1
|
Jin QH, Chen WB, Xia YN, Liu BY, Guan LP. Biological evaluation of 2,3-dioxoindolin-N-phenylacetamide derivatives as potent CDC25B and PTP1B phosphatase inhibitors. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000400222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
| | - Wen-Bo Chen
- Zhejiang Ocean University, China; Hailisheng Pharmaceutical Co Lid, China
| | | | | | | |
Collapse
|
2
|
Cavalcanti ÉB, Félix MB, Scotti L, Scotti MT. Virtual Screening of Natural Products to Select Compounds with Potential Anticancer Activity. Anticancer Agents Med Chem 2019; 19:154-171. [DOI: 10.2174/1871520618666181119110934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 03/21/2018] [Indexed: 12/28/2022]
Abstract
Cancer is the main cause of death, so the search for active agents to be used in the therapy of this
disease, is necessary. According to studies conducted, substances derived from natural products have shown to
be promising in this endeavor. To these researches, one can associate with the aid of computational chemistry,
which is increasingly gaining popularity, due to the possibility of developing alternative strategies that could
help in choosing an appropriate set of compounds, avoiding unnecessary expenses with resources that would
generate unwanted substance. Thus, the objective of this study was to carry out an approach to several studies
that apply different methods of virtual screening to select natural products with potential anticancer activity.
This review presents reports of studies conducted with some natural products, such as coumarin, quinone, tannins,
alkaloids, flavonoids and terpenes.
Collapse
Affiliation(s)
- Élida B.V.S. Cavalcanti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Mayara B. Félix
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Luciana Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Marcus T. Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| |
Collapse
|
3
|
Al-Hrout A, Chaiboonchoe A, Khraiwesh B, Murali C, Baig B, El-Awady R, Tarazi H, Alzahmi A, Nelson DR, Greish YE, Ramadan W, Salehi-Ashtiani K, Amin A. Safranal induces DNA double-strand breakage and ER-stress-mediated cell death in hepatocellular carcinoma cells. Sci Rep 2018; 8:16951. [PMID: 30446676 PMCID: PMC6240095 DOI: 10.1038/s41598-018-34855-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Poor prognoses remain the most challenging aspect of hepatocellular carcinoma (HCC) therapy. Consequently, alternative therapeutics are essential to control HCC. This study investigated the anticancer effects of safranal against HCC using in vitro, in silico, and network analyses. Cell cycle and immunoblot analyses of key regulators of cell cycle, DNA damage repair and apoptosis demonstrated unique safranal-mediated cell cycle arrest at G2/M phase at 6 and 12 h, and at S-phase at 24 h, and a pronounced effect on DNA damage machinery. Safranal also showed pro-apoptotic effect through activation of both intrinsic and extrinsic initiator caspases; indicating ER stress-mediated apoptosis. Gene set enrichment analysis provided consistent findings where UPR is among the top terms of up-regulated genes in response to safranal treatment. Thus, proteins involved in ER stress were regulated through safranal treatment to induce UPR in HepG2 cells.
Collapse
Affiliation(s)
- Ala'a Al-Hrout
- Biology Department, College of Science, UAE University, P.O. Box 15551, Al-Ain, UAE
| | - Amphun Chaiboonchoe
- Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Basel Khraiwesh
- Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
- Center for Genomics and Systems Biology (CGSB), Division of Science, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Chandraprabha Murali
- Biology Department, College of Science, UAE University, P.O. Box 15551, Al-Ain, UAE
| | - Badriya Baig
- Biology Department, College of Science, UAE University, P.O. Box 15551, Al-Ain, UAE
| | - Raafat El-Awady
- College of Pharmacy and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Hamadeh Tarazi
- College of Pharmacy and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Amnah Alzahmi
- Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - David R Nelson
- Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | | | - Wafaa Ramadan
- College of Pharmacy and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Kourosh Salehi-Ashtiani
- Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE.
- Center for Genomics and Systems Biology (CGSB), Division of Science, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE.
| | - Amr Amin
- Biology Department, College of Science, UAE University, P.O. Box 15551, Al-Ain, UAE.
- Zoology Department, Cairo University, Giza, Egypt.
| |
Collapse
|
4
|
Genotoxic effects of BnSP-6, a Lys-49 phospholipase A2 (PLA2) homologue from Bothrops pauloensis snake venom, on MDA-MB-231 breast cancer cells. Int J Biol Macromol 2018; 118:311-319. [DOI: 10.1016/j.ijbiomac.2018.06.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
|
5
|
Ge Y, van der Kamp M, Malaisree M, Liu D, Liu Y, Mulholland AJ. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations. J Comput Aided Mol Des 2017; 31:995-1007. [PMID: 28994029 DOI: 10.1007/s10822-017-0073-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/26/2017] [Indexed: 02/02/2023]
Abstract
Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.
Collapse
Affiliation(s)
- Yushu Ge
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Centre of Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Marc van der Kamp
- Centre of Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Maturos Malaisree
- Centre of Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Dan Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) & College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Adrian J Mulholland
- Centre of Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| |
Collapse
|
6
|
Structure-based development of novel triazoles and related thiazolotriazoles as anticancer agents and Cdc25A/B phosphatase inhibitors. Synthesis, in vitro biological evaluation, molecular docking and in silico ADME-T studies. Eur J Med Chem 2017; 139:263-279. [DOI: 10.1016/j.ejmech.2017.07.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/09/2017] [Accepted: 07/23/2017] [Indexed: 01/05/2023]
|
7
|
Ge YS, Han QQ, Duan W, Zhang JQ, Chen K, Wan JJ, Liu Y, Liu D. Discovery of Cdc25A Lead Inhibitors with a Novel Chemotype by Virtual Screening: Application of Pharmacophore Modeling Based on a Training Set with a Limited Number of Unique Components. ChemMedChem 2017; 12:438-447. [DOI: 10.1002/cmdc.201600644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/14/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Yu-Shu Ge
- Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences; University of Sciences and Technology of China; Hefei 230027 P.R. China
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 P.R. China
| | - Qian-Qian Han
- Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences; University of Sciences and Technology of China; Hefei 230027 P.R. China
| | - Wenxiu Duan
- Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences; University of Sciences and Technology of China; Hefei 230027 P.R. China
| | - Jia-Qi Zhang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 P.R. China
| | - Kai Chen
- Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences; University of Sciences and Technology of China; Hefei 230027 P.R. China
| | - Jia-Jia Wan
- Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences; University of Sciences and Technology of China; Hefei 230027 P.R. China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 P.R. China
| | - Dan Liu
- Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences; University of Sciences and Technology of China; Hefei 230027 P.R. China
| |
Collapse
|
8
|
Georgantea P, Ioannou E, Evain-Bana E, Bagrel D, Martinet N, Vagias C, Roussis V. Sesquiterpenes with inhibitory activity against CDC25 phosphatases from the soft coral Pseudopterogorgia rigida. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Huber-Villaume S, Revelant G, Sibille E, Philippot S, Morabito A, Dunand S, Chaimbault P, Bagrel D, Kirsch G, Hesse S, Schohn H. 2-(Thienothiazolylimino)-1,3-thiazolidin-4-ones inhibit cell division cycle 25 A phosphatase. Bioorg Med Chem 2016; 24:2920-2928. [PMID: 27178385 DOI: 10.1016/j.bmc.2016.04.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 11/26/2022]
Abstract
Cell division cycle dual phosphatases (CDC25) are essential enzymes that regulate cell progression in cell cycle. Three isoforms exist as CDC25A, B and C. Over-expression of each CDC25 enzyme is found in cancers of diverse origins. Thiazolidinone derivatives have been reported to display anti-proliferative activities, bactericidal activities and to reduce inflammation process. New 2-(thienothiazolylimino)-1,3-thiazolidin-4-ones were synthesized and evaluated as inhibitors of CDC25 phosphatase. Among the molecules tested, compound 6 inhibited CDC25A with an IC50 estimated at 6.2±1.0μM. The binding of thiazolidinone derivative 6 onto CDC25A protein was reversible. In cellulo, compound 6 treatment led to MCF7 and MDA-MB-231 cell growth arrest. To our knowledge, it is the first time that such 4-thiazolidinone derivatives are characterized as CDC25 potential inhibitor.
Collapse
Affiliation(s)
- Sophie Huber-Villaume
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 5 (MIC), Campus Bridoux, rue du Général Delestraint, 57070 Metz Cedex, France
| | - Germain Revelant
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 3 (HECRIN), 1 Boulevard Arago, 57078 Metz Technopôle, France
| | - Estelle Sibille
- Université de Lorraine, EA 4632-Laboratoire de Chimie et Physique Approche Multi-échelle des Milieux Complexes, 1 boulevard Arago, 57078 Metz Cedex 3, France
| | - Stéphanie Philippot
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 5 (MIC), Campus Bridoux, rue du Général Delestraint, 57070 Metz Cedex, France
| | - Angelica Morabito
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 5 (MIC), Campus Bridoux, rue du Général Delestraint, 57070 Metz Cedex, France
| | - Sandrine Dunand
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 3 (HECRIN), 1 Boulevard Arago, 57078 Metz Technopôle, France
| | - Patrick Chaimbault
- Université de Lorraine, EA 4632-Laboratoire de Chimie et Physique Approche Multi-échelle des Milieux Complexes, 1 boulevard Arago, 57078 Metz Cedex 3, France
| | - Denyse Bagrel
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 5 (MIC), Campus Bridoux, rue du Général Delestraint, 57070 Metz Cedex, France
| | - Gilbert Kirsch
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 3 (HECRIN), 1 Boulevard Arago, 57078 Metz Technopôle, France
| | - Stéphanie Hesse
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 3 (HECRIN), 1 Boulevard Arago, 57078 Metz Technopôle, France.
| | - Hervé Schohn
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 5 (MIC), Campus Bridoux, rue du Général Delestraint, 57070 Metz Cedex, France.
| |
Collapse
|
10
|
|
11
|
Kubanik M, Kandioller W, Kim K, Anderson RF, Klapproth E, Jakupec MA, Roller A, Söhnel T, Keppler BK, Hartinger CG. Towards targeting anticancer drugs: ruthenium(ii)–arene complexes with biologically active naphthoquinone-derived ligand systems. Dalton Trans 2016; 45:13091-103. [DOI: 10.1039/c6dt01110a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
2-Hydroxy-[1,4]-naphthoquinone-derived ligands and their RuII(η6-p-cymene)Cl complexes were prepared with the aim to obtain multimodal anticancer agents.
Collapse
|
12
|
Guo HM, Sun YM, Zhang SX, Ju XL, Xie AY, Li J, Zou L, Sun XD, Li HL, Zheng Y. Metabolism and pharmacokinetics of 8-hydroxypiperidinylmethyl-baicalein (BA-j) as a novel selective CDK1 inhibitor in monkey. Fitoterapia 2015; 107:36-43. [PMID: 26474673 DOI: 10.1016/j.fitote.2015.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 11/24/2022]
Abstract
Cyclin-dependent kinase 1 (CDK1) is the only necessary CDK in the cell proliferation process and a new target in the research and development of anti-cancer drugs. 8-Hydroxypiperidinemethyl-baicalein (BA-j) is a Mannich base derivative of baicalein (BA) isolated from Scutellaria baicalensis, as a novel selective CDK1 inhibitor. 12 metabolites of BA-j in the monkey urine were identified by LC-MS-MS and (1)H NMR. The major metabolic pathways of BA-j, by capturing oxygen free radicals ((.)O2(-)) and releasing peroxides (H2O2), are degraded into active intermediate metabolite dihydroflavonol, then into main metabolite M179 by Shiff reaction, second metabolite M264 by sulfation, trace amount of metabolite M559 by glucuronidation UGT1A9, and without metabolism by CYP3A4. The metabolic process of BA-j by regulating intracellular reactive oxygen species (ROS) was related with BA-j selectively inducing apoptosis in cancer cells. Pharmacokinetics of 10mg/kg oral BA-j in monkey by HPLC-UV was best fitted to a two-compartment open model, with t1/2(β) of 4.2h, Cmax 25.4μM at 2h, and Vd 12.6L, meaning the drug distributing widely in body fluids with no special selectivity to certain tissues, and being able to permeate through the blood-brain barrier. The protein binding rate of BA-j was 91.8%. BA-j has excellent druggability for oral administration or injection, and it may be developed into a novel anti-cancer drug as a selective CDK1 inhibitor.
Collapse
Affiliation(s)
- Hong-Min Guo
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yu-Ming Sun
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Shi-Xuan Zhang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China.
| | - Xiu-Lan Ju
- College of Vocational and Technical, Dalian University, Dalian, Liaoning, China
| | - Ai-Yun Xie
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Jing Li
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Liang Zou
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiao-Dan Sun
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Hai-Liang Li
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yang Zheng
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
13
|
Zhang S, Bao Y, Ju X, Li K, Shang H, Ha L, Qian Y, Zou L, Sun X, Li J, Wang Q, Fan Q. BA-j as a novel CDK1 inhibitor selectively induces apoptosis in cancer cells by regulating ROS. Sci Rep 2015; 5:13626. [PMID: 26330167 PMCID: PMC4557050 DOI: 10.1038/srep13626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/31/2015] [Indexed: 11/22/2022] Open
Abstract
Cyclin-dependent kinase 1 (CDK1) is the only necessary CDK in cell proliferation and a novel target in the development of anticancer drugs. 8-Hydroxypiperidinemethyl-baicalein (BA-j) is a novel selective CDK1 inhibitor with broad spectrum anti-cancer activity (IC50 12.3 μM) and 2 tumor xenografts. Because of the differential mechanisms controlling redox-states in normal and cancer cells, BA-j can capture oxygen free radicals (·O2−) and selectively increase the level of H2O2 in cancer cells, thereby specifically oxidize and activate the intrinsic apoptosis pathway bypassing the extrinsic death receptor pathway, thus inducing apoptosis in cancer cells rather than in normal cells. BA-j is different from cytotoxic anticancer drugs which can activate both the intrinsic apoptosis pathway and the extrinsic death receptor pathway, and therefore harm normal cells while killing cancer cells. The molecular and biochemical mechanisms of reactive oxygen species (ROS) regulation suggest that BA-j may be developed into a novel anticancer agent.
Collapse
Affiliation(s)
- Shixuan Zhang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yongming Bao
- School of Bioscience and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiulan Ju
- College of Vocational and Technical, Dalian University, Dalian, Liaoning, China
| | - Kangjian Li
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Haiyan Shang
- School of Bioscience and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Lisha Ha
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yuan Qian
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Liang Zou
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiaodan Sun
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Jing Li
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Qianru Wang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Qingyu Fan
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
14
|
George Rosenker KM, Paquette WD, Johnston PA, Sharlow ER, Vogt A, Bakan A, Lazo JS, Wipf P. Synthesis and biological evaluation of 3-aminoisoquinolin-1(2H)-one based inhibitors of the dual-specificity phosphatase Cdc25B. Bioorg Med Chem 2015; 23:2810-8. [DOI: 10.1016/j.bmc.2015.01.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
15
|
Hirai G, Sodeoka M. Focused library with a core structure extracted from natural products and modified: application to phosphatase inhibitors and several biochemical findings. Acc Chem Res 2015; 48:1464-73. [PMID: 25894598 DOI: 10.1021/acs.accounts.5b00048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Synthesis of a focused library is an important strategy to create novel modulators of specific classes of proteins. Compounds in a focused library are composed of a common core structure and different diversity structures. In this Account, we describe our design and synthesis of libraries focused on selective inhibitors of protein phosphatases (PPases). We considered that core structures having structural and electronic features similar to those of PPase substrates, phosphate esters, would be a reasonable choice. Therefore, we extracted core structures from natural products already identified as PPase inhibitors. Since many PPases share similar active-site structures, such phosphate-mimicking core structures should interact with many enzymes in the same family, and therefore the choice of diversity structures is pivotal both to increase the binding affinity and to achieve specificity for individual enzymes. Here we present case studies of application of focused libraries to obtain PPase inhibitors, covering the overall process from selection of core structures to identification and evaluation of candidates in the focused libraries. To synthesize a library focused on protein serine-threonine phosphatases (PPs), we chose norcantharidin as a core structure, because norcantharidin dicarboxylate shows a broad inhibition profile toward several PPs. From the resulting focused library, we identified a highly selective PP2B inhibitor, NCA-01. On the other hand, to find inhibitors of dual-specificity protein phosphatases (DSPs), we chose 3-acyltetronic acid extracted from natural product RK-682 as a core structure, because its structure resembles the transition state in the dephosphorylation reaction of DSPs. However, a highly selective inhibitor was not found in the resulting focused library. Furthermore, an inherent drawback of compounds having the highly acidic 3-acyltetronic acid as a core structure is very weak potency in cellulo, probably due to poor cell membrane permeability. Therefore, we next modified the core structure from acidic to neutral by transformation to the enamine derivative and constructed a second-generation focused library (RE derivatives). The resulting compounds showed dramatically improved cell membrane permeability and inhibitory selectivity and included VHR (vaccinia VH1-related)-selective RE12 and CDC25A/B (cell division cycle 25A/B)-selective RE44. These inhibitors act on target enzymes in cellulo and do not generate reactive oxygen species, which is a potential problem with quinoid-type inhibitors of CDC25s. The cellular activity of RE12 was further improved by replacement of the side chain to afford RE176, which showed more potent antiproliferative activity than RE12 against HeLa cells. The dramatic change of inhibitory selectivity obtained by core structure modification from 3-acyltetronic acid to its enamine derivative was associated with a change in the mode of action. Namely, RE derivatives were found to be noncompetitive inhibitors with respect to a small-molecular substrate of CDC25A/B, whereas RK-682 was a competitive inhibitor of VHR. We identified the binding site of RE derivatives on the CDC25A as a pocket adjacent to the active site; this appears to be a promising target site for development of further novel inhibitors of CDC25s.
Collapse
Affiliation(s)
- Go Hirai
- Synthetic Organic Chemistry
Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- CREST-JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry
Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- CREST-JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
16
|
Cyclane-aminol 10-hydroxycamptothecin analogs as novel DNA topoisomerase I inhibitors induce apoptosis selectively in tumor cells. Anticancer Drugs 2015; 25:614-23. [PMID: 24525588 DOI: 10.1097/cad.0000000000000083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A novel series of cyclane-aminol 10-hydroxycamptothecin (HCPT) analogs was designed and synthesized through the Mannich reaction using HCPT as the lead compound, such as 10-hydroxyl-9-L-prolinol (+) methylcamptothecin (PRPT), 10-hydroxyl-9-(4'-hydroxy) piperidinylmethylcamptothecin (PPPT), and 10-hydroxy-9-(4'-hydroxyethyl)-piperazinylmethycamptothecin (QPPT). Three kinds of new cyclane-aminols were introduced into the structure of HCPT, which modified strong cytotoxic HCPT into cyclane-aminol HCPT analogs with moderate cytotoxicity and improved selectivity toward DNA topoisomerase I inhibition in tumor cells. Special metabolic pathways for cyclane-aminol HCPT analogs in rats were discovered, which differed from other HCPT analogs. Cyclane-aminol HCPT analogs can capture O2 and cause an increase in intracellular hydrogen peroxide levels with selective induction of apoptosis in tumor cells rather than in normal peripheral blood mononuclear cells. Among them, PPPT has a much better druggability than topotecan (TPT) and has the potential to be developed into an antitumor agent.
Collapse
|
17
|
|
18
|
Hirai G. Mimicking/extracting structure and functions of natural products: synthetic approaches that address unexplored needs in chemical biology. CHEM REC 2014; 15:445-56. [PMID: 25504785 DOI: 10.1002/tcr.201402074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 12/19/2022]
Abstract
Natural products are often attractive and challenging targets for synthetic chemists, and many have interesting biological activities. However, synthetic chemists need to be more than simply suppliers of compounds to biologists. Therefore, we have been seeking ways to actively apply organic synthetic methods to chemical biology studies of natural products and their activities. In this personal review, I would like to introduce our work on the development of new biologically active compounds inspired by, or extracted from, the structures of natural products, focusing on enhancement of functional activity and specificity and overcoming various drawbacks of the parent natural products.
Collapse
Affiliation(s)
- Go Hirai
- Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan; RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
19
|
Campbell CO, Santiago DN, Guida WC, Manetsch R, Adams JH. In silico characterization of an atypical MAPK phosphatase of Plasmodium falciparum as a suitable target for drug discovery. Chem Biol Drug Des 2014; 84:158-68. [PMID: 24605883 DOI: 10.1111/cbdd.12315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 12/26/2022]
Abstract
Plasmodium falciparum, the causative agent of malaria, contributes to significant morbidity and mortality worldwide. Forward genetic analysis of the blood-stage asexual cycle identified the putative phosphatase from PF3D7_1305500 as an important element of intraerythrocytic development expressed throughout the life cycle. Our preliminary evaluation identified it as an atypical mitogen-activated protein kinase phosphatase. Additional bioinformatic analysis delineated a conserved signature motif and three residues with potential importance to functional activity of the atypical dual-specificity phosphatase domain. A homology model of the dual-specificity phosphatase domain was developed for use in high-throughput in silico screening of the available library of antimalarial compounds from ChEMBL-NTD. Seven compounds from this set with predicted affinity to the active site were tested against in vitro cultures, and three had reduced activity against a ∆PF3D7_1305500 parasite, suggesting PF3D7_1305500 is a potential target of the selected compounds. Identification of these compounds provides a novel starting point for a structure-based drug discovery strategy that moves us closer toward the discovery of new classes of clinical antimalarial drugs. These data suggest that mitogen-activated protein kinase phosphatases represent a potentially new class of P. falciparum drug target.
Collapse
|
20
|
Zhang J, Ji FJ, Gu Y, Zhang XY, Qiao SX. Chalcones derivatives as potent Cell division cycle 25B phosphatase inhibitors. Pharmacol Rep 2014; 66:515-9. [PMID: 24905533 DOI: 10.1016/j.pharep.2013.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/31/2013] [Accepted: 08/20/2013] [Indexed: 10/25/2022]
Abstract
To discover novel cell division cycle 25 (CDC25) B inhibitors and elucidate the mechanisms of inhibition in cancer cells. Nineteen 2'-hydroxy-4'-isoprenyloxychalcone derivatives (a-s) were evaluated the inhibition CDC25B activity. The enzymatic activities of the CDC25B catalytic domain were determined by monitoring the dephosphorylation of OMFP. Cell growth inhibition was detected by MTT assay. The results showed that sixteen compounds significantly inhibited cycle 25B phosphatase in vitro. Among, three compounds k, r and s had the best inhibition activity and significantly inhibited CDC25B with inhibition rates against CDC25B of 99.95%, 99.75%, and 97.77%, respectively, which is similar to the reference drugs Na3VO4 (98%). Cytotoxic activity assays showed compounds k and r are the potent against HCT116, HeLa, and A549 cells, moreover, compound k delayed the potent tumor inhibitory activity in a colo205 xenograft model in vivo.
Collapse
Affiliation(s)
- Jian Zhang
- Department of General Surgery, The Second Hospital, Jilin University, Changchun City, PR China
| | - Fu-Jian Ji
- Department of General Surgery, The Second Hospital, Jilin University, Changchun City, PR China
| | - Ye Gu
- Department of General Surgery, The Second Hospital, Jilin University, Changchun City, PR China
| | - Xin-Yao Zhang
- School of Public Health, Jilin University, Changchun City, PR China
| | - Shi-Xing Qiao
- Department of General Surgery, The Second Hospital, Jilin University, Changchun City, PR China.
| |
Collapse
|
21
|
Kim JY, Lee EJ, Ryu CJ, Park H. Anticancer Activities of Cdc25 Phosphatase Inhibitors in the Proliferation of Human Lung Cancer Cells. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.1.319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Bana E, Sibille E, Valente S, Cerella C, Chaimbault P, Kirsch G, Dicato M, Diederich M, Bagrel D. A novel coumarin-quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death. Mol Carcinog 2013; 54:229-41. [PMID: 24155226 DOI: 10.1002/mc.22094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 11/11/2022]
Abstract
Cell division cycle (CDC) 25 proteins are key phosphatases regulating cell cycle transition and proliferation by regulating CDK/cyclin complexes. Overexpression of these enzymes is frequently observed in cancer and is related to aggressiveness, high-grade tumors and poor prognosis. Thus, targeting CDC25 by compounds, able to inhibit their activity, appears a good therapeutic approach. Here, we describe the synthesis of a new inhibitor (SV37) whose structure is based on both coumarin and quinone moieties. An analytical in vitro approach shows that this compound efficiently inhibits all three purified human CDC25 isoforms (IC50 1-9 µM) in a mixed-type mode. Moreover, SV37 inhibits growth of breast cancer cell lines. In MDA-MB-231 cells, reactive oxygen species generation is followed by pCDK accumulation, a mark of CDC25 dysfunction. Eventually, SV37 treatment leads to activation of apoptosis and DNA cleavage, underlining the potential of this new type of coumarin-quinone structure.
Collapse
Affiliation(s)
- Emilie Bana
- Laboratoire "Structure et Réactivité des Systèmes Moléculaires Complexes, UMR CNRS 7565, Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, Metz, France; Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Naciuk FF, Milan JC, Andreão A, Miranda PCML. Exploitation of a Tuned Oxidation with N-Haloimides in the Synthesis of Caulibugulones A–D. J Org Chem 2013; 78:5026-30. [DOI: 10.1021/jo302772t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fabrício F. Naciuk
- Institute of Chemistry, State University of Campinas - UNICAMP, P.O. Box 6154,
Campinas, SP, 13083 970, Brazil
| | - Julio C. Milan
- Institute of Chemistry, State University of Campinas - UNICAMP, P.O. Box 6154,
Campinas, SP, 13083 970, Brazil
| | | | - Paulo C. M. L. Miranda
- Institute of Chemistry, State University of Campinas - UNICAMP, P.O. Box 6154,
Campinas, SP, 13083 970, Brazil
| |
Collapse
|
24
|
Tsuchiya A, Asanuma M, Hirai G, Oonuma K, Muddassar M, Nishizawa E, Koyama Y, Otani Y, Zhang KYJ, Sodeoka M. CDC25A-inhibitory RE derivatives bind to pocket adjacent to the catalytic site. MOLECULAR BIOSYSTEMS 2013; 9:1026-34. [DOI: 10.1039/c3mb00003f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Sarkis M, Tran DN, Kolb S, Miteva MA, Villoutreix BO, Garbay C, Braud E. Design and synthesis of novel bis-thiazolone derivatives as micromolar CDC25 phosphatase inhibitors: Effect of dimerisation on phosphatase inhibition. Bioorg Med Chem Lett 2012; 22:7345-50. [DOI: 10.1016/j.bmcl.2012.10.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 01/26/2023]
|
26
|
Li Y, Zhang P, Qiu F, Chen L, Miao C, Li J, Xiao W, Ma E. Inactivation of PI3K/Akt signaling mediates proliferation inhibition and G2/M phase arrest induced by andrographolide in human glioblastoma cells. Life Sci 2012; 90:962-7. [DOI: 10.1016/j.lfs.2012.04.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/19/2012] [Accepted: 04/25/2012] [Indexed: 12/31/2022]
|
27
|
Lavecchia A, Di Giovanni C, Pesapane A, Montuori N, Ragno P, Martucci NM, Masullo M, De Vendittis E, Novellino E. Discovery of new inhibitors of Cdc25B dual specificity phosphatases by structure-based virtual screening. J Med Chem 2012; 55:4142-58. [PMID: 22524450 DOI: 10.1021/jm201624h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell division cycle 25 (Cdc25) proteins are highly conserved dual specificity phosphatases that regulate cyclin-dependent kinases and represent attractive drug targets for anticancer therapies. To discover more potent and diverse inhibitors of Cdc25 biological activity, virtual screening was performed by docking 2.1 million compounds into the Cdc25B active site. An initial subset of top-ranked compounds was selected and assayed, and 15 were found to have enzyme inhibition activity at micromolar concentration. Among these, four structurally diverse inhibitors with a different inhibition profile were found to inhibit human MCF-7, PC-3, and K562 cancer cell proliferation and significantly affect the cell cycle progression. A subsequent hierarchical similarity search with the most active reversible Cdc25B inhibitor found led to the identification of an additional set of 19 ligands, three of which were confirmed as Cdc25B inhibitors with IC(50) values of 7.9, 4.2, and 9.9 μM, respectively.
Collapse
Affiliation(s)
- Antonio Lavecchia
- Dipartimento di Chimica Farmaceutica e Tossicologica, Drug Discovery Laboratory, Università di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tsuchiya A, Hirai G, Koyama Y, Oonuma K, Otani Y, Osada H, Sodeoka M. Dual-Specificity Phosphatase CDC25A/B Inhibitor Identified from a Focused Library with Nonelectrophilic Core Structure. ACS Med Chem Lett 2012; 3:294-298. [PMID: 22506091 PMCID: PMC3324983 DOI: 10.1021/ml2002778] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/15/2012] [Indexed: 11/28/2022] Open
Abstract
Focused libraries of enamine derivatives with a nonacidic, nonelectrophilic core structure were screened for inhibitors of dual-specificity protein phosphatases, and an o-hydroxybenzyl derivative RE44 (10d) was identified as a selective inhibitor of CDC25A/B. This inhibitor induced cell-cycle arrest of tsFT210 cells at the G2/M phase and inhibited dephosphorylation of the CDC25B substrate CDK1. Unlike most quinone-based inhibitors, 10d does not generate reactive oxygen species.
Collapse
Affiliation(s)
- Ayako Tsuchiya
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198,
Japan
| | - Go Hirai
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198,
Japan
| | - Yusuke Koyama
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198,
Japan
| | - Kana Oonuma
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198,
Japan
| | - Yuko Otani
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198,
Japan
| | - Hiroyuki Osada
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198,
Japan
| | - Mikiko Sodeoka
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198,
Japan
- Sodeoka Live Cell
Chemistry
Project, ERATO, Japan Science and Technology Agency, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
29
|
Mata M, Pallardo F, Morcillo EJ, Cortijo J. Piclamilast inhibits the pro-apoptotic and anti-proliferative responses of A549 cells exposed to H(2)O(2) via mechanisms involving AP-1 activation. Free Radic Res 2012; 46:690-9. [PMID: 22360706 DOI: 10.3109/10715762.2012.669040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS Reactive oxygen species (ROS) are involved in the pathogenesis of many inflammatory diseases such as chronic obstructive pulmonary disease (COPD). They can alter the expression of genes involved in cellular damage by activating transcription factors, including the NF-κB and the activator protein 1 (AP-1). Phosphodiesterase type 4 (PDE4) inhibitors have anti-inflammatory and antioxidant effects, as described in in vivo and in vitro COPD models. This study analysed the effects of piclamilast, a selective PDE4 inhibitor, on modulating the global gene expression profile in A549 cells exposed to H(2)O(2). MAIN METHODS Changes in gene expression were analysed using high-density Affymetrix microarrays and validated by RT-PCR. Cell proliferation was studied using BrdU incorporation. Apoptosis was assessed by flow cytometry using annexin V-fluorescein isothiocyanate. C-Jun phosphorylation and AP-1 activation were determined by ELISA and luciferase assay, respectively. KEY FINDINGS Our results indicate that H(2)O(2) modified the expression of several genes related to apoptosis, cell cycle control and cell signalling, including IL8, FAS, HIG2, CXCL2, CDKN25 and JUNB. Piclamilast pre-treatment significantly inhibited the changes in 23 genes via mechanisms involving AP-1 activation and c-Jun phosphorylation at Ser63. Functional experiments confirmed our results, suggesting new targets related to the antioxidant properties of PDE4 inhibitors. SIGNIFICANCE This is the first study to demonstrate antioxidant effects of a selective PDE4 inhibitor at the global gene expression level, and the results support the importance of AP-1 as a key regulator of the expression of genes involved in the inflammatory response of epithelial cells to oxidative damage.
Collapse
Affiliation(s)
- Manuel Mata
- Research Foundation of the University General Hospital of Valencia, Spain.
| | | | | | | |
Collapse
|
30
|
A quantitative high-throughput in vitro splicing assay identifies inhibitors of spliceosome catalysis. Mol Cell Biol 2012; 32:1271-83. [PMID: 22252314 DOI: 10.1128/mcb.05788-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite intensive research, there are very few reagents with which to modulate and dissect the mRNA splicing pathway. Here, we describe a novel approach to identify such tools, based on detection of the exon junction complex (EJC), a unique molecular signature that splicing leaves on mRNAs. We developed a high-throughput, splicing-dependent EJC immunoprecipitation (EJIPT) assay to quantitate mRNAs spliced from biotin-tagged pre-mRNAs in cell extracts, using antibodies to EJC components Y14 and eukaryotic translation initiation factor 4aIII (eIF4AIII). Deploying EJIPT we performed high-throughput screening (HTS) in conjunction with secondary assays to identify splicing inhibitors. We describe the identification of 1,4-naphthoquinones and 1,4-heterocyclic quinones with known anticancer activity as potent and selective splicing inhibitors. Interestingly, and unlike previously described small molecules, most of which target early steps, our inhibitors represented by the benzothiazole-4,7-dione, BN82685, block the second of two trans-esterification reactions in splicing, preventing the release of intron lariat and ligation of exons. We show that BN82685 inhibits activated spliceosomes' elaborate structural rearrangements that are required for second-step catalysis, allowing definition of spliceosomes stalled in midcatalysis. EJIPT provides a platform for characterization and discovery of splicing and EJC modulators.
Collapse
|
31
|
Dulyaninova NG, Hite KM, Zencheck WD, Scudiero DA, Almo SC, Shoemaker RH, Bresnick AR. Cysteine 81 is critical for the interaction of S100A4 and myosin-IIA. Biochemistry 2011; 50:7218-27. [PMID: 21749055 DOI: 10.1021/bi200853y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Overexpression of S100A4, a member of the S100 family of Ca(2+)-binding proteins, is associated with a number of human pathologies, including fibrosis, inflammatory disorders, and metastatic disease. The identification of small molecules that disrupt S100A4/target interactions provides a mechanism for inhibiting S100A4-mediated cellular activities and their associated pathologies. Using an anisotropy assay that monitors the Ca(2+)-dependent binding of myosin-IIA to S100A4, NSC 95397 was identified as an inhibitor that disrupts the S100A4/myosin-IIA interaction and inhibits S100A4-mediated depolymerization of myosin-IIA filaments. Mass spectrometry demonstrated that NSC 95397 forms covalent adducts with Cys81 and Cys86, which are located in the canonical target binding cleft. Mutagenesis studies showed that covalent modification of just Cys81 is sufficient to inhibit S100A4 function with respect to myosin-IIA binding and depolymerization. Remarkably, substitution of Cys81 with serine or alanine significantly impaired the ability of S100A4 to promote myosin-IIA filament disassembly. As reversible covalent cysteine modifications have been observed for several S100 proteins, we propose that modification of Cys81 may provide an additional regulatory mechanism for mediating the binding of S100A4 to myosin-IIA.
Collapse
Affiliation(s)
- Natalya G Dulyaninova
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Samofalova DA, Karpov PA, Nuporko AY, Blume YB. Reconstruction of the spatial structure of plant phosphatases types 1 and 2A in complexes with okadaic acid. CYTOL GENET+ 2011. [DOI: 10.3103/s0095452711030108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Pan R, Liu Y, Chen W, Dawson G, Wang X, Li Y, Dong B, Zhu Y. The toxicity evaluation of nano-trititanate with bactericidal properties in vitro. Nanotoxicology 2011; 6:327-37. [PMID: 21554015 DOI: 10.3109/17435390.2011.579629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Three forms of nano-trititanate (H(2)Ti(3)O(7) nanomaterial) were prepared by a hydrothermal method to replace nano-TiO(2) for sterilizing the environment. The bactericidal capabilities of these nano-trititanates were observed to be more significant compared to nano-TiO(2) both with and without exposure to UV light. For the future commercial applications of those nano-trititanates, we investigated their cytotoxicity and genotoxicity to HEp-2 cells. As data in our study shows, nanoplate, one of the nano-trititanates, possesses the lowest toxicity to HEp-2 cells. The results indicated that the shape and length of the material only affect the toxicity of nano-trititanate but not its bactericidal effect. Thus, through manipulating the shape or length of nano-trititanate, we may obtain a more powerful bactericidal reagent with lower toxicity to the human body.
Collapse
Affiliation(s)
- Rong Pan
- Nanobiomedicine Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Using small molecules to target protein phosphatases. Bioorg Med Chem 2011; 19:2145-55. [DOI: 10.1016/j.bmc.2011.02.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 11/21/2022]
|
35
|
Hirai G, Tsuchiya A, Koyama Y, Otani Y, Oonuma K, Dodo K, Simizu S, Osada H, Sodeoka M. Development of a Vaccinia H1-related (VHR) phosphatase inhibitor with a nonacidic phosphate-mimicking core structure. ChemMedChem 2011; 6:617-22. [PMID: 21391303 DOI: 10.1002/cmdc.201100107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Indexed: 01/25/2023]
Affiliation(s)
- Go Hirai
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lavecchia A, Di Giovanni C, Novellino E. Inhibitors of Cdc25 phosphatases as anticancer agents: a patent review. Expert Opin Ther Pat 2010; 20:405-25. [PMID: 20166845 DOI: 10.1517/13543771003623232] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The cell division cycle 25 (Cdc25) family of proteins are highly conserved dual specificity phosphatases that regulate cyclin-dependent kinases, the main gatekeepers of the eukaryotic cell division cycle. The three isoforms of Cdc25, including Cdc25A, Cdc25B and Cdc25C, appear to act on different cyclin-dependent kinase/cyclin complexes at different stages of the cell cycle. Overexpression of Cdc25A and/or Cdc25B, but not Cdc25C, has been detected in numerous cancers and is often correlated with a poor clinical prognosis. Thus, inhibition of these phosphatases may represent a promising therapeutic approach in oncology. AREAS COVERED IN THIS REVIEW The main focus of the present review is to describe the development of Cdc25 inhibitors over the years. We describe different compounds according to the decade of discovery and focus attention on molecules that were published in patents. WHAT THE READER WILL GAIN Insight into the most clinically relevant therapeutic Cdc25 analogues that have been published in over 40 patents over the past 19 years. TAKE HOME MESSAGE Some Cdc25 inhibitors have suppressed in vivo the growth of human tumor xenografts in animals; this confirmed the validity of using Cdc25 phosphatase inhibition as an anticancer strategy, but side effects and toxicity remain to be investigated.
Collapse
Affiliation(s)
- Antonio Lavecchia
- Università di Napoli Federico II, Facoltà di Farmacia, Dipartimento di Chimica Farmaceutica e Tossicologica, Drug Discovery Laboratory, Via D. Montesano 49, Napoli, 80131, Italy.
| | | | | |
Collapse
|
37
|
Discovery and structural optimization of pyrazole derivatives as novel inhibitors of Cdc25B. Bioorg Med Chem Lett 2010; 20:2876-9. [DOI: 10.1016/j.bmcl.2010.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/30/2010] [Accepted: 03/06/2010] [Indexed: 11/18/2022]
|
38
|
Lin KL, Su JC, Chien CM, Tseng CH, Chen YL, Chang LS, Lin SR. Naphtho[1,2-b]furan-4,5-dione induces apoptosis and S-phase arrest of MDA-MB-231 cells through JNK and ERK signaling activation. Toxicol In Vitro 2010; 24:61-70. [DOI: 10.1016/j.tiv.2009.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/10/2009] [Accepted: 09/04/2009] [Indexed: 11/25/2022]
|
39
|
Johnston PA, Foster CA, Tierno MB, Shun TY, Shinde SN, Paquette WD, Brummond KM, Wipf P, Lazo JS. Cdc25B dual-specificity phosphatase inhibitors identified in a high-throughput screen of the NIH compound library. Assay Drug Dev Technol 2009; 7:250-65. [PMID: 19530895 DOI: 10.1089/adt.2008.186] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The University of Pittsburgh Molecular Library Screening Center (Pittsburgh, PA) conducted a screen with the National Institutes of Health compound library for inhibitors of in vitro cell division cycle 25 protein (Cdc25) B activity during the pilot phase of the Molecular Library Screening Center Network. Seventy-nine (0.12%) of the 65,239 compounds screened at 10 muM met the active criterion of > or =50% inhibition of Cdc25B activity, and 25 (31.6%) of these were confirmed as Cdc25B inhibitors with 50% inhibitory concentration (IC(50)) values <50 microM. Thirteen of the Cdc25B inhibitors were represented by singleton chemical structures, and 12 were divided among four clusters of related structures. Thirteen (52%) of the Cdc25B inhibitor hits were quinone-based structures. The Cdc25B inhibitors were further characterized in a series of in vitro secondary assays to confirm their activity, to determine their phosphatase selectivity against two other dual-specificity phosphatases, mitogen-activated protein kinase phosphatase (MKP)-1 and MKP-3, and to examine if the mechanism of Cdc25B inhibition involved oxidation and inactivation. Nine Cdc25B inhibitors did not appear to affect Cdc25B through a mechanism involving oxidation because they did not generate detectable amounts of H(2)O(2) in the presence of dithiothreitol, and their Cdc25B IC(50) values were not significantly affected by exchanging the dithiothreitol for beta-mercaptoethanol or reduced glutathione or by adding catalase to the assay. Six of the nonoxidative hits were selective for Cdc25B inhibition versus MKP-1 and MKP-3, but only the two bisfuran-containing hits, PubChem substance identifiers 4258795 and 4260465, significantly inhibited the growth of human MBA-MD-435 breast and PC-3 prostate cancer cell lines. To confirm the structure and biological activity of 4260465, the compound was resynthesized along with two analogs. Neither of the substitutions to the two analogs was tolerated, and only the resynthesized hit 26683752 inhibited Cdc25B activity in vitro (IC(50) = 13.83 +/- 1.0 microM) and significantly inhibited the growth of the MBA-MD-435 breast and PC-3 prostate cancer cell lines (IC(50) = 20.16 +/- 2.0 microM and 24.87 +/- 2.25 microM, respectively). The two bis-furan-containing hits identified in the screen represent novel nonoxidative Cdc25B inhibitor chemotypes that block tumor cell proliferation. The availability of non-redox active Cdc25B inhibitors should provide valuable tools to explore the inhibition of the Cdc25 phosphatases as potential mono- or combination therapies for cancer.
Collapse
Affiliation(s)
- Paul A Johnston
- University of Pittsburgh Drug Discovery Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
LGH00031, a novel ortho-quinonoid inhibitor of cell division cycle 25B, inhibits human cancer cells via ROS generation. Acta Pharmacol Sin 2009; 30:1359-68. [PMID: 19730430 DOI: 10.1038/aps.2009.131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM To discover novel cell division cycle 25 (CDC25) B inhibitors and elucidate the mechanisms of inhibition in cancer cells. METHODS Cell growth inhibition was detected by MTT assay, the cell cycle was analyzed by flow cytometry, and protein expression and phosphorylation was examined by Western blot analysis. RESULTS LGH00031 inhibited CDC25B irreversibly in vitro in a dose-dependent manner, and impaired the proliferation of tumor cell lines. In synchronized HeLa cells, LGH00031 delayed the cell cycle progression at the G(2)/M phase. LGH00031 increased cyclin-dependent kinase 1 (CDK1) tyrosine 15 phosphorylation and cyclin B1 protein level. The activity of LGH00031 against CDC25B in vitro relied on the existence of 1,4-dithiothreitol (DTT) or dihydrolipoic acid and oxygen. The oxygen free radical scavenger catalase and superoxide dismutase reduced the inactivation of CDC25 by LGH00031, confirming that reactive oxygen species (ROS) mediate the inactivation process in vitro. LGH00031 accelerated cellular ROS production in a dose-dependent manner, and N-acetyl cysteine (NAC) markedly decreased the ROS production induced by LGH00031. Correspondingly, the LGH00031-induced decrease in cell viability and cell cycle arrest, cyclin B1 protein level, and phosphorylation of CDK1 tyrosine 15 were also rescued by NAC that decreased ROS production. CONCLUSION The activity of LGH00031 at the molecular and cellular level is mediated by ROS.
Collapse
|
41
|
Park H, Bahn YJ, Ryu SE. Structure-based de novo design and biochemical evaluation of novel Cdc25 phosphatase inhibitors. Bioorg Med Chem Lett 2009; 19:4330-4. [DOI: 10.1016/j.bmcl.2009.05.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/20/2009] [Indexed: 11/15/2022]
|
42
|
Kolb S, Mondésert O, Goddard ML, Jullien D, Villoutreix BO, Ducommun B, Garbay C, Braud E. Development of novel thiazolopyrimidines as CDC25B phosphatase inhibitors. ChemMedChem 2009; 4:633-48. [PMID: 19212959 DOI: 10.1002/cmdc.200800415] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of CDC25 phosphatase inhibitors is an interesting approach toward new antitumor agents, as CDC25 play key roles in cell-cycle regulation and are overexpressed in numerous cancers. We previously reported a novel compound belonging to the thiazolopyrimidine family that inhibits CDC25 activity with an IC(50) value of 13 microM and displays cytotoxic properties against HeLa cells. Structural modifications were subsequently conducted on this new pharmacophore which led to a library of 45 thiazolopyrimidines. Regarding the in vitro effects, 14 compounds inhibit CDC25B with IC(50)<20 microM, with the most efficient inhibitor 44 improving the potency to 4.5 microM. Steady-state kinetics were performed and showed a mixed inhibition pattern for all tested compounds. Furthermore, 44 was able to revert the bypass of genotoxicity-induced G(2) arrest upon CDC25B overexpression, indicating that this compound targets the dual-specificity phosphatase in cultured cells. Finally, the cytotoxic activities of the compounds were determined against two human cancer cell lines. The results indicate that the prostatic LNCaP cell line is more sensitive to these derivatives than the pancreatic adenocarcinoma MiaPaCa-2 line. With its interesting enzymatic and cellular properties, compound 44 appears to be a promising CDC25B inhibitor for further development.
Collapse
|
43
|
Discovery of Novel and Potent Cdc25 Phosphatase Inhibitors Based on the Structure-Based De Novo Design. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.6.1313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
The therapeutic potential of phosphatase inhibitors. Curr Opin Chem Biol 2009; 13:272-83. [DOI: 10.1016/j.cbpa.2009.03.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/30/2009] [Indexed: 02/05/2023]
|
45
|
Park H, Li M, Choi J, Cho H, Ham SW. Structure-based virtual screening approach to identify novel classes of Cdc25B phosphatase inhibitors. Bioorg Med Chem Lett 2009; 19:4372-5. [PMID: 19500977 DOI: 10.1016/j.bmcl.2009.05.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/08/2009] [Accepted: 05/20/2009] [Indexed: 11/25/2022]
Abstract
Discovery of Cdc25B phosphatase inhibitors has been actively pursued with the aim to develop anticancer agents. We have been able to identify eight novel Cdc25B inhibitors by means of a computer-aided drug design protocol involving the virtual screening with docking simulations under consideration of the effects of ligand solvation in the binding free energy function. Structural features relevant to the interactions of the newly identified inhibitors with the active-site residues of Cdc25B are also discussed in detail.
Collapse
Affiliation(s)
- Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | | | | | | | | |
Collapse
|
46
|
Brezak MC, Valette A, Quaranta M, Contour-Galcera MO, Jullien D, Lavergne O, Frongia C, Bigg D, Kasprzyk PG, Prevost GP, Ducommun B. IRC-083864, a novel bis quinone inhibitor of CDC25 phosphatases active against human cancer cells. Int J Cancer 2009; 124:1449-56. [PMID: 19065668 DOI: 10.1002/ijc.24080] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CDC25 phosphatases are key actors in cyclin-dependent kinases activation whose role is essential at various stages of the cell cycle. CDC25 expression is upregulated in a number of human cancers. CDC25 phosphatases are therefore thought to represent promising novel targets in cancer therapy. Here, we report the identification and the characterization of IRC-083864, an original bis-quinone moiety that is a potent and selective inhibitor of CDC25 phosphatases in the low nanomolar range. IRC-083864 inhibits cell proliferation of a number of cell lines, regardless of their resistance to other drugs. It irreversibly inhibits cell proliferation and cell cycle progression and prevents entry into mitosis. In addition, it inhibits the growth of HCT-116 tumor spheroids with induction of p21 and apoptosis. Finally, IRC-083864 reduced tumor growth in mice with established human prostatic and pancreatic tumor xenografts. This study describes a novel compound, which merits further study as a potential anticancer agent.
Collapse
|
47
|
Bakan A, Lazo JS, Wipf P, Brummond KM, Bahar I. Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: insights from structure-based modeling and high throughput screening. Curr Med Chem 2008; 15:2536-44. [PMID: 18855677 PMCID: PMC2764859 DOI: 10.2174/092986708785909003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dual-specificity phosphatases (DSPs) are important, but poorly understood, cell signaling enzymes that remove phosphate groups from tyrosine and serine/threonine residues on their substrate. Deregulation of DSPs has been implicated in cancer, obesity, diabetes, inflammation, and Alzheimer's disease. Due to their biological and biomedical significance, DSPs have increasingly become the subject of drug discovery high-throughput screening (HTS) and focused compound library development efforts. Progress in identifying selective and potent DSP inhibitors has, however, been restricted by the lack of sufficient structural data on inhibitor-bound DSPs. The shallow, almost flat, substrate binding sites in DSPs have been a major factor in hampering the rational design and the experimental development of active site inhibitors. Recent experimental and virtual HTS studies, as well as advances in molecular modeling, provide new insights into the potential mechanisms for substrate recognition and binding by this important class of enzymes. We present herein an overview of the progress, along with a brief description of applications to two types of DSPs: Cdc25 and MAP kinase phosphatase (MKP) family members. In particular, we focus on combined computational and experimental efforts for designing Cdc25B and MKP-1 inhibitors and understanding their mechanisms of interactions with their target proteins. These studies emphasize the utility of developing computational models and methods that meet the two major challenges currently faced in structure-based in silico design of lead compounds: the conformational flexibility of the target protein and the entropic contribution to the selection and stabilization of particular bound conformers.
Collapse
Affiliation(s)
- Ahmet Bakan
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3064 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Proper control of cell cycle progression requires the functionality of a small family of activating phosphatases termed Cdc25, which have been implicated in cancer and Alzheimer's disease. These protein tyrosine phosphatases are therefore recognized as attractive molecular targets for small molecules. We review the rationale, approaches, progress and challenges for developing small molecule inhibitors of the Cdc25 family. A number of potential chemical probes are discussed and their characteristics are summarized.
Collapse
Affiliation(s)
- John S Lazo
- Department of Pharmacology and Chemical Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
49
|
Arantes GM. The Catalytic Acid in the Dephosphorylation of the Cdk2-pTpY/CycA Protein Complex by Cdc25B Phosphatase. J Phys Chem B 2008; 112:15244-7. [DOI: 10.1021/jp8070019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guilherme Menegon Arantes
- Departamento de Bioquimica, Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, 05508-900 São Paulo, SP, Brasil
| |
Collapse
|
50
|
Park H, Bahn YJ, Jung SK, Jeong DG, Lee SH, Seo I, Yoon TS, Kim SJ, Ryu SE. Discovery of novel Cdc25 phosphatase inhibitors with micromolar activity based on the structure-based virtual screening. J Med Chem 2008; 51:5533-41. [PMID: 18714978 DOI: 10.1021/jm701157g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cdc25 phosphatases have been considered as attractive drug targets for anticancer therapy because of the correlation of their overexpression with a wide variety of cancers. We have been able to identify five novel Cdc25 phosphatase inhibitors with micromolar activity by means of a computer-aided drug design protocol involving the homology modeling of Cdc25A and the virtual screening with the automated AutoDock program implementing the effects of ligand solvation in the scoring function. Because the newly discovered inhibitors are structurally diverse and reveal a significant potency with IC 50 values lower than 10 microM, they can be considered for further development by structure-activity relationship studies or de novo design methods. The differences in binding modes of the identified inhibitors in the active sites of Cdc25A and B are discussed in detail.
Collapse
Affiliation(s)
- Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 98 Kunja-Dong, Kwangjin-Ku, Seoul 143-747, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|