscience, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Abraham Weizman
- Research Unit at Geha Mental Health Center and Laboratory of Biological Psychiatry at Felsenstein Medical Research Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Gavish
- Department of Neuroscience, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
31
|
Heo GS, Sultan D, Liu Y. Current and novel radiopharmaceuticals for imaging cardiovascular inflammation. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:4-20. [PMID: 32077667 DOI: 10.23736/s1824-4785.20.03230-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide despite advances in diagnostic technologies and treatment strategies. The underlying cause of most CVD is atherosclerosis, a chronic disease driven by inflammatory reactions. Atherosclerotic plaque rupture could cause arterial occlusion leading to ischemic tissue injuries such as myocardial infarction (MI) and stroke. Clinically, most imaging modalities are based on anatomy and provide limited information about the on-going molecular activities affecting the vulnerability of atherosclerotic lesion for risk stratification of patients. Thus, the ability to differentiate stable plaques from those that are vulnerable is an unmet clinical need. Of various imaging techniques, the radionuclide-based molecular imaging modalities including positron emission tomography and single-photon emission computerized tomography provide superior ability to noninvasively visualize molecular activities in vivo and may serve as a useful tool in tackling this challenge. Moreover, the well-established translational pathway of radiopharmaceuticals may also facilitate the translation of discoveries from benchtop to clinical investigation in contrast to other imaging modalities to fulfill the goal of precision medicine. The relationship between inflammation occurring within the plaque and its proneness to rupture has been well documented. Therefore, an active effort has been significantly devoted to develop radiopharmaceuticals specifically to measure CVD inflammatory status, and potentially elucidate those plaques which are prone to rupture. In the following review, molecular imaging of inflammatory biomarkers will be briefly discussed.
Collapse
Affiliation(s)
- Gyu S Heo
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA -
| |
Collapse
|
32
|
Zhang Y, Du W, Yang B. Long non-coding RNAs as new regulators of cardiac electrophysiology and arrhythmias: Molecular mechanisms, therapeutic implications and challenges. Pharmacol Ther 2019; 203:107389. [DOI: 10.1016/j.pharmthera.2019.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
|
33
|
Zeineh N, Nagler R, Gabay M, Weizman A, Gavish M. Effects of Cigarette Smoke on TSPO-related Mitochondrial Processes. Cells 2019; 8:E694. [PMID: 31295884 PMCID: PMC6678681 DOI: 10.3390/cells8070694] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
The 18 kDa translocator protein (TSPO) is an initiator of the mitochondrial apoptosis cascade. Cigarette smoke (CS) exposure provokes alterations in TSPO expression as well as upregulation of its related functions such as mitochondrial membrane potential (ΔψM) and reactive oxygen species generation, which are associated with cell death. In the current study, H1299 lung cancer cell line exposed to CS for various time periods (30 mins, 60 mins and 120 mins) and TSPO expression and cell death processes were studied. CS exposure for 30 mins resulted in a non-significant increase in TSPO expression by 24% (p > 0.05 vs. control). CS exposure for 60 mins and 120 mins resulted in a significant increase by 43% (p < 0.05 vs. control) and by 47% (p < 0.01 vs. control), respectively. Furthermore, TSPO-related mitochondrial functions were upregulated at the 120 mins time point following CS exposure. TSPO expression is upregulated by CS, suggesting that TSPO plays a role in cell death processes induced by CS exposure. Alterations in TSPO-related cell death processes suggest that TSPO may be involved in the tissue damage caused by CS.
Collapse
Affiliation(s)
- Nidal Zeineh
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel
| | - Rafael Nagler
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel
| | - Martin Gabay
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel
| | - Abraham Weizman
- Research Unit at Geha Mental Health Center and Laboratory of Biological Psychiatry at Felsenstein Medical Research Center, Petah Tikva 4910002, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moshe Gavish
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
34
|
Shoshan-Barmatz V, Pittala S, Mizrachi D. VDAC1 and the TSPO: Expression, Interactions, and Associated Functions in Health and Disease States. Int J Mol Sci 2019; 20:ijms20133348. [PMID: 31288390 PMCID: PMC6651789 DOI: 10.3390/ijms20133348] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The translocator protein (TSPO), located at the outer mitochondrial membrane (OMM), serves multiple functions and contributes to numerous processes, including cholesterol import, mitochondrial metabolism, apoptosis, cell proliferation, Ca2+ signaling, oxidative stress, and inflammation. TSPO forms a complex with the voltage-dependent anion channel (VDAC), a protein that mediates the flux of ions, including Ca2+, nucleotides, and metabolites across the OMM, controls metabolism and apoptosis and interacts with many proteins. This review focuses on the two OMM proteins TSPO and VDAC1, addressing their structural interaction and associated functions. TSPO appears to be involved in the generation of reactive oxygen species, proposed to represent the link between TSPO activation and VDAC, thus playing a role in apoptotic cell death. In addition, expression of the two proteins in healthy brains and diseased states is considered, as is the relationship between TSPO and VDAC1 expression. Both proteins are over-expressed in in brains from Alzheimer’s disease patients. Finally, TSPO expression levels were proposed as a biomarker of some neuropathological settings, while TSPO-interacting ligands have been considered as a potential basis for drug development.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Srinivas Pittala
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Dario Mizrachi
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
35
|
Srivastava P, Kakkar D, Kumar P, Tiwari AK. Modified benzoxazolone (ABO‐AA) based single photon emission computed tomography (SPECT) probes for 18 kDa translocator protein. Drug Dev Res 2019; 80:741-749. [DOI: 10.1002/ddr.21547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/09/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Pooja Srivastava
- Division of Cyclotron and Radiopharmaceutical SciencesInstitute of Nuclear Medicine and Allied Sciences Delhi India
- Molecular Neuroscience and Functional Genomic Laboratory, Department of BiotechnologyDelhi Technological University Delhi India
| | - Dipti Kakkar
- Division of Cyclotron and Radiopharmaceutical SciencesInstitute of Nuclear Medicine and Allied Sciences Delhi India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomic Laboratory, Department of BiotechnologyDelhi Technological University Delhi India
| | - Anjani Kumar Tiwari
- Division of Cyclotron and Radiopharmaceutical SciencesInstitute of Nuclear Medicine and Allied Sciences Delhi India
- Department of Chemistry, School of Physical & Decision Sciences (SPDS)Babasaheb Bhimrao Ambedkar Central University Lucknow UP India
| |
Collapse
|
36
|
Inhibitory Effects of the Two Novel TSPO Ligands 2-Cl-MGV-1 and MGV-1 on LPS-induced Microglial Activation. Cells 2019; 8:cells8050486. [PMID: 31121852 PMCID: PMC6562711 DOI: 10.3390/cells8050486] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) ligands 2-Cl-MGV-1 and MGV-1 can attenuate cell death of astrocyte-like cells (U118MG) and induce differentiation of neuronal progenitor cells (PC-12). Lipopolysaccharide (LPS) is a bacterial membrane endotoxin that activates cellular inflammatory pathways by releasing pro-inflammatory molecules, including cytokines and chemokines. The aim of the present study was to assess the immuno-modulatory effect of TSPO ligands in activated microglial cells. We demonstrated that the TSPO ligands 2-Cl-MGV-1 and MGV-1 can prevent LPS-induced activation of microglia (BV-2 cell line). Co-treatment of LPS (100 ng/mL) with these TSPO ligands (final concentration- 25 µM) reduces significantly the LPS-induced release of interleukin-6 (IL-6) from 16.9-fold to 2.5-fold, IL-β from 8.3-fold to 1.6-fold, interferon-γ from 16.0-fold to 2.2-fold, and tumor necrosis factor-α from 16.4-fold to 1.8-fold. This anti-inflammatory activity seems to be achieved by inhibition of NF-κB p65 activation. Assessment of initiation of ROS generation and cell metabolism shows significant protective effects of these two novel TSPO ligands. The IL-10 and IL-13 levels were not affected by any of the TSPO ligands. Thus, it appears that the ligands suppress the LPS-induced activation of some inflammatory responses of microglia. Such immunomodulatory effects may be relevant to the pharmacotherapy of neuro-inflammatory diseases.
Collapse
|
37
|
Rizzo G, Veronese M, Tonietto M, Bodini B, Stankoff B, Wimberley C, Lavisse S, Bottlaender M, Bloomfield PS, Howes O, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A. Generalization of endothelial modelling of TSPO PET imaging: Considerations on tracer affinities. J Cereb Blood Flow Metab 2019; 39:874-885. [PMID: 29135382 PMCID: PMC6501510 DOI: 10.1177/0271678x17742004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a marker of microglia activation and the main target of positron emission tomography (PET) ligands for neuroinflammation. Previous works showed that accounting for TSPO endothelial binding improves PET quantification for [11C]PBR28, [18F]DPA714 and [11C]-R-PK11195. It is still unclear, however, whether the vascular signal is tracer-dependent. This work aims to explore the relationship between the TSPO vascular and tissue components for PET tracers with varying affinity, also assessing the impact of affinity towards the differentiability amongst kinetics and the ensuing ligand amenability to cluster analysis for the extraction of a reference region. First, we applied the compartmental model accounting for vascular binding to [11C]-R-PK11195 data from six healthy subjects. Then, we compared the [11C]-R-PK11195 vascular binding estimates with previously published values for [18F]DPA714 and [11C]PBR28. Finally, we determined the suitability for reference region extraction by calculating the angle between grey and white matter kinetics. Our results showed that endothelial binding is common to all TSPO tracers and proportional to their affinity. By consequence, grey and white matter kinetics were most similar for the radioligand with the highest affinity (i.e. [11C]PBR28), hence poorly suited for the extraction of a reference region using supervised clustering.
Collapse
Affiliation(s)
- Gaia Rizzo
- 1 Department of Information Engineering, Padova University, Padova, Italy
| | - Mattia Veronese
- 2 Department of Neuroimaging, King's College London, London, UK
| | - Matteo Tonietto
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France
| | - Benedetta Bodini
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France.,4 Assistance Publique des Hopitaux de Paris, APHP, Hôpital Saint Antoine, Paris, France
| | - Bruno Stankoff
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France.,4 Assistance Publique des Hopitaux de Paris, APHP, Hôpital Saint Antoine, Paris, France.,5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France
| | - Catriona Wimberley
- 5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France
| | - Sonia Lavisse
- 6 Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Fontenay-aux-Roses, France.,7 Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Michel Bottlaender
- 5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France.,8 Neurospin, CEA, Gif-sur-Yvette, France
| | | | - Oliver Howes
- 9 Institute of Clinical Sciences, Imperial College London, London, UK.,10 Department of Psychosis Studies, King's College London, London, UK
| | - Paolo Zanotti-Fregonara
- 11 Houston Methodist Hospital, PET Core Facility, Research Institute, Stanley H. Appel Department of Neurology, Houston, Texas, USA
| | | | - Alessandra Bertoldo
- 1 Department of Information Engineering, Padova University, Padova, Italy.,12 Padua Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
38
|
Synthesis and in vitro evaluation of new translocator protein ligands designed for positron emission tomography. Future Med Chem 2019; 11:539-550. [PMID: 30888874 DOI: 10.4155/fmc-2018-0444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM Dysregulated levels of the translocator protein TSPO 18 KDa have been reported in several disorders, particularly neurodegenerative diseases. This makes TSPO an interesting target for the development of diagnostic biomarkers. Even though several radioligands have already been developed for in vivo TSPO imaging, the ideal TSPO radiotracer has still not been found. RESULTS Here, we report the chemical synthesis of a set of new TSPO ligands designed for future application in positron emission tomography, together with the determination of their biological activity and applied 11C-labeling strategy. CONCLUSION The lead compound of our series, (R)-[11C]Me@NEBIQUINIDE, showed very promising results and is therefore proposed to be further evaluated under in vivo settings.
Collapse
|
39
|
Srivastava P, Kumari N, Kakkar D, Kaul A, Kumar P, Tiwari AK. Comparative evaluation of 99mTc-MBIP-X/11[C] MBMP for visualization of 18 kDa translocator protein. NEW J CHEM 2019. [DOI: 10.1039/c9nj00180h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An elevated translocator protein (18 kDa, TSPO) density is observed during inflammation in the brain and peripheral organs making it a viable target for imaging.
Collapse
Affiliation(s)
- Pooja Srivastava
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
- Molecular Neuroscience and Functional Genomics Laboratory
| | - Neelam Kumari
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
| | - Dipti Kakkar
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Anjani K. Tiwari
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
- Department of Chemistry
| |
Collapse
|
40
|
Ilkan Z, Akar FG. The Mitochondrial Translocator Protein and the Emerging Link Between Oxidative Stress and Arrhythmias in the Diabetic Heart. Front Physiol 2018; 9:1518. [PMID: 30416455 PMCID: PMC6212558 DOI: 10.3389/fphys.2018.01518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial translocator protein (TSPO) is a key outer mitochondrial membrane protein that regulates the activity of energy-dissipating mitochondrial channels in response to oxidative stress. In this article, we provide an overview of the role of TSPO in the systematic amplification of reactive oxygen species (ROS) through an autocatalytic process known as ROS-induced ROS-release (RIRR). We describe how this TSPO-driven process destabilizes the mitochondrial membrane potential leading to electrical instability at the cellular and whole heart levels. Finally, we provide our perspective on the role of TSPO in the pathophysiology of diabetes, in general and diabetes-related arrhythmias, in particular.
Collapse
Affiliation(s)
- Zeki Ilkan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fadi G Akar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
41
|
Edison P, Donat CK, Sastre M. In vivo Imaging of Glial Activation in Alzheimer's Disease. Front Neurol 2018; 9:625. [PMID: 30131755 PMCID: PMC6090997 DOI: 10.3389/fneur.2018.00625] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by memory loss and decline of cognitive function, associated with progressive neurodegeneration. While neuropathological processes like amyloid plaques and tau neurofibrillary tangles have been linked to neuronal death in AD, the precise role of glial activation on disease progression is still debated. It was suggested that neuroinflammation could occur well ahead of amyloid deposition and may be responsible for clearing amyloid, having a neuroprotective effect; however, later in the disease, glial activation could become deleterious, contributing to neuronal toxicity. Recent genetic and preclinical studies suggest that the different activation states of microglia and astrocytes are complex, not as polarized as previously thought, and that the heterogeneity in their phenotype can switch during disease progression. In the last few years, novel imaging techniques e.g., new radiotracers for assessing glia activation using positron emission tomography and advanced magnetic resonance imaging technologies have emerged, allowing the correlation of neuro-inflammatory markers with cognitive decline, brain function and brain pathology in vivo. Here we review all new imaging technology in AD patients and animal models that has the potential to serve for early diagnosis of the disease, to monitor disease progression and to test the efficacy and the most effective time window for potential anti-inflammatory treatments.
Collapse
Affiliation(s)
- Paul Edison
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Cornelius K Donat
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Magdalena Sastre
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
42
|
Manabe O, Kikuchi T, Scholte AJHA, El Mahdiui M, Nishii R, Zhang MR, Suzuki E, Yoshinaga K. Radiopharmaceutical tracers for cardiac imaging. J Nucl Cardiol 2018; 25:1204-1236. [PMID: 29196910 PMCID: PMC6133155 DOI: 10.1007/s12350-017-1131-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disease burden worldwide. Nuclear myocardial perfusion imaging with either single-photon emission computed tomography or positron emission tomography has been used extensively to perform diagnosis, monitor therapies, and predict cardiovascular events. Several radiopharmaceutical tracers have recently been developed to evaluate CVD by targeting myocardial perfusion, metabolism, innervation, and inflammation. This article reviews old and newer used in nuclear cardiac imaging.
Collapse
Affiliation(s)
- Osamu Manabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tatsuya Kikuchi
- Department of Radiopharmaceutical Development, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Arthur J H A Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mohammed El Mahdiui
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ryuichi Nishii
- Diagnostic and Therapeutic Nuclear Medicine, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceutical Development, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Eriko Suzuki
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan.
| |
Collapse
|
43
|
Bhoola NH, Mbita Z, Hull R, Dlamini Z. Translocator Protein (TSPO) as a Potential Biomarker in Human Cancers. Int J Mol Sci 2018; 19:ijms19082176. [PMID: 30044440 PMCID: PMC6121633 DOI: 10.3390/ijms19082176] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 11/17/2022] Open
Abstract
TSPO is a receptor involved in the regulation of cellular proliferation, apoptosis and mitochondrial functions. Previous studies showed that the expression of TSPO protein correlated positively with tumour malignancy and negatively with patient survival. The aim of this study was to determine the transcription of Tspo mRNA in various types of normal and cancer tissues. In situ hybridization was performed to localise the Tspo mRNA in various human normal and cancer tissues. The relative level of Tspo mRNA was quantified using fluorescent intensity and visual estimation of colorimetric staining. RT-PCR was used to confirm these mRNA levels in normal lung, lung cancer, liver cancer, and cervical cancer cell lines. There was a significant increase in the level of transcription in liver, prostate, kidney, and brain cancers while a significant decrease was observed in cancers of the colon and lung. Quantitative RT-PCR confirmed that the mRNA levels of Tspo are higher in a normal lung cell line than in a lung cancer cell line. An increase in the expression levels of Tspo mRNA is not necessarily a good diagnostic biomarker in most cancers with changes not being large enough to be significantly different when detected by in situ hybridisation.
Collapse
Affiliation(s)
- Nimisha H Bhoola
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa.
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa.
| | - Rodney Hull
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban 4031, South Africa.
| | - Zodwa Dlamini
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban 4031, South Africa.
| |
Collapse
|
44
|
Veronese M, Reis Marques T, Bloomfield PS, Rizzo G, Singh N, Jones D, Agushi E, Mosses D, Bertoldo A, Howes O, Roncaroli F, Turkheimer FE. Kinetic modelling of [ 11C]PBR28 for 18 kDa translocator protein PET data: A validation study of vascular modelling in the brain using XBD173 and tissue analysis. J Cereb Blood Flow Metab 2018; 38:1227-1242. [PMID: 28580888 PMCID: PMC6434448 DOI: 10.1177/0271678x17712388] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a marker of microglia activation in the central nervous system and represents the main target of radiotracers for the in vivo quantification of neuroinflammation with positron emission tomography (PET). TSPO PET is methodologically challenging given the heterogeneous distribution of TSPO in blood and brain. Our previous studies with the TSPO tracers [11C]PBR28 and [11C]PK11195 demonstrated that a model accounting for TSPO binding to the endothelium improves the quantification of PET data. Here, we performed a validation of the kinetic model with the additional endothelial compartment through a displacement study. Seven subjects with schizophrenia, all high-affinity binders, underwent two [11C]PBR28 PET scans before and after oral administration of 90 mg of the TSPO ligand XBD173. The addition of the endothelial component provided a signal compartmentalization much more consistent with the underlying biology, as only in this model, the blocking study produced the expected reduction in the tracer concentration of the specific tissue compartment, whereas the non-displaceable compartment remained unchanged. In addition, we also studied TSPO expression in vessels using 3D reconstructions of histological data of frontal lobe and cerebellum, demonstrating that TSPO positive vessels account for 30% of the vascular volume in cortical and white matter.
Collapse
Affiliation(s)
- Mattia Veronese
- Department of Neuroimaging, IoPPN,
King’s College London, London, UK
| | - Tiago Reis Marques
- Department of Psychosis Studies, IoPPN,
King’s College London, London, UK
- Institute of Clinical Sciences, Imperial
College London, London, UK
| | | | - Gaia Rizzo
- Department of Information Engineering,
Padova University, Padova, Italy
| | - Nisha Singh
- Department of Neuroimaging, IoPPN,
King’s College London, London, UK
| | - Deborah Jones
- Department of Cellular Pathology,
Salford Royal Foundation Trust, Salford, UK
| | - Erjon Agushi
- Division of Neuroscience and
Experimental Psychology, University of Manchester, UK
| | - Dominic Mosses
- Division of Neuroscience and
Experimental Psychology, University of Manchester, UK
| | - Alessandra Bertoldo
- Department of Information Engineering,
Padova University, Padova, Italy
- Padua Neuroscience Center, University of
Padova, Padova, Italy
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN,
King’s College London, London, UK
- Institute of Clinical Sciences, Imperial
College London, London, UK
| | - Federico Roncaroli
- Division of Neuroscience and
Experimental Psychology, University of Manchester, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, IoPPN,
King’s College London, London, UK
- Federico E Turkheimer, Centre for
Neuroimaging Sciences, IoPPN, King’s College London, P089, De Crespigny Park,
Denmark Hill, London SE5 8AF, UK.
| |
Collapse
|
45
|
Bonsack F, Sukumari-Ramesh S. TSPO: An Evolutionarily Conserved Protein with Elusive Functions. Int J Mol Sci 2018; 19:ijms19061694. [PMID: 29875327 PMCID: PMC6032217 DOI: 10.3390/ijms19061694] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022] Open
Abstract
TSPO (18 kDa translocator protein) was identified decades ago in a search for peripheral tissue binding sites for benzodiazepines, and was formerly called the peripheral benzodiazepine receptor. TSPO is a conserved protein throughout evolution and it is implicated in the regulation of many cellular processes, including inflammatory responses, oxidative stress, and mitochondrial homeostasis. TSPO, apart from its broad expression in peripheral tissues, is highly expressed in neuroinflammatory cells, such as activated microglia. In addition, emerging studies employing the ligands of TSPO suggest that TSPO plays an important role in neuropathological settings as a biomarker and therapeutic target. However, the precise molecular function of this protein in normal physiology and neuropathology remains enigmatic. This review provides an overview of recent advances in our understanding of this multifaceted molecule and identifies the knowledge gap in the field for future functional studies.
Collapse
Affiliation(s)
- Frederick Bonsack
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| | - Sangeetha Sukumari-Ramesh
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
46
|
Positron Emission Tomography Imaging of Macrophages in Atherosclerosis with 18F-GE-180, a Radiotracer for Translocator Protein (TSPO). CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:9186902. [PMID: 29950954 PMCID: PMC5987326 DOI: 10.1155/2018/9186902] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/26/2018] [Accepted: 04/08/2018] [Indexed: 01/31/2023]
Abstract
Intraplaque inflammation plays an important role in the progression of atherosclerosis. The 18 kDa translocator protein (TSPO) expression is upregulated in activated macrophages, representing a potential target to identify inflamed atherosclerotic plaques. We preclinically evaluated 18F-GE-180, a novel third-generation TSPO radioligand, in a mouse model of atherosclerosis. Methods. Nine hypercholesterolemic mice deficient in low density lipoprotein receptor and apolipoprotein B48 (LDLR−/−ApoB100/100) and six healthy C57BL/6N mice were injected with 10 MBq of 18F-GE-180. Specificity of binding was demonstrated in three LDLR−/−ApoB100/100 mice by injection of nonradioactive reference compound of 18F-GE-180 before 18F-GE-180. Dynamic 30-minute PET was performed followed by contrast-enhanced CT, and the mice were sacrificed at 60 minutes after injection. Tissue samples were obtained for ex vivo biodistribution measurements, and aortas were cut into serial cryosections for digital autoradiography. The presence of macrophages and TSPO was studied by immunohistochemistry. The 18F-GE-180 retention in plaque areas with different macrophage densities and lesion-free vessel wall were compared. Results. The LDLR−/−ApoB100/100 mice showed large, inflamed plaques in the aorta. Autoradiography revealed significantly higher 18F-GE-180 retention in macrophage-rich plaque areas than in noninflamed areas (count densities 150 ± 45 PSL/mm2 versus 51 ± 12 PSL/mm2, p < 0.001). Prominent retention in the vessel wall without plaque was also observed (220 ± 41 PSL/mm2). Blocking with nonradioactive GE-180 diminished the difference in count densities between macrophage-rich and noninflamed areas in atherosclerotic plaques and lowered the count density in vessel wall without plaque. Conclusion. 18F-GE-180 shows specific uptake in macrophage-rich areas of atherosclerotic plaques in mice. However, retention in atherosclerotic lesions does not exceed that in lesion-free vessel wall. The third-generation TSPO radioligand 18F-GE-180 did not show improved characteristics for imaging atherosclerotic plaque inflammation compared to previously studied TSPO-targeting tracers.
Collapse
|
47
|
Prolonged hematopoietic and myeloid cellular response in patients after an acute coronary syndrome measured with 18F-DPA-714 PET/CT. Eur J Nucl Med Mol Imaging 2018; 45:1956-1963. [PMID: 29728748 PMCID: PMC6132543 DOI: 10.1007/s00259-018-4038-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/19/2018] [Indexed: 11/10/2022]
Abstract
Purpose An acute coronary syndrome (ACS) is characterized by a multi-level inflammatory response, comprising activation of bone marrow and spleen accompanied by augmented release of leukocytes into the circulation. The duration of this response after an ACS remains unclear. Here, we assessed the effect of an ACS on the multi-level inflammatory response in patients both acutely and after 3 months. Methods We performed 18F-DPA-714 PET/CT acutely and 3 months post-ACS in eight patients and eight matched healthy controls. DPA-714, a PET tracer binding the TSPO receptor and highly expressed in myeloid cells, was used to assess hematopoietic activity. We also characterized circulating monocytes and hematopoietic stem and progenitor cells (HSPCs) by flow cytometry in 20 patients acutely and 3 months post-ACS and in 19 healthy controls. Results In the acute phase, patients displayed a 1.4-fold and 1.3-fold higher 18F-DPA-714 uptake in, respectively, bone marrow (p = 0.012) and spleen (p = 0.039) compared with healthy controls. This coincided with a 2.4-fold higher number of circulating HSPCs (p = 0.001). Three months post-ACS, 18F-DPA-714 uptake in bone marrow decreased significantly (p = 0.002), but no decrease was observed for 18F-DPA-714 uptake in the spleen (p = 0.67) nor for the number of circulating HSPCs (p = 0.75). Conclusions 18F-DPA-714 PET/CT reveals an ACS- triggered hematopoietic organ activation as initiator of a prolonged cellular inflammatory response beyond 3 months, characterized by a higher number of circulating leukocytes and their precursors. This multi-level inflammatory response may provide an attractive target for novel treatment options aimed at reducing the high recurrence rate post-ACS. Electronic supplementary material The online version of this article (10.1007/s00259-018-4038-8) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Colussi G, Catena C, Darsiè D, Sechi LA. Benzodiazepines: An Old Class of New Antihypertensive Drugs? Am J Hypertens 2018; 31:402-404. [PMID: 29186312 DOI: 10.1093/ajh/hpx205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- GianLuca Colussi
- Clinica Medica, Department of Medicine, University of Udine, Udine, Italy
| | - Cristiana Catena
- Clinica Medica, Department of Medicine, University of Udine, Udine, Italy
| | - Daniele Darsiè
- Clinica Medica, Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
49
|
Papadopoulos V, Fan J, Zirkin B. Translocator protein (18 kDa): an update on its function in steroidogenesis. J Neuroendocrinol 2018; 30:10.1111/jne.12500. [PMID: 28667781 PMCID: PMC5748373 DOI: 10.1111/jne.12500] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022]
Abstract
Translocator protein (18 kDa) (TSPO) is a ubiquitous mitochondrial protein. Studies of its responses to drug and endogenous ligands have shown TSPO to be involved either directly or indirectly in numerous biological functions, including mitochondrial cholesterol transport and steroid hormone biosynthesis, porphyrin transport and heme synthesis, apoptosis, cell proliferation, and anion transport. Localised to the outer mitochondrial membrane of steroidogenic cells, TSPO has been shown to associate with cytosolic and mitochondrial proteins as part of a large multiprotein complex involved in mitochondrial cholesterol transport, the rate-limiting step in steroidogenesis. There is general agreement as to the structure and pharmacology of TSPO. Stimulation of TSPO has been shown to have therapeutic use as anxiolytics by inducing allopregnanolone production in the brain, and also potentially for re-establishing androgen levels in hypogonadal ageing animals. Until recently, there has been general agreement regarding the role of TSPO in steroidogenesis. However, recent studies involving genetic depletion of TSPO in mice have created controversy about the role of this protein in steroid and heme synthesis. We review the data on the structure and function of TSPO, as well as the recent results obtained using various genetic animal models. Taken together, these studies suggest that TSPO is a unique mitochondrial pharmacological target for diseases that involve increased mitochondrial activity, including steroidogenesis. Although there is no known mammalian species that lacks TSPO, it is likely that, because of the importance of this ancient protein in evolution and mitochondrial function, redundant mechanisms may exist to replace it under circumstances when it is removed.
Collapse
Affiliation(s)
- Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
- Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Jinjiang Fan
- Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
50
|
Regulation of Mitochondrial, Cellular, and Organismal Functions by TSPO. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:103-136. [PMID: 29413517 DOI: 10.1016/bs.apha.2017.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In 1999, the enigma of the 18kDa mitochondrial translocator protein (TSPO), also known as the peripheral-type benzodiazepine receptor, was the seeming disparity of the many functions attributed to TSPO, ranging from the potential of TSPO acting as a housekeeping gene at molecular biological levels to adaptations to stress, and even involvement in higher emotional and cognitive functioning, such as anxiety and depression. In the years since then, knowledge regarding the many functions modulated by TSPO has expanded, and understanding has deepened. In addition, new functions could be firmly associated with TSPO, such as regulation of programmed cell death and modulation of gene expression. Interestingly, control by the mitochondrial TSPO over both of these life and death functions appears to include Ca++ homeostasis, generation of reactive oxygen species (ROS), and ATP production. Other mitochondrial functions under TSPO control are considered to be steroidogenesis and tetrapyrrole metabolism. As TSPO effects on gene expression and on programmed cell death can be related to the wide range of functions that can be associated with TSPO, several of these five elements of Ca++, ROS, ATP, steroids, and tetrapyrroles may indeed form the basis of TSPO's capability to operate as a multifunctional housekeeping gene to maintain homeostasis of the cell and of the whole multicellular organism.
Collapse
|