1
|
Zhao L, Zhao BH, Ruze A, Li QL, Deng AX, Gao XM. Distinct roles of MIF in the pathogenesis of ischemic heart disease. Cytokine Growth Factor Rev 2024; 80:121-137. [PMID: 39438226 DOI: 10.1016/j.cytogfr.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The role of macrophage migration inhibitory factor (MIF) as a multifunctional cytokine in immunomodulation and inflammatory response is increasingly appreciated. Ischemic heart disease (IHD), the leading cause of global mortality, remains a focal point of research owing to its intricate pathophysiology. MIF has been identified as a critical player in IHD, where it exerts distinct roles. On one hand, MIF plays a protective role by enhancing energy metabolism through activation of AMPK, resisting oxidative stress, inhibiting activation of the JNK pathway, and maintaining intracellular calcium ion homeostasis. Additionally, MIF exerts protective effects through mesenchymal stem cells and exosomes. On the other hand, MIF can assume a pro-inflammatory role, which contributes to the exacerbation of IHD's development and progression. Furthermore, MIF levels significantly increase in IHD patients, and its genetic polymorphisms are positively correlated with prevalence and severity. These findings position MIF as a potential biomarker and therapeutic target in the management of IHD. This review summarizes the structure, source, signaling pathways and biological functions of MIF and focuses on its roles and clinical characteristics in IHD. The genetic variants of MIF associated with IHD is also discussed, providing more understandings of its complex interplay in the disease's pathology.
Collapse
Affiliation(s)
- Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Disease, Urumqi, China.
| |
Collapse
|
2
|
Chen Y, Bao L, Dong F, Xv M, Li W, Luo T, Xing C, Yan N, Niu K, Zhang N, Fan H. Effect of fibroblasts small- conductance Ca 2+ -activated potassium channel subtype 2 (SK2) on myocardial fibrosis in pressure overload mouse. Cell Signal 2024; 124:111401. [PMID: 39260533 DOI: 10.1016/j.cellsig.2024.111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Studies have shown that Small conductance Ca2 + -activated K+ (SK) channel are expressed in fibroblasts. We aimed to determine the expression of SK2 channels in cardiac fibroblasts during myocardial hypertrophy and investigate its relationship with fibrotic remodeling. Myocardial hypertrophy and fibrotic remodeling induced by transverse aortic constriction (TAC) were assessed by echocardiography, Masson's trichrome staining and Western blot. Knockdown and overexpression of the SK2 protein were used to assess relationship between SK2 expression in fibroblasts and myocardial fibrosis. There is a positive correlation between myocardial fibrosis and SK2 channel protein expression during the development of myocardial hypertrophy. The differentiation and secretion of fibroblasts in mice with cardiac hypertrophy are enhanced, and the expression of SK2 channel protein is increased. Manipulating SK2 levels in fibroblasts can either promote or inhibit their differentiation and secretory function. Knocking down SK2 reduces the up-regulation of TGF β1, p-Smad2/3/GAPDH, p-p38/GAPDH, p-ERK1/2/GAPDH, and p-JNK/GAPDH proteins induced by Ang II in cardiac fibroblasts without significantly affecting total protein levels. AAV9-SK2-RNAi injection in mice improves cardiac function. Collectively, our study suggests that the expression of the SK2 channel is significantly increased in fibroblasts of mice with myocardial hypertrophy, potentially impacting myocardial fibrosis remodeling via the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Yihan Chen
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Limeng Bao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Fengjuan Dong
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Menru Xv
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Weidong Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Tianxia Luo
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Chenxv Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Ningning Yan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Kangli Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Ningyuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China
| | - Hongkun Fan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Kexuedadao Road, Zhengzhou 450000, China.
| |
Collapse
|
3
|
Yang N, Zhao W, Hao Y, Liu J, Liu J, Zhao X, Yan Y, Nie S, Gong W. Incidence and risk factors for cardiac rupture after ST-segment elevation myocardial infarction in contemporary era: findings from the improving care for cardiovascular disease in China-Acute Coronary Syndrome project. Intern Emerg Med 2024:10.1007/s11739-024-03746-w. [PMID: 39463195 DOI: 10.1007/s11739-024-03746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/06/2024] [Indexed: 10/29/2024]
Abstract
Cardiac rupture (CR) is fatal mechanical complication of ST-segment elevation myocardial infarction (STEMI). We systematically analyzed the clinical features of STEMI patients with CR, as well as predictors and treatments associated with risk of CR in contemporary era. In this nationwide database, 49,284 patients admitted within 48 h after STEMI were enrolled, and were stratified according to CR status. We analyzed patients' clinical characteristics, case fatality rate, and independent correlates of CR. A total of 188 (0.38%) patients had CR, of which 42.6% died during hospitalization. Older age, female gender, higher heart rate, history of diabetes, and worse cardiac function were risk factors of CR in patients with STEMI, while a previous history of myocardial infarction was associated with a reduced risk of CR. CR patients were less likely to undergo primary percutaneous coronary intervention (PCI). After adjustment, primary PCI was associated with 56% decreased risk of CR (OR 0.44, 95% CI 0.29-0.67). This result was consistent in the propensity-score matching analysis and inverse probability of treatment weighting analysis. CR was associated with high in-hospital mortality among STEMI patients. Multiple factors were associated with CR occurrence, primary PCI was associated with lower risk of CR, indicating that early intervention targeting the risk factors and implementation of primary PCI may improve its prognosis. Clinical trial registration ClinicalTrials.gov; Number: NCT02306616; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Na Yang
- Department of Epidemiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Wenlong Zhao
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yongchen Hao
- Department of Epidemiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jun Liu
- Department of Epidemiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jing Liu
- Department of Epidemiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xuedong Zhao
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yan Yan
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Shaoping Nie
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Wei Gong
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China.
| |
Collapse
|
4
|
Gao X, Guo Y, Zhu X, Du C, Ma B, Cui Y, Wang S. Factors related to cardiac rupture after acute myocardial infarction. Front Cardiovasc Med 2024; 11:1401609. [PMID: 39416435 PMCID: PMC11479954 DOI: 10.3389/fcvm.2024.1401609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Background Cardiac rupture (CR) after acute myocardial infarction (AMI) is a fatal mechanical complication. The early identification of factors related to CR in high-risk cases may reduce mortality. The purpose of our study was to discover relevant risk factors for CR after AMI and in-hospital mortality from CR. Methods In this study, we enrolled 1,699 AMI cases from October 2013 to May 2020. A total of 51 cases were diagnosed with CR. Clinical diagnostic information was recorded and analyzed retrospectively. We randomly matched these cases with AMI patients without CR in a 1:4 ratio. Univariate and multivariate logistic regression and stratifying analysis were used to identify risk factors for CR. Univariate and multivariate Cox regression hazard analysis and stratifying analysis were used to assess predictors of in-hospital mortality from CR. Results The incidence of CR after AMI was 3.0% and in-hospital mortality was approximately 57%. Multivariate logistic regression analysis identified that white blood cell count, neutrophil percentage, anterior myocardial infarction, a Killip class of >II, and albumin level were independently associated with CR (p < 0.05). Stratifying analysis showed that age, systolic blood pressure, and bicarbonate were independent risk factors for female CR (p < 0.05) but not male CR. Triglyceride and cardiac troponin I were independent risk factors for male CR (p < 0.05) but not female CR. Anterior myocardial infarction, a Killip class of >II, and neutrophil percentage were independent risk factors for male and female CR (p < 0.05). Multivariate Cox regression analysis showed that the time from symptom to CR and the site of CR were independent predictors for in-hospital mortality from CR (p < 0.05). Stratification analysis indicated that risk factors did not differ based on gender, but platelet counts were predictors for in-hospital mortality in female and male CR. Conclusion Low albumin, a high white blood cell count, neutrophil percentage, anterior myocardial infarction, and a Killip class of >II were independent and significant predictors for CR. However, risk factors are different in male and female CR. The time from symptom to CR, the site of CR, and platelet counts were independent predictors for in-hospital mortality from CR. These may be helpful in the early and accurate identification of high-risk patients with CR and the assessment of prognosis. In addition, gender differences should be considered.
Collapse
Affiliation(s)
| | | | | | | | | | - Yinghua Cui
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Shuai Wang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
5
|
Liu ZY, You QY, Liu ZY, Lin LC, Yang JJ, Tao H. m6A control programmed cell death in cardiac fibrosis. Life Sci 2024; 353:122922. [PMID: 39032691 DOI: 10.1016/j.lfs.2024.122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
N6-methyladenosine (m6A) modification is closely related to cardiac fibrosis. As the most common and abundant form of mRNA modification in eukaryotes, m6A is deposited by methylases ("writers"), recognized and effected by RNA-binding proteins ("readers"), and removed by demethylases ("erasers"), achieving highly dynamic reversibility. m6A modification is involved in regulating the entire biological process of target RNA, including transcription, processing and splicing, export from the nucleus to the cytoplasm, and enhancement or reduction of stability and translation. Programmed cell death (PCD) comprises many forms and pathways, with apoptosis and autophagy being the most common. Other forms include pyroptosis, ferroptosis, necroptosis, mitochondrial permeability transition (MPT)-dependent necrosis, and parthanatos. In recent years, increasing evidence suggests that m6A modification can mediate PCD, affecting cardiac fibrosis. Since the correlation between some PCD types and m6A modification is not yet clear, this article mainly introduces the relationship between four common PCD types (apoptosis, autophagy, pyroptosis, and ferroptosis) and m6A modification, as well as their role and influence in cardiac fibrosis.
Collapse
Affiliation(s)
- Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Qing-Ye You
- Anhui Women and Children's Medical Center, Hefei 230001, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| |
Collapse
|
6
|
Kitasato L, Yamaoka-Tojo M, Suzuki M, Nakahara S, Iwaya T, Ogiso S, Murayama Y, Hashikata T, Misawa N, Kawashima R, Oikawa J, Nakamura M, Tokui Y, Naraba J, Nishii M, Kitasato H, Ako J. Fibroblasts activation by embryonic signal switching: A novel mechanism of placental growth factor-induced cardiac remodeling. Placenta 2024; 154:129-136. [PMID: 38971073 DOI: 10.1016/j.placenta.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION Cardiac remodeling is defined as cellular interstitial changes that lead dysfunction of the heart after injury. Placental growth factor (PlGF), a member of the VEGF family, has been reported to regulate cardiac hypertrophy in hemodynamic state. We therefore analyze the function of PlGF during cardiac remodeling using cardiac cells and fibroblasts, under Angiotensin II (AngII) stimulation. METHODS PlGF overexpressed mouse embryonic fibroblasts derived from C57BL/6 mice, were made by deficient retrovirus vector, designated as C57/PlGF. Only retrovirus vector introduced C57 cells (C57/EV) were used as control. After AngII stimulation, wound scratching assay and MTT proliferation assay with or without p38 MAPK inhibitor, SB205580 were performed in retrovirally-introduced C57 cells. Reactive oxygen species (ROS) production, NF-kB activation, IL-6 and TNF-α production were also measured. Then we assessed AngII-induced cell proliferation of mouse cardiac fibroblasts (CFs) and rat primary cardiomyocytes incubating with C57/PlGF conditioned-medium. RESULTS The PlGF production in C57/PlGF were confirmed by ELISA (1093.48 ± 3.5 pg/ml, ±SE). AngII-induced cell migration, proliferation and H2O2 production were increased in C57/PlGF compared with C57/EV. SB205580 inhibited the AngII-induced cell proliferation in C57/PlGF. In C57/PlGF cells, NF-kB activation was higher, followed by up-regulation of IL-6 and TNF-α production. CFs and cardiomyocytes proliferation increased when stimulated with C57/PlGF conditioned-medium. DISCUSSION The activation of fibroblast is stimulated by PlGF signaling via p38 MAPK/NF-kB pathway accompanied by elevation of ROS and inflammatory response. Furthermore, these signals stimulate the activation of CFs and cardiomyocytes, indicating that high circulating level of PlGF have a potential to regulate cardiac remodeling.
Collapse
Affiliation(s)
- Lisa Kitasato
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan.
| | - Minako Yamaoka-Tojo
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Machika Suzuki
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Shohei Nakahara
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Toshiyuki Iwaya
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Sho Ogiso
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Yusuke Murayama
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Takehiro Hashikata
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Nonoka Misawa
- Department of Regulation Biochemistry, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Rei Kawashima
- Department of Regulation Biochemistry, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Oikawa
- Department of Kitasato Clinical Research Center, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Masaki Nakamura
- Department of Laboratory Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Yumi Tokui
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa, 252-0373, Japan; Department Environmental Microbiology, Kitasato University Graduate School of Medical Science, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Naraba
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa, 252-0373, Japan; Department Environmental Microbiology, Kitasato University Graduate School of Medical Science, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Mototsugu Nishii
- Department of Emergency Medicine, Yokohama City University, School of Medicine, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hidero Kitasato
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa, 252-0373, Japan; Department Environmental Microbiology, Kitasato University Graduate School of Medical Science, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan; Shibasaburo Kitasato Memorial Museum, 3199 Kitazato, Oguni, Aso, Kumamoto, 869-2505, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| |
Collapse
|
7
|
Ninh VK, Calcagno DM, Yu JD, Zhang B, Taghdiri N, Sehgal R, Mesfin JM, Chen CJ, Kalhor K, Toomu A, Duran JM, Adler E, Hu J, Zhang K, Christman KL, Fu Z, Bintu B, King KR. Spatially clustered type I interferon responses at injury borderzones. Nature 2024; 633:174-181. [PMID: 39198639 PMCID: PMC11374671 DOI: 10.1038/s41586-024-07806-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/09/2024] [Indexed: 09/01/2024]
Abstract
Sterile inflammation after myocardial infarction is classically credited to myeloid cells interacting with dead cell debris in the infarct zone1,2. Here we show that cardiomyocytes are the dominant initiators of a previously undescribed type I interferon response in the infarct borderzone. Using spatial transcriptomics analysis in mice and humans, we find that myocardial infarction induces colonies of interferon-induced cells (IFNICs) expressing interferon-stimulated genes decorating the borderzone, where cardiomyocytes experience mechanical stress, nuclear rupture and escape of chromosomal DNA. Cardiomyocyte-selective deletion of Irf3 abrogated IFNIC colonies, whereas mice lacking Irf3 in fibroblasts, macrophages, neutrophils or endothelial cells, Ccr2-deficient mice or plasmacytoid-dendritic-cell-depleted mice did not. Interferons blunted the protective matricellular programs and contractile function of borderzone fibroblasts, and increased vulnerability to pathological remodelling. In mice that died after myocardial infarction, IFNIC colonies were immediately adjacent to sites of ventricular rupture, while mice lacking IFNICs were protected from rupture and exhibited improved survival3. Together, these results reveal a pathological borderzone niche characterized by a cardiomyocyte-initiated innate immune response. We suggest that selective inhibition of IRF3 activation in non-immune cells could limit ischaemic cardiomyopathy while avoiding broad immunosuppression.
Collapse
Affiliation(s)
- V K Ninh
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - D M Calcagno
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - J D Yu
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - B Zhang
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - N Taghdiri
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - R Sehgal
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - J M Mesfin
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - C J Chen
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - K Kalhor
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - A Toomu
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - J M Duran
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - E Adler
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - J Hu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - K Zhang
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - K L Christman
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Z Fu
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - B Bintu
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - K R King
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Wang J, Sarkar D, Mohan A, Lee M, Ma Z, Chortos A. Deep Learning for Strain Field Customization in Bioreactor with Dielectric Elastomer Actuator Array. CYBORG AND BIONIC SYSTEMS 2024; 5:0155. [PMID: 39144697 PMCID: PMC11322265 DOI: 10.34133/cbsystems.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
In the field of biomechanics, customizing complex strain fields according to specific requirements poses an important challenge for bioreactor technology, primarily due to the intricate coupling and nonlinear actuation of actuator arrays, which complicates the precise control of strain fields. This paper introduces a bioreactor designed with a 9 × 9 array of independently controllable dielectric elastomer actuators (DEAs), addressing this challenge. We employ image regression-based machine learning for both replicating target strain fields through inverse control and rapidly predicting feasible strain fields generated by the bioreactor in response to control inputs via forward control. To generate training data, a finite element analysis (FEA) simulation model was developed. In the FEA, the device was prestretched, followed by the random assignment of voltages to each pixel, yielding 10,000 distinct output strain field images for the training set. For inverse control, a multilayer perceptron (MLP) is utilized to predict control inputs from images, whereas, for forward control, MLP maps control inputs to low-resolution images, which are then upscaled to high-resolution outputs through a super-resolution generative adversarial network (SRGAN). Demonstrations include inputting biomechanically significant strain fields, where the method successfully replicated the intended fields. Additionally, by using various tumor-stroma interfaces as inputs, the bioreactor demonstrated its ability to customize strain fields accordingly, showcasing its potential as an advanced testbed for tumor biomechanics research.
Collapse
Affiliation(s)
- Jue Wang
- School of Mechanical Engineering, College of Engineering,
Purdue University, West Lafayette, IN, USA
| | - Dhirodaatto Sarkar
- School of Mechanical Engineering, College of Engineering,
Purdue University, West Lafayette, IN, USA
| | - Atulya Mohan
- School of Mechanical Engineering, College of Engineering,
Purdue University, West Lafayette, IN, USA
| | - Mina Lee
- School of Mechanical Engineering, College of Engineering,
Purdue University, West Lafayette, IN, USA
| | - Zeyu Ma
- School of Mechanical Engineering, College of Engineering,
Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Institute of Design Science and Basic Components, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Alex Chortos
- School of Mechanical Engineering, College of Engineering,
Purdue University, West Lafayette, IN, USA
| |
Collapse
|
9
|
Yang K, Zhao Y, Hu J, Gao R, Shi J, Wei X, Chen J, Hu K, Sun A, Ge J. ALKBH5 induces fibroblast-to-myofibroblast transformation during hypoxia to protect against cardiac rupture after myocardial infarction. J Adv Res 2024; 61:193-209. [PMID: 37689242 PMCID: PMC11258655 DOI: 10.1016/j.jare.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
INTRODUCTION N6-methyladenosine (m6A) methylation produces a marked effect on cardiovascular diseases. The m6A demethylase AlkB homolog 5 (ALKBH5), as an m6A "eraser", is responsible for decreased m6A modification. However, its role in cardiac fibroblasts during the post-myocardial infarction (MI) healing process remains elusive. OBJECTIVES To investigate the effect of ALKBH5 in cardiac fibroblasts during infarct repair. METHODS MI was mimicked by permanent left anterior descending artery ligation in global ALKBH5-knockout, ALKBH5-knockin, and fibroblast-specific ALKBH5-knockout mice to study the function of ALKBH5 during post-MI collagen repair. Methylated RNA immunoprecipitation sequencing was performed to explore potential ALKBH5 targets. RESULTS Dramatic alterations in ALKBH5 expression were observed during the early stages post-MI and in hypoxic fibroblasts. Global ALKBH5 knockin reduced infarct size and ameliorated cardiac function after MI. The global and fibroblast-specific ALKBH5-knockout mice both exhibited low survival rates along with poor collagen repair, impaired cardiac function, and cardiac rupture. Both in vivo and in vitro ALKBH5 loss resulted in impaired fibroblast activation and decreased collagen deposition. Additionally, hypoxia, but not TGF-β1 or Ang II, upregulated ALKBH5 expression in myofibroblasts by HIF-1α-dependent transcriptional regulation. Mechanistically, ALKBH5 promoted the stability of ErbB4 mRNA and the degradation of ST14 mRNA via m6A demethylation. Fibroblast-specific ErbB4 overexpression ameliorated the impaired fibroblast-to-myofibroblast transformation and poor post-MI repair due to ALKBH5 knockout. CONCLUSION Fibroblast ALKBH5 positively regulates post-MI healing by stabilization of ErbB4 mRNA in an m6A-dependent manner. ALKBH5/ErbB4 might be potential therapeutic targets for post-MI cardiac rupture.
Collapse
Affiliation(s)
- Kun Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou Province, China
| | - Jingjing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Rifeng Gao
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jiaran Shi
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Xiang Wei
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Juntao Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
10
|
Wang M, Li C, Liu Y, Jin Y, Yu Y, Tan X, Zhang C. The effect of macrophages and their exosomes in ischemic heart disease. Front Immunol 2024; 15:1402468. [PMID: 38799471 PMCID: PMC11116575 DOI: 10.3389/fimmu.2024.1402468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemic heart disease (IHD) is a leading cause of disability and death worldwide, with immune regulation playing a crucial role in its pathogenesis. Various immune cells are involved, and as one of the key immune cells residing in the heart, macrophages play an indispensable role in the inflammatory and reparative processes during cardiac ischemia. Exosomes, extracellular vesicles containing lipids, nucleic acids, proteins, and other bioactive molecules, have emerged as important mediators in the regulatory functions of macrophages and hold promise as a novel therapeutic target for IHD. This review summarizes the regulatory mechanisms of different subsets of macrophages and their secreted exosomes during cardiac ischemia over the past five years. It also discusses the current status of clinical research utilizing macrophages and their exosomes, as well as strategies to enhance their therapeutic efficacy through biotechnology. The aim is to provide valuable insights for the treatment of IHD.
Collapse
Affiliation(s)
- Minrui Wang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuchang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanyuan Jin
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Yu
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqiu Tan
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chunxiang Zhang
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Liu ZY, Liu ZY, Lin LC, Song K, Tu B, Zhang Y, Yang JJ, Zhao JY, Tao H. Redox homeostasis in cardiac fibrosis: Focus on metal ion metabolism. Redox Biol 2024; 71:103109. [PMID: 38452521 PMCID: PMC10926297 DOI: 10.1016/j.redox.2024.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Cardiac fibrosis is a major public health problem worldwide, with high morbidity and mortality, affecting almost all patients with heart disease worldwide. It is characterized by fibroblast activation, abnormal proliferation, excessive deposition, and abnormal distribution of extracellular matrix (ECM) proteins. The maladaptive process of cardiac fibrosis is complex and often involves multiple mechanisms. With the increasing research on cardiac fibrosis, redox has been recognized as an important part of cardiac remodeling, and an imbalance in redox homeostasis can adversely affect the function and structure of the heart. The metabolism of metal ions is essential for life, and abnormal metabolism of metal ions in cells can impair a variety of biochemical processes, especially redox. However, current research on metal ion metabolism is still very limited. This review comprehensively examines the effects of metal ion (iron, copper, calcium, and zinc) metabolism-mediated redox homeostasis on cardiac fibrosis, outlines possible therapeutic interventions, and addresses ongoing challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, 230601, Hefei, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
12
|
Fiszer R, Galeczka M, Smolka G, Sukiennik A, Chojnicki M, Tyc F, Bialkowski J, Szkutnik M. Multicentre short- and medium-term report on the device closure of a post-myocardial infarction ventricular septal rupture - In search of risk factors for early mortality. Int J Cardiol 2024; 401:131820. [PMID: 38307419 DOI: 10.1016/j.ijcard.2024.131820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Post-myocardial infarction ventricular septal rupture (VSR) is a rare and severe complication of myocardial infarction. To find early mortality (<30 days) risk factors of device VSR closure and to evaluate its medium-term outcome. METHODS Multicenter retrospective analysis on all 46 consecutive patients with percutaneous (n = 43) or hybrid (n = 3) VSR closure in 2000-2020 with various nitinol wire mesh occluders. Medical records, hemodynamic data, procedure results, short- and mid-term follow-up were analyzed (4.8 ± 3.7 years, range: 0.1-15, available in 61.7% of patients). Of the patients, 34.8% underwent VSR closure in acute phase (<21 days after VSR occurrence), 17.4% underwent device closure due to significant residual shunt after previous VSR surgery. RESULTS Success rate was 78.3%. More than moderate residual shunt, major complications, and early surgical reintervention affected 18.9%, 15.2% (including 2 intra-procedural deaths), and 21.7% of patients, respectively. Early mortality was 26.1% (13.9% in successful vs. 70% in unsuccessful closure; p < 0.001). Older age, need for intra-aortic balloon counterpulsation, severe complications, and procedural failure were identified as risk factors for early mortality. Among patients who survived the early period, the 5-year survival rate was 57.1%. NYHA class improved in 88.2% patients at the latest follow-up. CONCLUSIONS Procedure of VSR device closure demonstrates an acceptable technical success rate; however, the incidence of severe complications and early mortality is notably high. Older patients in poor hemodynamic condition and those with unsuccessful occluder deployment are particularly at a higher risk of a fatal outcome. The prognosis after early survival is promising.
Collapse
Affiliation(s)
- Roland Fiszer
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Michal Galeczka
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Silesian Center for Heart Diseases, Zabrze, Poland.
| | - Grzegorz Smolka
- Department of Cardiology and Structural Heart Diseases, 3(rd) Division of Cardiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adam Sukiennik
- Department of Cardiology and Internal Diseases, University Hospital No. 1, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maciej Chojnicki
- Department of Cardiology and Internal Diseases, University Hospital No. 1, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Filip Tyc
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Jacek Bialkowski
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Malgorzata Szkutnik
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Silesian Center for Heart Diseases, Zabrze, Poland
| |
Collapse
|
13
|
Toldo S, Abbate A. The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat Rev Cardiol 2024; 21:219-237. [PMID: 37923829 PMCID: PMC11550901 DOI: 10.1038/s41569-023-00946-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/06/2023]
Abstract
An intense, stereotyped inflammatory response occurs in response to ischaemic and non-ischaemic injury to the myocardium. The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a finely regulated macromolecular protein complex that senses the injury and triggers and amplifies the inflammatory response by activation of caspase 1; cleavage of pro-inflammatory cytokines, such as pro-IL-1β and pro-IL-18, to their mature forms; and induction of inflammatory cell death (pyroptosis). Inhibitors of the NLRP3 inflammasome and blockers of IL-1β and IL-18 activity have been shown to reduce injury to the myocardium and pericardium, favour resolution of the inflammation and preserve cardiac function. In this Review, we discuss the components of the NLRP3 inflammasome and how it is formed and activated in various ischaemic and non-ischaemic cardiac pathologies (acute myocardial infarction, cardiac dysfunction and remodelling, atherothrombosis, myocarditis and pericarditis, cardiotoxicity and cardiac sarcoidosis). We also summarize current preclinical and clinical evidence from studies of agents that target the NLRP3 inflammasome and related cytokines.
Collapse
Affiliation(s)
- Stefano Toldo
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
14
|
Qi B, Li T, Luo H, Hu L, Feng R, Wang D, Peng T, Ren G, Guo D, Liu M, Wang Q, Zhang M, Li Y. Reticulon 3 deficiency ameliorates post-myocardial infarction heart failure by alleviating mitochondrial dysfunction and inflammation. MedComm (Beijing) 2024; 5:e503. [PMID: 38420163 PMCID: PMC10901281 DOI: 10.1002/mco2.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Multiple molecular mechanisms are involved in the development of heart failure (HF) after myocardial infarction (MI). However, interventions targeting these pathological processes alone remain clinically ineffective. Therefore, it is essential to identify new therapeutic targets for alleviating cardiac dysfunction after MI. Here, gain- and loss-of-function approaches were used to investigate the role of reticulon 3 (RTN3) in HF after MI. We found that RTN3 was elevated in the myocardium of patients with HF and mice with MI. Cardiomyocyte-specific RTN3 overexpression decreased systolic function in mice under physiological conditions and exacerbated the development of HF induced by MI. Conversely, RTN3 knockout alleviated cardiac dysfunction after MI. Mechanistically, RTN3 bound and mediated heat shock protein beta-1 (HSPB1) translocation from the cytosol to the endoplasmic reticulum. The reduction of cytosolic HSPB1 was responsible for the elevation of TLR4, which impaired mitochondrial function and promoted inflammation through toll-like receptor 4 (TLR4)/peroxisome proliferator-activated receptor gamma coactivator-1 alpha(PGC-1α) and TLR4/Nuclear factor-kappa B(NFκB) pathways, respectively. Furthermore, the HSPB1 inhibitor reversed the protective effect of RTN3 knockout on MI. Additionally, elevated plasma RTN3 level is associated with decreased cardiac function in patients with acute MI. This study identified RTN3 as a critical driver of HF after MI and suggests targeting RTN3 as a promising therapeutic strategy for MI and related cardiovascular diseases.
Collapse
Affiliation(s)
- Bingchao Qi
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Tiantian Li
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Haixia Luo
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Lang Hu
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Renqian Feng
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Di Wang
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Tingwei Peng
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Gaotong Ren
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Dong Guo
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Mingchuan Liu
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Qiuhe Wang
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Mingming Zhang
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| | - Yan Li
- Department of CardiologyTangdu HospitalAir Force Medical UniversityXi'an ShaanxiChina
| |
Collapse
|
15
|
Wang J, Chatterjee A, Zigan C, Alborn M, Chan DD, Chortos A. Pneumatic Non-Equibiaxial Cell Stretching Device With Live-Cell Imaging. IEEE Trans Biomed Eng 2024; 71:820-830. [PMID: 37747858 DOI: 10.1109/tbme.2023.3319013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
OBJECTIVE Adherent cell behavior is influenced by a complex interplay of factors, including chemical and mechanical signals. In vitro experiments that mimic the mechanical environment experienced by cells in vivo are crucial for understanding cellular behavior and the progression of disease. In this study, we developed and validated a low-cost pneumatically-controlled cell stretcher with independent control of strain in two directions of a membrane, enabling unequal biaxial stretching and real-time microscopy during actuation. METHODS The stretching was achieved by two independent pneumatic channels controlled by electrical signals. We used finite element simulations to compute the membrane's strain field and particle tracking algorithms based on image processing techniques to validate the strain fields and measure the cell orientation and morphology. RESULTS The device can supply uniaxial, equibiaxial, and unequal biaxial stretching up to [Formula: see text] strain in each direction at a frequency of [Formula: see text], with a strain measurement error of less than 1%. Through live cell imaging, we determined that distinct stretching patterns elicited differing responses and alterations in cell orientation and morphology, particularly in terms of cell length and area. CONCLUSION The device successfully provides a large, uniform, and variable strain field for cell experiments, while also enabling real-time, live cell imaging. SIGNIFICANCE This scalable, low-cost platform provides mechanical stimulation to cell cultures by independently controlling strains in two directions. This could contribute to a deeper understanding of cellular response to bio-realistic strains and could be useful for future in vitro drug testing platforms.
Collapse
|
16
|
Shikatani EA, Wang T, Dingwell LS, White-Dzuro C, Momen A, Husain M. GDF5 deficiency prevents cardiac rupture following acute myocardial infarction in mice. Cardiovasc Pathol 2024; 68:107581. [PMID: 37838075 DOI: 10.1016/j.carpath.2023.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND We previously showed that growth differentiation factor 5 (GDF5) limits infarct expansion post-myocardial infarction (MI). We now examine the acute post-MI role of GDF5 in cardiac rupture. METHODS AND RESULTS Following permanent ligation of the left anterior descending artery, GDF5 deficiency (i.e., GDF5 knockout mice) reduced the incidence of cardiac rupture (4/24 vs. 17/24; P < .05), and improved survival over 28-d compared to wild-type (WT) mice (79% vs. 25%; P < .0001). Moreover, at 3-d post-MI, GDF5-deficient mice manifest: (a) reduced heart weight/body weight ratio (P < .0001) without differences in infarct size or cardiomyocyte size; (b) increased infarct zone expression of Col1a1 (P < .05) and Col3a1 (P < .01), suggesting increased myocardial fibrosis; and (c) reduced aortic and left ventricular peak systolic pressures (P ≤ .05), suggesting reduced afterload. Despite dysregulated inflammatory markers and reduced circulating monocytes in GDF5-deficient mice at 3-d post-MI, reciprocal bone marrow transplantation (BMT) failed to implicate GDF5 in BM-derived cells, suggesting the involvement of tissue-resident GDF5 expression in cardiac rupture. CONCLUSIONS Loss of GDF5 reduces cardiac rupture post-MI with increased myocardial fibrosis and lower afterload, albeit at the cost of chronic adverse remodeling.
Collapse
Affiliation(s)
- Eric A Shikatani
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Tao Wang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, and Peter Munk Cardiac Centre, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Luke S Dingwell
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, and Peter Munk Cardiac Centre, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Colin White-Dzuro
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Abdul Momen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mansoor Husain
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, and Peter Munk Cardiac Centre, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Zu X, Jin Y, Zeng Y, Li P, Gao H. Risk of cardiac rupture among elderly patients with diabetes presenting with first acute myocardial infarction. Front Endocrinol (Lausanne) 2023; 14:1239644. [PMID: 37795360 PMCID: PMC10546423 DOI: 10.3389/fendo.2023.1239644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Objective We aimed to analyze the risk of cardiac rupture (CR) in aged diabetic patients with acute ST-segment elevated myocardial infarction (STEMI) who were followed up for one month, and analyze its independent risk factors. Methods A total of 3063 aged patients with first onset STEMI admitted to Beijing Anzhen Hospital from January 2001 to December 2020 were retrospectively included. There were 2020 patients without diabetes mellitus (DM) and 1043 patients with DM. We used propensity scores matching (PSM) method to balance baseline exposure factors between patients with or without DM, and all were divided the DM group (1043 cases) and the non-DM group (1043 cases) after the PSM. The primary outcome was CR (the composite rate of papillary muscle rupture, ventricular septum perforation, free wall rupture), which was diagnosed based on clinical manifestations and/or echocardiographic findings. Kaplan-meier survival analyses and log-rank test was used to evaluate the risk of CR between the two groups, and Cox regression analysis was used to evaluate the independent risk factors for CR. Results After PSM, the baseline clinical data were similar between the DM and non-DM group (all P>0.05). However, level of glycated hemoglobin was significantly higher in the DM group (P<0.05). During 1 month of follow-up, there were 55 (2.64%) cases of CR, most occurred within 48h after admission (40 cases). Among the 55 cases, 11(0.53%) had papillary muscle rupture, 18(0.86%) had ventricular septum perforation, and 26(1.25%) had free wall rupture. Kaplan-meier survival analyses detected that the DM group was associated with significantly increased risk of CR (3.36% vs. 1.92%, HR=1.532, 95% CI: 1.054-2.346, P=0.030), ventricular septum perforation (1.05% vs. 0.67%, HR=1.464, 95% CI: 1.021-2.099, P=0.038) and free wall rupture (1.63% vs. 0.86%, HR=1.861, 95% CI: 1.074-3.225, P=0.027) than those in the non-DM group. Among the 2031 aged STEMI patients without CR, 144 cases (6.90%, 144/2086) died; and among the 55 patients with CR, 37 cases (1.77%, 37/2086) died due to CR. Therefore, twenty percent (20.44%, 37/181) of death was due to CR. Multivariate Cox regression analysis indicated that DM (HR=1.532, 95%CI: 1.054-2.346), age (HR=1.390, 95%CI: 1.079-1.791), female (HR=1.183, 95%CI: 1.049-1.334), troponin I (HR=1.364, 95%CI: 1.108-1.679), brain natriuretic peptide (HR=1.512, 95%CI: 1.069-2.139), revascularization (HR=0.827, 95%CI: 0.731-0.936) and β-receptor blocker (HR=0.849, 95%CI: 0.760-0.948) were independent risk factors of CR (all P<0.05). Conclusion DM as well as a few other factors, are independent determinants of CR. CR is not a rare event among the aged STEMI patients and twenty percent of deaths are due to CR. However, large sample-sized studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Xiaolin Zu
- Department of Cardiology, Emergency Coronary Unit, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yanyan Jin
- Department of Cardiology, Emergency Coronary Unit, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yaping Zeng
- Department of Cardiology, Emergency Coronary Unit, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Peng Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Hai Gao
- Department of Cardiology, Emergency Coronary Unit, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
19
|
Pearce DP, Nemcek MT, Witzenburg CM. Don't go breakin' my heart: cardioprotective alterations to the mechanical and structural properties of reperfused myocardium during post-infarction inflammation. Biophys Rev 2023; 15:329-353. [PMID: 37396449 PMCID: PMC10310682 DOI: 10.1007/s12551-023-01068-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023] Open
Abstract
Myocardial infarctions (MIs) kickstart an intense inflammatory response resulting in extracellular matrix (ECM) degradation, wall thinning, and chamber dilation that leaves the heart susceptible to rupture. Reperfusion therapy is one of the most effective strategies for limiting adverse effects of MIs, but is a challenge to administer in a timely manner. Late reperfusion therapy (LRT; 3 + hours post-MI) does not limit infarct size, but does reduce incidences of post-MI rupture and improves long-term patient outcomes. Foundational studies employing LRT in the mid-twentieth century revealed beneficial reductions in infarct expansion, aneurysm formation, and left ventricle dysfunction. The mechanism by which LRT acts, however, is undefined. Structural analyses, relying largely on one-dimensional estimates of ECM composition, have found few differences in collagen content between LRT and permanently occluded animal models when using homogeneous samples from infarct cores. Uniaxial testing, on the other hand, revealed slight reductions in stiffness early in inflammation, followed soon after by an enhanced resistance to failure for cases of LRT. The use of one-dimensional estimates of ECM organization and gross mechanical function have resulted in a poor understanding of the infarct's spatially variable mechanical and structural anisotropy. To resolve these gaps in literature, future work employing full-field mechanical, structural, and cellular analyses is needed to better define the spatiotemporal post-MI alterations occurring during the inflammatory phase of healing and how they are impacted following reperfusion therapy. In turn, these studies may reveal how LRT affects the likelihood of rupture and inspire novel approaches to guide scar formation.
Collapse
Affiliation(s)
- Daniel P. Pearce
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Mark T. Nemcek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Colleen M. Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
20
|
Oualha D, Ben Abderrahim S, Ben Abdeljelil N, BelHadj M, Ben Jomâa S, Saadi S, Zakhama A, Haj Salem N. Cardiac rupture during acute myocardial infarction : Autopsy study (2004-2020). Ann Cardiol Angeiol (Paris) 2023; 72:101601. [PMID: 37060875 DOI: 10.1016/j.ancard.2023.101601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/17/2023] [Accepted: 03/28/2023] [Indexed: 04/17/2023]
Abstract
INTRODUCTION Cardiac rupture is a rare but critical complication of myocardial infarction with an incidence of 1 to 3% of cases. We aimed in this autopsy study to analyze the anatomical, epidemiological, cardiac, and coronary profiles of cardiac rupture in the Monastir region. METHODS We conducted a descriptive study with retrospective data collection of all cases of myocardial infarction complicated by a cardiac rupture over seventeen years (2004-2020). RESULTS Thirty-one cases were included in this study. The mean age of the cases was 67 years with a male predominance. Sixteen cases (57%) had cardiovascular risk factors. The most common symptomatology reported before death was acute chest pain in 57% of cases. Fourteen cases (45%) corresponded to the definition of sudden cardiac death. At autopsy, the heart had a mean weight of 452.78 grams. A large hemopericardium was associated in 90% of cases. Myocardial rupture involved the posterior wall of the left ventricle in 50% of cases. The myocardial rupture occurred at a site of acute myocardial infarction in 86% of cases and on a myocardial scar in 14% of cases. The coronary study showed double or triple vessel atherosclerotic coronary artery disease in 57% of cases with fresh thrombi at the infarct-related coronary in 11% of cases. CONCLUSIONS Our analysis found that cardiac rupture mostly involved elderly subjects with underlying cardiovascular risk factors. Our findings sustain that age is a determining prognostic factor after acute coronary syndrome with the need for further education and awareness-raising efforts to speed up access to care for these patients.
Collapse
Affiliation(s)
- Dorra Oualha
- Department of Forensic Medicine, Fattouma Bourguiba University Hospital, June 1st 1995 Street, 5000, Monastir, Tunisia
| | - Sarra Ben Abderrahim
- Department of Forensic Medicine, Ibn El Jazzar University Hospital, Kairouan, Tunisia.
| | - Nouha Ben Abdeljelil
- Department of Pathological Anatomy and Cytology, Fattouma Bourguiba University Hospital, June 1st 1995 Street, 5000, Monastir, Tunisia
| | - Meriem BelHadj
- Department of Forensic Medicine, Fattouma Bourguiba University Hospital, June 1st 1995 Street, 5000, Monastir, Tunisia
| | - Sami Ben Jomâa
- Department of Forensic Medicine, Fattouma Bourguiba University Hospital, June 1st 1995 Street, 5000, Monastir, Tunisia
| | - Said Saadi
- Department of Forensic Medicine, Fattouma Bourguiba University Hospital, June 1st 1995 Street, 5000, Monastir, Tunisia
| | - Abdelfateh Zakhama
- Department of Pathological Anatomy and Cytology, Fattouma Bourguiba University Hospital, June 1st 1995 Street, 5000, Monastir, Tunisia
| | - Nidhal Haj Salem
- Department of Forensic Medicine, Fattouma Bourguiba University Hospital, June 1st 1995 Street, 5000, Monastir, Tunisia
| |
Collapse
|
21
|
Suhail H, Peng H, Xu J, Sabbah HN, Matrougui K, Liao TD, Ortiz PA, Bernstein KE, Rhaleb NE. Knockout of ACE-N facilitates improved cardiac function after myocardial infarction. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 3:100024. [PMID: 36778784 PMCID: PMC9910327 DOI: 10.1016/j.jmccpl.2022.100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Angiotensin-converting enzyme (ACE) hydrolyzes N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) into inactive fragments through its N-terminal site (ACE-N). We previously showed that Ac-SDKP mediates ACE inhibitors' cardiac effects. Whether increased bioavailability of endogenous Ac-SDKP caused by knocking out ACE-N also improves cardiac function in myocardial infarction (MI)-induced heart failure (HF) is unknown. Wild-type (WT) and ACE-N knockout (ACE-NKO) mice were subjected to MI by ligating the left anterior descending artery and treated with vehicle or Ac-SDKP (1.6 mg/kg/day, s.c.) for 5 weeks, after which echocardiography was performed and left ventricles (LV) were harvested for histology and molecular biology studies. ACE-NKO mice showed increased plasma Ac-SDKP concentrations in both sham and MI group compared to WT. Exogenous Ac-SDKP further increased its circulating concentrations in WT and ACE-NKO. Shortening (SF) and ejection (EF) fractions were significantly decreased in both WT and ACE-NKO mice post-MI, but ACE-NKO mice exhibited significantly lesser decrease. Exogenous Ac-SDKP ameliorated cardiac function post-MI only in WT but failed to show any additive improvement in ACE-NKO mice. Sarcoendoplasmic reticulum calcium transport ATPase (SERCA2), a marker of cardiac function and calcium homeostasis, was significantly decreased in WT post-MI but rescued with Ac-SDKP, whereas ACE-NKO mice displayed less loss of SERCA2 expression. Our study demonstrates that gene deletion of ACE-N resulted in improved LV cardiac function in mice post-MI, which is likely mediated by increased circulating Ac-SDKP and minimally reduced expression of SERCA2. Thus, future development of specific and selective inhibitors for ACE-N could represent a novel approach to increase endogenous Ac-SDKP toward protecting the heart from post-MI remodeling.
Collapse
Affiliation(s)
- Hamid Suhail
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Hongmei Peng
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Jiang Xu
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Division of Cardiovascular Medicine, Department of
Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Hani N. Sabbah
- Division of Cardiovascular Medicine, Department of
Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Khalid Matrougui
- Department of Physiology Sciences, Eastern Virginia
Medical School, Norfolk, VA 23501, USA
| | - Tang-Dong Liao
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Pablo A. Ortiz
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit,
MI 48201, USA
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
| | - Nour-Eddine Rhaleb
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit,
MI 48201, USA
| |
Collapse
|
22
|
Marshall KD, Klutho PJ, Song L, Roy R, Krenz M, Baines CP. Cardiac Myocyte-Specific Overexpression of FASTKD1 Prevents Ventricular Rupture After Myocardial Infarction. J Am Heart Assoc 2023; 12:e025867. [PMID: 36789858 PMCID: PMC10111501 DOI: 10.1161/jaha.122.025867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background The mitochondrial mRNA-binding protein FASTKD1 (Fas-activated serine/threonine [FAST] kinase domain-containing protein 1) protects myocytes from oxidative stress in vitro. However, the role of FASTKD1 in the myocardium in vivo is unknown. Therefore, we developed cardiac-specific FASTKD1 transgenic mice to test the effects of this protein on experimental myocardial infarction (MI). Methods and Results Transgenic mouse lines with cardiac myocyte-specific overexpression of FASTKD1 to varying degrees were generated. These mice displayed normal cardiac morphological features and function at the gross and microscopic levels. Isolated cardiac mitochondria from all transgenic mouse lines showed normal mitochondrial function, ATP levels, and permeability transition pore activity. Male nontransgenic and transgenic mice from the highest-expressing line were subjected to 8 weeks of permanent coronary ligation. Of nontransgenic mice, 40% underwent left ventricular free wall rupture within 7 days of MI compared with 0% of FASTKD1-overexpressing mice. At 3 days after MI, FASTKD1 overexpression did not alter infarct size. However, increased FASTKD1 resulted in decreased neutrophil and increased macrophage infiltration, elevated levels of the extracellular matrix component periostin, and enhanced antioxidant capacity compared with control mice. In contrast, markers of mitochondrial fusion/fission and apoptosis remained unaltered. Instead, transcriptomic analyses indicated activation of the integrated stress response in the FASTKD1 transgenic hearts. Conclusions Cardiac-specific overexpression of FASTKD1 results in viable mice displaying normal cardiac morphological features and function. However, these mice are resistant to MI-induced cardiac rupture and display altered inflammatory, extracellular matrix, and antioxidant responses following MI. Moreover, these protective effects were associated with enhanced activation of the integrated stress response.
Collapse
Affiliation(s)
- Kurt D Marshall
- Department of Biomedical Sciences University of Missouri Columbia MO
| | - Paula J Klutho
- Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Lihui Song
- Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Rajika Roy
- Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology University of Missouri Columbia MO.,Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Christopher P Baines
- Department of Biomedical Sciences University of Missouri Columbia MO.,Department of Medical Pharmacology and Physiology University of Missouri Columbia MO.,Dalton Cardiovascular Research Center University of Missouri Columbia MO
| |
Collapse
|
23
|
Liu X, Cui X, Zhou Z, Xu J, Zhou X, Yang W, Liu Y, Li H, Tan H. Factors associated with in-hospital mortality from free wall rupture after acute myocardial infarction. Heart Lung 2023; 57:198-202. [PMID: 36242825 DOI: 10.1016/j.hrtlng.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Free wall rupture is a fatal and emergency complication of acute myocardial infarction. The factors associated with in-hospital mortality from free wall rupture remain unclear. OBJECTIVES To investigate the factors associated with in-hospital mortality from free wall rupture. METHODS We performed a single-center, retrospective study. We enrolled 111 consecutive patients with free wall rupture following acute myocardial infarction who were admitted to Fuwai Hospital from January 2005 to May 2021. The primary endpoint was in-hospital death. Clinical characteristics, laboratory data, and treatment modalities associated with in-hospital mortality were analyzed. RESULTS Eighty-seven of the 111 study participants died in hospital. Multivariate Cox regression analysis showed that pericardiocentesis (hazard ratio [HR] 0.296, 95% confidence interval [CI] 0.094-0.929, p = 0.037), pericardial effusion at admission (HR 0.083, 95% CI 0.025-0.269, p<0.001), time interval between acute myocardial infarction and free wall rupture (HR 0.670, 95% CI 0.598-0.753, p<0.001), and previous myocardial infarction (HR 0.046, 95% CI 0.010-0.208, p<0.001) were independently associated with in-hospital mortality. CONCLUSIONS Pericardiocentesis, pericardial effusion at admission, the acute myocardial infarction to free wall rupture time, and previous myocardial infarction are associated with a lower rate of in-hospital mortality from free wall rupture after acute myocardial infarction.
Collapse
Affiliation(s)
- Xueying Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical Collage, Beijing, China
| | - Xiang Cui
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeming Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical Collage, Beijing, China
| | - Jingjing Xu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical Collage, Beijing, China
| | - Xianliang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical Collage, Beijing, China
| | - Weixian Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical Collage, Beijing, China
| | - Yaxin Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical Collage, Beijing, China
| | - Hanmei Li
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Huiqiong Tan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical Collage, Beijing, China.
| |
Collapse
|
24
|
Fang J, Zhang Y, Chen D, Zheng Y, Jiang J. Exosomes and Exosomal Cargos: A Promising World for Ventricular Remodeling Following Myocardial Infarction. Int J Nanomedicine 2022; 17:4699-4719. [PMID: 36217495 PMCID: PMC9547598 DOI: 10.2147/ijn.s377479] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Exosomes are a pluripotent group of extracellular nanovesicles secreted by all cells that mediate intercellular communications. The effective information within exosomes is primarily reflected in exosomal cargos, including proteins, lipids, DNAs, and non-coding RNAs (ncRNAs), the most intensively studied molecules. Cardiac resident cells (cardiomyocytes, fibroblasts, and endothelial cells) and foreign cells (infiltrated immune cells, cardiac progenitor cells, cardiosphere-derived cells, and mesenchymal stem cells) are involved in the progress of ventricular remodeling (VR) following myocardial infarction (MI) via transferring exosomes into target cells. Here, we summarize the pathological mechanisms of VR following MI, including cardiac myocyte hypertrophy, cardiac fibrosis, inflammation, pyroptosis, apoptosis, autophagy, angiogenesis, and metabolic disorders, and the roles of exosomal cargos in these processes, with a focus on proteins and ncRNAs. Continued research in this field reveals a novel diagnostic and therapeutic strategy for VR.
Collapse
Affiliation(s)
- Jiacheng Fang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yuxuan Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Delong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yiyue Zheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China,Correspondence: Jun Jiang, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People’s Republic of China, Tel/Fax +86 135 8870 6891, Email
| |
Collapse
|
25
|
New Insights into the Functions of MicroRNAs in Cardiac Fibrosis: From Mechanisms to Therapeutic Strategies. Genes (Basel) 2022; 13:genes13081390. [PMID: 36011301 PMCID: PMC9407613 DOI: 10.3390/genes13081390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/16/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibrosis is a significant global health problem associated with almost all types of heart disease. Extensive cardiac fibrosis reduces tissue compliance and contributes to adverse outcomes, such as cardiomyocyte hypertrophy, cardiomyocyte apoptosis, and even heart failure. It is mainly associated with pathological myocardial remodeling, characterized by the excessive deposition of extracellular matrix (ECM) proteins in cardiac parenchymal tissues. In recent years, a growing body of evidence demonstrated that microRNAs (miRNAs) have a crucial role in the pathological development of cardiac fibrosis. More than sixty miRNAs have been associated with the progression of cardiac fibrosis. In this review, we summarized potential miRNAs and miRNAs-related regulatory mechanisms for cardiac fibrosis and discussed the potential clinical application of miRNAs in cardiac fibrosis.
Collapse
|
26
|
PCSK9 Modulates Macrophage Polarization-Mediated Ventricular Remodeling after Myocardial Infarction. J Immunol Res 2022; 2022:7685796. [PMID: 35832650 PMCID: PMC9273409 DOI: 10.1155/2022/7685796] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/08/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Aims An increasing number of high-risk patients with coronary heart disease (similar to acute myocardial infarction (AMI)) are using PCSK9 inhibitors. However, whether PCSK9 affects myocardial repair and the molecular mechanism of PCSK9 modulation of immune inflammation after AMI are not known. The present research investigated the role of PCSK9 in the immunomodulation of macrophages after AMI and provided evidence for the clinical application of PCSK9 inhibitors after AMI to improve cardiac repair. Methods and Results Wild-type C57BL6/J (WT) and PCSK9−/− mouse hearts were subjected to left anterior descending (LAD) coronary artery occlusion to establish an AMI model. Correlation analysis showed that higher PCSK9 expression indicated worse cardiac function after AMI, and PCSK9 knockout reduced infarct size, improved cardiac function, and attenuated inflammatory cell infiltration compared to WT mice. Notably, the curative effects of PCSK9 inhibition were abolished after the systemic depletion of macrophages using clodronate liposomes. PCSK9 showed a regulatory effect on macrophage polarization in vivo and in vitro. Our studies also revealed that activation of the TLR4/MyD88/NF-κB axis was a possible mechanism of PCSK9 regulation of macrophage polarization. Conclusion Our data suggested that PCSK9 modulated macrophage polarization-mediated ventricular remodeling after myocardial infarction.
Collapse
|
27
|
Ma S, Bai L, Liu P, She G, Deng XL, Song AQ, Du XJ, Lu Q. Pathogenetic Link of Cardiac Rupture and Left Ventricular Thrombus Following Acute Myocardial Infarction: A Joint Preclinical and Clinical Study. Front Cardiovasc Med 2022; 9:858720. [PMID: 35757352 PMCID: PMC9218188 DOI: 10.3389/fcvm.2022.858720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background Cardiac rupture (CR) and left ventricular thrombus (LVT) remain important complications of acute myocardial infarction (MI), and they are currently regarded as independent events. We explored the pathogenetic link between CR and LVT by investigating a murine model of MI with a high frequency of CR and in patients with acute MI. Methods MI was induced in mice, the onset of CR was monitored, and the hearts of mice with or without fatal CR were histologically examined. Between 2015 and 2022, from patients admitted due to acute MI, the data of patients with CR or LVT were retrospectively collected and compared to uncomplicated patients (control). Results A total of 75% of mice (n = 65) with MI developed CR 2–4 days after MI. A histological examination of CR hearts revealed the existence of platelet-rich intramural thrombi in the rupture tunnel, which was connected at the endocardial site to platelet-fibrin thrombi within an LVT. In CR or non-CR mouse hearts, LV blood clots often contained a portion of platelet-fibrin thrombi that adhered to the infarct wall. In non-CR hearts, sites of incomplete CR or erosion of the infarct wall were typically coated with platelet thrombi and dense inflammatory cells. Of 8,936 patients with acute MI, CR and LVT occurred in 102 (1.14%) and 130 (1.45%) patients, respectively, with three cases having both complications. CR accounted for 32.8% of in-hospital deaths. The majority of CR (95%) or LVT (63%, early LVT) occurred within 7 days. In comparison to the control or LVT-late groups, patients with CR or early LVT reported increased levels of cellular and biochemical markers for inflammation or cardiac injury. Conclusion CR and LVT after MI are potentially linked in their pathogenesis. LVT occurring early after MI may be triggered by a thrombo-inflammatory response following wall rupture or endocardial erosion.
Collapse
Affiliation(s)
- Shan Ma
- Department of Internal Medicine-Cardiovascular, Cardiovascular Hospital, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ling Bai
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ping Liu
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - An-Qi Song
- Department of Internal Medicine-Cardiovascular, Cardiovascular Hospital, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- *Correspondence: Xiao-Jun Du,
| | - Qun Lu
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Qun Lu,
| |
Collapse
|
28
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
29
|
Rastegar Moghaddam SH, Hosseini M, Sabzi F, Hojjati Fard F, Marefati N, Beheshti F, Darroudi M, Ebrahimzadeh Bideskan A, Anaeigoudari A. Cardiovascular protective effect of nano selenium in hypothyroid rats: protection against oxidative stress and cardiac fibrosis. Clin Exp Hypertens 2022; 44:268-279. [PMID: 35142246 DOI: 10.1080/10641963.2022.2036994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nano selenium (Nano Sel) has many therapeutic properties including antioxidant, anticancer, and anti-inflammatory actions. OBJECTIVE Impacts of Nano Sel administration against cardiac fibrosis and heart and aorta tissue oxidative damage observed in hypothyroid rats were explored. METHODS The animals were randomly grouped and treated as: 1) Control; 2) Propylthiouracil (PTU) in which PTU was added to the drinking water (0.05%) to induce hypothyroidism; 3-5) PTU-Nano Sel 50, PTU-Nano Sel 100, and PTU-Nano Sel 150 groups, which received daily PTU plus 50,100 or 150 µg/kg of Nano Sel for 6 weeks intraperitoneally. The heart and aorta tissues were removed under deep anesthesia and then biochemical parameters including malondialdehyde (MDA), total thiol groups, catalase (CAT), and superoxide dismutase (SOD), as well as cardiac fibrosis were assessed. RESULTS Hypothyroidism induced by PTU was remarkably associated with myocardial hypertrophy and perivascular fibrosis in Masson's trichrome staining. Moreover, hypothyroidism increased MDA level, while it subtracted total thiol group content and activity of SOD and CAT. Treatment with Nano Sel recovered hypothyroidism-induced cardiac fibrosis in the histological assessment. Nano Sel also promoted CAT and SOD activity and thiol content, whereas alleviated MDA levels in the heart and aorta tissues. CONCLUSION Results propose that administration of Nano Sel exerts a protective role in the cardio vascular system via preventing cardiac fibrosis and inhibiting oxidative stress.
Collapse
Affiliation(s)
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Sabzi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Hojjati Fard
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
30
|
Dynamic Patterns of N6-Methyladenosine Profiles of Messenger RNA Correlated with the Cardiomyocyte Regenerability during the Early Heart Development in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5537804. [PMID: 34413927 PMCID: PMC8369182 DOI: 10.1155/2021/5537804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
N6-Methyladenosine (m6A) plays important roles in regulating mRNA processing. Despite rapid progress in this field, little is known about the role and mechanism of m6A modification in myocardial development and cardiomyocyte regeneration. Existing studies have shown that the heart tissues of newborn mice have the capability of proliferation and regeneration, but its mechanism, particularly its relation to m6A methylation, remains unknown. Methods. To systematically profile the mRNA m6A modification pattern in the heart tissues of mice at different developmental stages, we jointly performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of heart tissues of mice, respectively, aged 1 day old, 7 days old, and 28 days old. Results. We identified the linkages and association between differentially expressed mRNA transcripts and hyper or hypomethylated m6A peaks in C57BL/6J mice at different heart developmental stages. Results showed that the amount of m6A peaks and the level of m6A modification were the lowest in the heart of mice at 1 day old. By contrast, heart tissues from 7-day-old mice tended to possess the most m6A peaks and the highest global m6A level. However, the m6A characteristics of myocardial tissue changed little after 7 days old as compared to that of 1 day old. Specifically, we found 1269 downmethylated genes of 1434 methylated genes in 7-day-old mouse heart tissues as compared to those in 1-day-old mice. Hypermethylation of some specific genes may correlate with the heart's strong proliferative and regenerative capability at the first day after birth. In terms of m6A density, the tendency shifted from coding sequences (CDS) to 3′-untranslated regions (3′UTR) and stop codon with the progression of heart development. In addition, some genes demonstrated remarkable changes both in methylation and expression, like kiss1, plekha6, and megf6, which may play important roles in proliferation. Furthermore, signaling pathways highly related to proliferation such as “Wnt signaling pathway,” “ECM-receptor interaction,” and “cardiac chamber formation” were significantly enriched in 1-day-old methylated genes. Conclusions. Our results reveal a pattern that different m6A modifications are distributed in C57BL/6J heart tissue at different developmental stages, which provides new insights into a novel function of m6A methylation of mRNA in myocardial development and regeneration.
Collapse
|
31
|
Senescence and senolytics in cardiovascular disease: Promise and potential pitfalls. Mech Ageing Dev 2021; 198:111540. [PMID: 34237321 PMCID: PMC8387860 DOI: 10.1016/j.mad.2021.111540] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023]
Abstract
Ageing is the biggest risk factor for impaired cardiovascular health, with cardiovascular disease being the cause of death in 40 % of individuals over 65 years old. Ageing is associated with an increased prevalence of atherosclerosis, coronary artery stenosis and subsequent myocardial infarction, thoracic aortic aneurysm, valvular heart disease and heart failure. An accumulation of senescence and increased inflammation, caused by the senescence-associated secretory phenotype, have been implicated in the aetiology and progression of these age-associated diseases. Recently it has been demonstrated that compounds targeting components of anti-apoptotic pathways expressed by senescent cells can preferentially induce senescence cells to apoptosis and have been termed senolytics. In this review, we discuss the evidence demonstrating that senescence contributes to cardiovascular disease, with a particular focus on studies that indicate the promise of senotherapy. Based on these data we suggest novel indications for senolytics as a treatment of cardiovascular diseases which have yet to be studied in the context of senotherapy. Finally, while the potential benefits are encouraging, several complications may result from senolytic treatment. We, therefore, consider these challenges in the context of the cardiovascular system.
Collapse
|
32
|
Yoneyama K, Ishibashi Y, Koeda Y, Itoh T, Morino Y, Shimohama T, Ako J, Ilari Y, Yoshioka K, Kunishima T, Inami S, Ishikawa T, Sugimura H, Kozuma K, Sugi K, Yoshino H, Akashi YJ. Association between acute myocardial infarction-to-cardiac rupture time and in-hospital mortality risk: a retrospective analysis of multicenter registry data from the Cardiovascular Research Consortium-8 Universities (CIRC-8U). Heart Vessels 2021; 36:782-789. [PMID: 33452916 PMCID: PMC8093173 DOI: 10.1007/s00380-020-01762-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022]
Abstract
Despite the known association of cardiac rupture with acute myocardial infarction (AMI), it is still unclear whether the clinical characteristics are associated with the risk of in-hospital mortality in patients with AMI complicated by cardiac rupture. The purpose of this study was to investigate the association between the time of cardiac rupture occurrence and the risk of in-hospital mortality after AMI. We conducted a retrospective analysis of multicenter registry data from eight medical universities in Eastern Japan. From 10,278 consecutive patients with AMI, we included 183 patients who had cardiac rupture after AMI, and examined the incidence of in-hospital deaths during a median follow-up of 26 days. Patients were stratified into three groups according to the AMI-to-cardiac rupture time, namely the > 24-h group (n = 111), 24-48-h group (n = 20), and < 48-h group (n = 52). Cox proportional hazards regression analysis was used to estimate the hazard ratio (HR) and the confidence interval (CI) for in-hospital mortality. Around 87 (48%) patients experienced in-hospital death and 126 (67%) underwent a cardiac surgery. Multivariable Cox regression analysis revealed a non-linear association across the three groups for mortality (HR [CI]; < 24 h: 1.0, reference; 24-48 h: 0.73 [0.27-1.86]; > 48 h: 2.25 [1.22-4.15]) after adjustments for age, sex, Killip classification, percutaneous coronary intervention, blood pressure, creatinine, peak creatine kinase myocardial band fraction, left ventricular ejection fraction, and type of rupture. Cardiac surgery was independently associated with a reduction in the HR of mortality (HR [CI]: 0.27 [0.12-0.61]) and attenuated the association between the three AMI-to-cardiac rupture time categories and mortality (statistically non-significant) in the Cox model. These data suggest that the AMI-to-cardiac rupture time contributes significantly to the risk of in-hospital mortality; however, rapid diagnosis and prompt surgical interventions are crucial for improving outcomes in patients with cardiac rupture after AMI.
Collapse
Affiliation(s)
- Kihei Yoneyama
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki-City, Kanagawa, 216-8511, Japan
| | - Yuki Ishibashi
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki-City, Kanagawa, 216-8511, Japan
| | - Yorihiko Koeda
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Tomonori Itoh
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Yoshihiro Morino
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Takao Shimohama
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yuji Ilari
- Division of Cardiology, Tokai University School of Medicine, Isehara, Japan
| | - Koichiro Yoshioka
- Division of Cardiology, Tokai University School of Medicine, Isehara, Japan
| | - Tomoyuki Kunishima
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki-City, Kanagawa, 216-8511, Japan
| | - Shu Inami
- Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Japan
| | - Tetsuya Ishikawa
- Department of Cardiology, Saitama Medical Center, Dokkyo Medical University, Koshigaya, Japan
| | - Hiroyuki Sugimura
- Division of Cardiology, Nikko Medical Center, Dokkyo Medical University, Nikko, Japan
| | - Ken Kozuma
- Division of Cardiology, Department of Internal Medicine, Teikyo University, Tokyo, Japan
| | - Keiki Sugi
- Division of Cardiology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hideaki Yoshino
- Department of Cardiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoshihiro J Akashi
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki-City, Kanagawa, 216-8511, Japan.
| |
Collapse
|
33
|
Li S, Ma Y, Yan Y, Yan M, Wang X, Gong W, Nie S. Phosphodiesterase-5a Knock-out Suppresses Inflammation by Down-Regulating Adhesion Molecules in Cardiac Rupture Following Myocardial Infarction. J Cardiovasc Transl Res 2021; 14:816-823. [PMID: 33496888 DOI: 10.1007/s12265-021-10102-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
Cardiac rupture is a fatal complication of acute myocardial infarction (MI), associated with increased inflammation and damaged extracellular matrix. C57BL/6 J wild type (WT) and Pde5a knockout (Pde5a-/-) mice were selected to establish MI model. The rupture rate of Pde5a-/- mice was significantly reduced (P < 0.01) within 7 days post MI. The cardiac function of Pde5a-/- mice was better than WT mice both at day 3 and 7 post MI. Immunohistochemical staining and flow cytometry showed neutrophils and macrophages were decreased in Pde5a-/- mouse hearts. Inflammatory factors expression such as IL-1β, IL-6, IL-8, Mcp-1, TNF-α significantly decreased in Pde5a-/- mice post MI. Moreover, western blot showed the inhibition of inflammatory response was accompanied by down-regulation of intercellular adhesion molecule-1(ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) in Pde5a-/- mice. Knockout of Pde5a reduced inflammatory cells infiltration by down-regulating the expression of ICAM-1 and VCAM-1, and prevented early cardiac rupture after MI. All authors declare that they have no conflicts of interest. This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and institutional guidelines for the care and use of animals were followed.
Collapse
Affiliation(s)
- Siyi Li
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Youcai Ma
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yan Yan
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Mengwen Yan
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiao Wang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Wei Gong
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China. .,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China.
| | - Shaoping Nie
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China. .,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China.
| |
Collapse
|
34
|
Effect of Interventions in WNT Signaling on Healing of Cardiac Injury: A Systematic Review. Cells 2021; 10:cells10020207. [PMID: 33494313 PMCID: PMC7912185 DOI: 10.3390/cells10020207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
The wound healing that follows myocardial infarction is a complex process involving multiple mechanisms, such as inflammation, angiogenesis and fibrosis. In the last two decades, the involvement of WNT signaling has been extensively studied and effects on virtually all aspects of this wound healing have been reported. However, as often is the case in a newly emerging field, inconsistent and sometimes even contradictory findings have been reported. The aim of this systematic review is to provide a comprehensive overview of studies in which the effect of interventions in WNT signaling were investigated in in vivo models of cardiac injury. To this end, we used different search engines to perform a systematic search of the literature using the key words "WNT and myocardial and infarction". We categorized the interventions according to their place in the WNT signaling pathway (ligand, receptor, destruction complex or nuclear level). The most consistent improvements of the wound healing response were observed in studies in which the acylation of WNT proteins was inhibited by administering porcupine inhibitors, by inhibiting of the downstream glycogen synthase kinase-3β (GSK3β) and by intervening in the β-catenin-mediated gene transcription. Interestingly, in several of these studies, evidence was presented for activation of cardiomyocyte proliferation around the infarct area. These findings indicate that inhibition of WNT signaling can play a valuable role in the repair of cardiac injury, thereby improving cardiac function and preventing the development of heart failure.
Collapse
|
35
|
Hanna A, Humeres C, Frangogiannis NG. The role of Smad signaling cascades in cardiac fibrosis. Cell Signal 2020; 77:109826. [PMID: 33160018 DOI: 10.1016/j.cellsig.2020.109826] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022]
Abstract
Most myocardial pathologic conditions are associated with cardiac fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix (ECM) proteins. Although replacement fibrosis plays a reparative role after myocardial infarction, excessive, unrestrained or dysregulated myocardial ECM deposition is associated with ventricular dysfunction, dysrhythmias and adverse prognosis in patients with heart failure. The members of the Transforming Growth Factor (TGF)-β superfamily are critical regulators of cardiac repair, remodeling and fibrosis. TGF-βs are released and activated in injured tissues, bind to their receptors and transduce signals in part through activation of cascades involving a family of intracellular effectors the receptor-activated Smads (R-Smads). This review manuscript summarizes our knowledge on the role of Smad signaling cascades in cardiac fibrosis. Smad3, the best-characterized member of the family plays a critical role in activation of a myofibroblast phenotype, stimulation of ECM synthesis, integrin expression and secretion of proteases and anti-proteases. In vivo, fibroblast Smad3 signaling is critically involved in scar organization and exerts matrix-preserving actions. Although Smad2 also regulates fibroblast function in vitro, its in vivo role in rodent models of cardiac fibrosis seems more limited. Very limited information is available on the potential involvement of the Smad1/5/8 cascade in cardiac fibrosis. Dissection of the cellular actions of Smads in cardiac fibrosis, and identification of patient subsets with overactive or dysregulated myocardial Smad-dependent fibrogenic responses are critical for design of successful therapeutic strategies in patients with fibrosis-associated heart failure.
Collapse
Affiliation(s)
- Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
36
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
37
|
Ma S, Lu Q, Hu H, Du XJ. Post-infarct left ventricular thrombosis is mechanistically related to ventricular wall rupture. Med Hypotheses 2020; 144:109938. [DOI: 10.1016/j.mehy.2020.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/29/2020] [Indexed: 11/28/2022]
|
38
|
Lu Q, Liu P, Huo JH, Wang YN, Ma AQ, Yuan ZY, Du XJ, Bai L. Cardiac rupture complicating acute myocardial infarction: the clinical features from an observational study and animal experiment. BMC Cardiovasc Disord 2020; 20:409. [PMID: 32912149 PMCID: PMC7488297 DOI: 10.1186/s12872-020-01683-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cardiac rupture (CR) is a fatal complication of ST-elevation myocardial infarction (STEMI) with its incidence markedly declined in the recent decades. However, clinical features of CR patients now and the effect of reperfusion therapy to CR remain unclear. We investigated the clinical features of CR in STEMI patients and the effect of reperfusion therapy to CR in mice. METHODS Two studies were conducted. In clinical study, data of 1456 STEMI patients admitted to the First Hospital, Xi'an Jiaotong University during 2015.12. ~ 2018.12. were analyzed. In experimental study, 83 male C57BL/6 mice were operated to induce MI. Of them, 39 mice were permanent MI (group-1), and remaining mice received reperfusion after 1 h ischemia (21 mice, group-2) or 4 h ischemia (23 mice, group-3). All operated mice were monitored up to day-10. Animals were inspected three times daily for the incidence of death and autopsy was done for all mice found died to determine the cause of death. RESULTS CR was diagnosed in 40 patients: free-wall rupture in 17, ventricular septal rupture in 20, and combined locations in 3 cases. CR presented in 19 patients at admission and diagnosed in another 21 patients during 1 ~ 14 days post-STEMI, giving an in-hospital incidence of 1.4%. The mortality of CR patients was high during hospitalization accounting for 39% of total in-hospital death. By multivariate logistic regression analysis, older age, peak CK-MB and peak hs-CRP were independent predictors of CR post-STEMI. In mice with non-reperfused MI, 17 animals (43.6%) died of CR that occurred during 3-6 days post-MI. In MI mice received early or delayed reperfusion, all mice survived to the end of experiment except one mouse died of acute heart failure. CONCLUSION CR remains as a major cause of in-hospital death in STEMI patients. CR patients are characterized of being elderly, having larger infarct and more server inflammation. Experimentally, reperfusion post-MI prevented CR.
Collapse
Affiliation(s)
- Qun Lu
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China.
| | - Ping Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Jian-Hua Huo
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Yan-Ni Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Ai-Qun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Zu-Yi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Xiao-Jun Du
- Experimental Cardiology Lab, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia. .,College of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi Province, P.R. China.
| | - Ling Bai
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| |
Collapse
|
39
|
Hanna A, Shinde AV, Frangogiannis NG. Validation of diagnostic criteria and histopathological characterization of cardiac rupture in the mouse model of nonreperfused myocardial infarction. Am J Physiol Heart Circ Physiol 2020; 319:H948-H964. [PMID: 32886000 DOI: 10.1152/ajpheart.00318.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In patients with myocardial infarction (MI), cardiac rupture is an uncommon but catastrophic complication. In the mouse model of nonreperfused MI, reported rupture rates are highly variable and depend not only on the genetic background and sex of animals but also on the method used for documentation of rupture. In most studies, diagnosis of cardiac rupture is based on visual inspection during autopsy; however, criteria are poorly defined. We performed systematic histopathological analysis of whole hearts from C57BL/6J mice dying after nonreperfused MI and evaluated the reliability of autopsy-based criteria in identification of rupture. Moreover, we compared the cell biological environment of the infarct between rupture-related and rupture-independent deaths. Histopathological analysis documented rupture in 50% of mice dying during the first week post-MI. Identification of a gross rupture site was highly specific but had low sensitivity; in contrast, hemothorax had high sensitivity but low specificity. Mice with rupture had lower myofibroblast infiltration, accentuated macrophage influx, and a trend toward reduced collagen content in the infarct. Male mice had increased mortality and higher incidence of rupture. However, infarct myeloid cells harvested from male and female mice at the peak of the incidence of rupture had comparable inflammatory gene expression. In conclusion, the reliability of autopsy in documentation of rupture in infarcted mice is dependent on the specific criteria used. Macrophage-driven inflammation and reduced activation of collagen-secreting reparative myofibroblasts may be involved in the pathogenesis of post-MI cardiac rupture.NEW & NOTEWORTHY We show that cardiac rupture accounts for 50% of deaths in C57BL/6J mice undergoing nonreperfused myocardial infarction protocols. Overestimation of rupture events in published studies likely reflects the low specificity of hemothorax as a criterion for documentation of rupture. In contrast, identification of a gross rupture site has high specificity and low sensitivity. We also show that mice dying of rupture have increased macrophage influx and attenuated myofibroblast infiltration in the infarct. These findings are consistent with a role for perturbations in the balance between inflammatory and reparative responses in the pathogenesis of postinfarction cardiac rupture. We also report that the male predilection for rupture in infarcted mice is not associated with increased inflammatory activation of myeloid cells.
Collapse
Affiliation(s)
- Anis Hanna
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Arti V Shinde
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Nikolaos G Frangogiannis
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
40
|
Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Res Cardiol 2020; 115:52. [PMID: 32748089 PMCID: PMC7398957 DOI: 10.1007/s00395-020-0816-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Soon after birth, the regenerative capacity of the mammalian heart is lost, cardiomyocytes withdraw from the cell cycle and demonstrate a minimal proliferation rate. Despite improved treatment and reperfusion strategies, the uncompensated cardiomyocyte loss during injury and disease results in cardiac remodeling and subsequent heart failure. The promising field of regenerative medicine aims to restore both the structure and function of damaged tissue through modulation of cellular processes and regulatory mechanisms involved in cardiac cell cycle arrest to boost cardiomyocyte proliferation. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are functional RNA molecules with no protein-coding function that have been reported to engage in cardiac regeneration and repair. In this review, we summarize the current understanding of both the biological functions and molecular mechanisms of ncRNAs involved in cardiomyocyte proliferation. Furthermore, we discuss their impact on the structure and contractile function of the heart in health and disease and their application for therapeutic interventions.
Collapse
|
41
|
Gu Y, Panda K, Bensimhon A, Bernstein W. Hybrid Approach to Post-Myocardial Infarction Ventricular Septal Rupture Repair and Its Early Complications. J Cardiothorac Vasc Anesth 2020; 35:274-280. [PMID: 32660928 DOI: 10.1053/j.jvca.2020.06.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Gu
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| | - Kunal Panda
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Ariel Bensimhon
- Department of Anesthesiology, University of Vermont School of Medicine, Burlington, VT
| | - Wendy Bernstein
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
42
|
Kolpakov MA, Guo X, Rafiq K, Vlasenko L, Hooshdaran B, Seqqat R, Wang T, Fan X, Tilley DG, Kostyak JC, Kunapuli SP, Houser SR, Sabri A. Loss of Protease-Activated Receptor 4 Prevents Inflammation Resolution and Predisposes the Heart to Cardiac Rupture After Myocardial Infarction. Circulation 2020; 142:758-775. [PMID: 32489148 DOI: 10.1161/circulationaha.119.044340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cardiac rupture is a major lethal complication of acute myocardial infarction (MI). Despite significant advances in reperfusion strategies, mortality from cardiac rupture remains high. Studies suggest that cardiac rupture can be accelerated by thrombolytic therapy, but the relevance of this risk factor remains controversial. METHODS We analyzed protease-activated receptor 4 (Par4) expression in mouse hearts with MI and investigated the effects of Par4 deletion on cardiac remodeling and function after MI by echocardiography, quantitative immunohistochemistry, and flow cytometry. RESULTS Par4 mRNA and protein levels were increased in mouse hearts after MI and in isolated cardiomyocytes in response to hypertrophic and inflammatory stimuli. Par4-deficient mice showed less myocyte apoptosis, reduced infarct size, and improved functional recovery after acute MI relative to wild-type (WT). Conversely, Par4-/- mice showed impaired cardiac function, greater rates of myocardial rupture, and increased mortality after chronic MI relative to WT. Pathological evaluation of hearts from Par4-/- mice demonstrated a greater infarct expansion, increased cardiac hemorrhage, and delayed neutrophil accumulation, which resulted in impaired post-MI healing compared with WT. Par4 deficiency also attenuated neutrophil apoptosis in vitro and after MI in vivo and impaired inflammation resolution in infarcted myocardium. Transfer of Par4-/- neutrophils, but not of Par4-/- platelets, in WT recipient mice delayed inflammation resolution, increased cardiac hemorrhage, and enhanced cardiac dysfunction. In parallel, adoptive transfer of WT neutrophils into Par4-/- mice restored inflammation resolution, reduced cardiac rupture incidence, and improved cardiac function after MI. CONCLUSIONS These findings reveal essential roles of Par4 in neutrophil apoptosis and inflammation resolution during myocardial healing and point to Par4 inhibition as a potential therapy that should be limited to the acute phases of ischemic insult and avoided for long-term treatment after MI.
Collapse
Affiliation(s)
- Mikhail A Kolpakov
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Xinji Guo
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Khadija Rafiq
- Thomas Jefferson University, Philadelphia, PA (K.R.)
| | - Liudmila Vlasenko
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Bahman Hooshdaran
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Rachid Seqqat
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Tao Wang
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Xiaoxuan Fan
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Douglas G Tilley
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - John C Kostyak
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Satya P Kunapuli
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Steven R Houser
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Abdelkarim Sabri
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| |
Collapse
|
43
|
Substance P Administered after Myocardial Infarction Upregulates Microphthalmia-Associated Transcription Factor, GATA4, and the Expansion of c-Kit + Cells. Stem Cells Int 2020; 2020:1835950. [PMID: 32104183 PMCID: PMC7035579 DOI: 10.1155/2020/1835950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/06/2019] [Accepted: 12/05/2019] [Indexed: 01/14/2023] Open
Abstract
Microphthalmia-associated transcription factor (MITF), a basic helix-loop-helix leucine zipper transcription factor, can govern gene expression by binding to E box elements in the promoter region of its target gene. Although high levels of MITF have been observed in cardiomyocytes and the heart, the role of MITF after myocardial infarction (MI) remains unclear. We investigated the association between substance P (SP)/neurokinin-1 receptor (NK1R) signaling and MITF expression after MI. Male Sprague-Dawley rats (8 weeks) were randomly divided in two groups: ischemia/reperfusion injury (I/R) and SP injection (5 nmol/kg, SP+I/R). At the end of 7 days, the left ventricle (LV; LV7daysI/R, LV7daysSP+I/R) and infarct-related areas (IA; IA7daysI/R, IA7daysSP+I/R) from the hearts were collected. Immunofluorescence staining demonstrated that the LV7daysSP+I/R had a larger population of c-Kit+ GATA4high cells, which markedly upregulated MITF, c-Kit, and GATA4. c-Kit+ cells in the explant-derived cells (EDCs) derived from IA7daysSP+I/R migrated more widely than EDCs IA7daysI/R. Immunofluorescence staining, western blot analysis, and qRT-PCR assay showed that SP-treated c-Kit+ cells exhibited a high expression of c-Kit, GATA4, and MITF. FTY720 (a MITF inhibitor), RP67580 (NK1R inhibitor), or both inhibited the migration and proliferation of c-Kit+ cells increased by SP and blocked the upregulation of c-Kit, GATA4, and MITF. Overall, we suggest that MITF might be a potential regulator in SP-mediated c-Kit+ cell expansion post-MI via c-Kit and GATA4.
Collapse
|
44
|
Wang Y, Liu J, Kong Q, Cheng H, Tu F, Yu P, Liu Y, Zhang X, Li C, Li Y, Min X, Du S, Ding Z, Liu L. Cardiomyocyte-specific deficiency of HSPB1 worsens cardiac dysfunction by activating NFκB-mediated leucocyte recruitment after myocardial infarction. Cardiovasc Res 2020; 115:154-167. [PMID: 29982352 DOI: 10.1093/cvr/cvy163] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Aims Inadequate healing after myocardial infarction (MI) leads to heart failure and fatal ventricular rupture, while optimal healing requires timely induction and resolution of inflammation. This study tested the hypothesis that heat shock protein B1 (HSPB1), which limits myocardial inflammation during endotoxemia, modulates wound healing after MI. Methods and results To test this hypothesis, cardiomyocyte-specific HSPB1 knockout (Hspb1-/-) mice were generated using the Cre-LoxP recombination system. MI was induced by ligation of the left anterior descending coronary artery in Hspb1-/- and wild-type (WT) littermates. HSPB1 was up-regulated in cardiomyocytes of WT animals in response to MI, and deficiency of cardiomyocyte HSPB1 increased MI-induced cardiac rupture and mortality within 21 days after MI. Serial echocardiography showed more aggravated remodelling and cardiac dysfunction in Hspb1-/- mice than in WT mice at 1, 3, and 7 days after MI. Decreased collagen deposition and angiogenesis, as well as increased MMP2 and MMP9 activity, were also observed in Hspb1-/- mice compared with WT controls after MI, using immunofluorescence, polarized light microscopy, and zymographic analyses. Notably, Hspb1-/- hearts exhibited enhanced and prolonged leucocyte infiltration, enhanced expression of inflammatory cytokines, and enhanced TLR4/MyD88/NFκB activation compared with WT controls after MI. In-depth molecular analyses in both mice and primary cardiomyocytes demonstrated that cardiomyocyte-specific knockout of HSPB1 increased nuclear factor-κB (NFκB) activation, which promoted the expression of proinflammatory mediators. This led to increased leucocyte recruitment, thereby to excessive inflammation, ultimately resulting in adverse remodelling, cardiac dysfunction, and cardiac rupture following MI. Conclusion These data suggest that HSPB1 acts as a negative regulator of NFκB-mediated leucocyte recruitment and the subsequent inflammation in cardiomyocytes. Cardiomyocyte HSPB1 is required for wound healing after MI and could be a target for myocardial repair in MI patients.
Collapse
Affiliation(s)
- Yana Wang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Jiali Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Cheng
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Tu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Peng Yu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Ying Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN, USA
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xinxu Min
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuya Du
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| |
Collapse
|
45
|
Soepriatna AH, Yeh AK, Clifford AD, Bezci SE, O'Connell GD, Goergen CJ. Three-dimensional myocardial strain correlates with murine left ventricular remodelling severity post-infarction. J R Soc Interface 2019; 16:20190570. [PMID: 31744418 DOI: 10.1098/rsif.2019.0570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heart failure continues to be a common and deadly sequela of myocardial infarction (MI). Despite strong evidence suggesting the importance of myocardial mechanics in cardiac remodelling, many MI studies still rely on two-dimensional analyses to estimate global left ventricular (LV) function. Here, we integrated four-dimensional ultrasound with three-dimensional strain mapping to longitudinally characterize LV mechanics within and around infarcts in order to study the post-MI remodelling process. To induce infarcts with varying severities, we separated 15 mice into three equal-sized groups: (i) sham, (ii) 30 min ischaemia-reperfusion, and (iii) permanent ligation of the left coronary artery. Four-dimensional ultrasound from a high-frequency small animal system was used to monitor changes in LV geometry, function and strain over 28 days. We reconstructed three-dimensional myocardial strain maps and showed that strain profiles at the infarct border followed a sigmoidal behaviour. We also identified that mice with mild remodelling had significantly higher strains in the infarcted myocardium than those with severe injury. Finally, we developed a new approach to non-invasively estimate infarct size from strain maps, which correlated well with histological results. Taken together, the presented work provides a thorough approach to quantify regional strain, an important component when assessing post-MI remodelling.
Collapse
Affiliation(s)
- Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - A Kevin Yeh
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Abigail D Clifford
- Department of Animal Sciences, Purdue University, Creighton Hall, 270 S. Russell Street, West Lafayette, IN 47907, USA
| | - Semih E Bezci
- Department of Mechanical Engineering, University of California - Berkeley, 5122 Etcheverry Hall, Berkeley, CA 94720, USA
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California - Berkeley, 5122 Etcheverry Hall, Berkeley, CA 94720, USA.,Department of Orthopaedic Surgery, University of California - San Francisco, 500 Parnassus Avenue, Millberry Union, Suite MU320 W, San Francisco, CA 94143, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA.,Center for Cancer Research, Purdue University, 201 S. University Street, West Lafayette, IN 47907, USA
| |
Collapse
|
46
|
Korenczuk CE, Barocas VH, Richardson WJ. Effects of Collagen Heterogeneity on Myocardial Infarct Mechanics in a Multiscale Fiber Network Model. J Biomech Eng 2019; 141:091015. [PMID: 31141605 PMCID: PMC6807994 DOI: 10.1115/1.4043865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/23/2019] [Indexed: 01/14/2023]
Abstract
The scar that forms after a myocardial infarction is often characterized by a highly disordered architecture but generally exhibits some degree of collagen fiber orientation, with a resulting mechanical anisotropy. When viewed in finer detail, however, the heterogeneity of the sample is clear, with different subregions exhibiting different fiber orientations. In this work, we used a multiscale finite element model to explore the consequences of the heterogeneity in terms of mechanical behavior. To do so, we used previously obtained fiber alignment maps of rat myocardial scar slices (n = 15) to generate scar-specific finite element meshes that were populated with fiber models based on the local alignment state. These models were then compared to isotropic models with the same sample shape and fiber density, and to homogeneous models with the same sample shape, fiber density, and average fiber alignment as the scar-specific models. All simulations involved equibiaxial extension of the sample with free motion in the third dimension. We found that heterogeneity led to a lower degree of mechanical anisotropy and a higher level of local stress concentration than the corresponding homogeneous model, and also that fibers failed in the heterogeneous model at much lower macroscopic strains than in the isotropic and homogeneous models. Taken together, these results suggest that scar heterogeneity may impair myocardial mechanical function both in terms of anisotropy and strength, and that individual variations in scar heterogeneity could be an important consideration for understanding scar remodeling and designing therapeutic interventions for patients after myocardial infarction.
Collapse
Affiliation(s)
- Christopher E Korenczuk
- Department of Biomedical Engineering,University of Minnesota,7-105 Nils Hasselmo Hall,312 Church Street SE,Minneapolis, MN 55455e-mail:
| | - Victor H Barocas
- Department of Biomedical Engineering,University of Minnesota,7-105 Nils Hasselmo Hall,312 Church Street SE,Minneapolis, MN 55455e-mail:
| | - William J Richardson
- Department of Bioengineering,Clemson University,401-3 Rhodes Engineering Research Center,118 Engineering Service Drive,Clemson, SC 29631e-mail:
| |
Collapse
|
47
|
Peng H, Xu J, Yang XP, Kassem KM, Rhaleb IA, Peterson E, Rhaleb NE. N-acetyl-seryl-aspartyl-lysyl-proline treatment protects heart against excessive myocardial injury and heart failure in mice. Can J Physiol Pharmacol 2019; 97:753-765. [PMID: 30998852 PMCID: PMC6824427 DOI: 10.1139/cjpp-2019-0047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myocardial infarction (MI) in mice results in cardiac rupture at 4-7 days after MI, whereas cardiac fibrosis and dysfunction occur later. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has anti-inflammatory, anti-fibrotic, and pro-angiogenic properties. We hypothesized that Ac-SDKP reduces cardiac rupture and adverse cardiac remodeling, and improves function by promoting angiogenesis and inhibiting detrimental reactive fibrosis and inflammation after MI. C57BL/6J mice were subjected to MI and treated with Ac-SDKP (1.6 mg/kg per day) for 1 or 5 weeks. We analyzed (1) intercellular adhesion molecule-1 (ICAM-1) expression; (2) inflammatory cell infiltration and angiogenesis; (3) gelatinolytic activity; (4) incidence of cardiac rupture; (5) p53, the endoplasmic reticulum stress marker CCAAT/enhancer binding protein homology protein (CHOP), and cardiomyocyte apoptosis; (6) sarcoplasmic reticulum Ca2+ ATPase (SERCA2) expression; (7) interstitial collagen fraction and capillary density; and (8) cardiac remodeling and function. Acutely, Ac-SDKP reduced cardiac rupture, decreased ICAM-1 expression and the number of infiltrating macrophages, decreased gelatinolytic activity, p53 expression, and myocyte apoptosis, but increased capillary density in the infarction border. Chronically, Ac-SDKP improved cardiac structures and function, reduced CHOP expression and interstitial collagen fraction, and preserved myocardium SERCA2 expression. Thus, Ac-SDKP decreased cardiac rupture, ameliorated adverse cardiac remodeling, and improved cardiac function after MI, likely through preserved SERCA2 expression and inhibition of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Hongmei Peng
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Jiang Xu
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Xiao-Ping Yang
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Kamal M Kassem
- b Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45219, USA
| | - Imane A Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Ed Peterson
- c Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Nour-Eddine Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
- d Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
48
|
Kassem KM, Vaid S, Peng H, Sarkar S, Rhaleb NE. Tβ4-Ac-SDKP pathway: Any relevance for the cardiovascular system? Can J Physiol Pharmacol 2019; 97:589-599. [PMID: 30854877 PMCID: PMC6824425 DOI: 10.1139/cjpp-2018-0570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The last 20 years witnessed the emergence of the thymosin β4 (Tβ4)-N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) pathway as a new source of future therapeutic tools to treat cardiovascular and renal diseases. In this review article, we attempted to shed light on the numerous experimental findings pertaining to the many promising cardiovascular therapeutic avenues for Tβ4 and (or) its N-terminal derivative, Ac-SDKP. Specifically, Ac-SDKP is endogenously produced from the 43-amino acid Tβ4 by 2 successive enzymes, meprin α and prolyl oligopeptidase. We also discussed the possible mechanisms involved in the Tβ4-Ac-SDKP-associated cardiovascular biological effects. In infarcted myocardium, Tβ4 and Ac-SDKP facilitate cardiac repair after infarction by promoting endothelial cell migration and myocyte survival. Additionally, Tβ4 and Ac-SDKP have antifibrotic and anti-inflammatory properties in the arteries, heart, lungs, and kidneys, and stimulate both in vitro and in vivo angiogenesis. The effects of Tβ4 can be mediated directly through a putative receptor (Ku80) or via its enzymatically released N-terminal derivative Ac-SDKP. Despite the localization and characterization of Ac-SDKP binding sites in myocardium, more studies are needed to fully identify and clone Ac-SDKP receptors. It remains promising that Ac-SDKP or its degradation-resistant analogs could serve as new therapeutic tools to treat cardiac, vascular, and renal injury and dysfunction to be used alone or in combination with the already established pharmacotherapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Kamal M Kassem
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- b Internal Medicine Department, University of Cincinnati Medical Center, Cincinnati, OH 45219, USA
| | - Sonal Vaid
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- c Internal Medicine Department, St. Vincent Indianapolis Hospital, Indianapolis, IN 46260, USA
| | - Hongmei Peng
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Sarah Sarkar
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Nour-Eddine Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- d Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
49
|
Toor IS, Rückerl D, Mair I, Thomson A, Rossi AG, Newby DE, Allen JE, Gray GA. Enhanced monocyte recruitment and delayed alternative macrophage polarization accompanies impaired repair following myocardial infarction in C57BL/6 compared to BALB/c mice. Clin Exp Immunol 2019; 198:83-93. [PMID: 31119724 PMCID: PMC6718279 DOI: 10.1111/cei.13330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 12/24/2022] Open
Abstract
Activation of the innate immune response following myocardial infarction (MI) is essential for infarct repair. Preclinical models of MI commonly use C57BL/6 mice, which have a type 1‐dominant immune response, whereas other mouse strains such as BALB/c mice have a type 2‐dominant immune response. We compared C57BL/6 and BALB/c mice to investigate whether predisposition towards a proinflammatory phenotype influences the dynamics of the innate immune response to MI and associated infarct healing and the risk of cardiac rupture. MI was induced by permanent coronary artery ligation in 12–15‐week‐old male wild‐type BALB/c and C57BL/6 mice. Prior to MI, C57BL/6 mice had a lower proportion of CD206+ anti‐inflammatory macrophages in the heart and an expanded blood pool of proinflammatory Ly6Chigh monocytes in comparison to BALB/c mice. The systemic inflammatory response in C57BL/6 mice following MI was more pronounced, with greater peripheral blood Ly6Chigh monocytosis, splenic Ly6Chigh monocyte mobilization and myeloid cell infiltration of pericardial adipose tissue. This led to an increased and prolonged macrophage accumulation, as well as delayed transition towards anti‐inflammatory macrophage polarization in the infarct zone and surrounding tissues of C57BL/6 mice. These findings accompanied a higher rate of mortality due to cardiac rupture in C57BL/6 mice compared with BALB/c mice. We conclude that lower post‐MI survival of C57BL/6 mice over BALB/c mice is mediated in part by a more pronounced and prolonged inflammatory response. Outcomes in BALB/c mice highlight the therapeutic potential of modulating resolution of the innate immune response following MI for the benefit of successful infarct healing.
Collapse
Affiliation(s)
- I S Toor
- BHF/University Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - D Rückerl
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Edinburgh, UK
| | - I Mair
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - A Thomson
- BHF/University Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - D E Newby
- BHF/University Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - J E Allen
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Edinburgh, UK
| | - G A Gray
- BHF/University Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
50
|
Qin CX, Rosli S, Deo M, Cao N, Walsh J, Tate M, Alexander AE, Donner D, Horlock D, Li R, Kiriazis H, Lee MKS, Bourke JE, Yang Y, Murphy AJ, Du XJ, Gao XM, Ritchie RH. Cardioprotective Actions of the Annexin-A1 N-Terminal Peptide, Ac 2-26, Against Myocardial Infarction. Front Pharmacol 2019; 10:269. [PMID: 31001111 PMCID: PMC6457169 DOI: 10.3389/fphar.2019.00269] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
The anti-inflammatory, pro-resolving annexin-A1 protein acts as an endogenous brake against exaggerated cardiac necrosis, inflammation, and fibrosis following myocardial infarction (MI) in vivo. Little is known, however, regarding the cardioprotective actions of the N-terminal-derived peptide of annexin A1, Ac2-26, particularly beyond its anti-necrotic actions in the first few hours after an ischemic insult. In this study, we tested the hypothesis that exogenous Ac2-26 limits cardiac injury in vitro and in vivo. Firstly, we demonstrated that Ac2-26 limits cardiomyocyte death both in vitro and in mice subjected to ischemia-reperfusion (I-R) injury in vivo (Ac2-26, 1 mg/kg, i.v. just prior to post-ischemic reperfusion). Further, Ac2-26 (1 mg/kg i.v.) reduced cardiac inflammation (after 48 h reperfusion), as well as both cardiac fibrosis and apoptosis (after 7-days reperfusion). Lastly, we investigated whether Ac2-26 preserved cardiac function after MI. Ac2-26 (1 mg/kg/day s.c., osmotic pump) delayed early cardiac dysfunction 1 week post MI, but elicited no further improvement 4 weeks after MI. Taken together, our data demonstrate the first evidence that Ac2-26 not only preserves cardiomyocyte survival in vitro, but also offers cardioprotection beyond the first few hours after an ischemic insult in vivo. Annexin-A1 mimetics thus represent a potential new therapy to improve cardiac outcomes after MI.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sarah Rosli
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nga Cao
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jesse Walsh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mitchel Tate
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Amy E Alexander
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Daniel Donner
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Duncan Horlock
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Renming Li
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Man K S Lee
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jane E Bourke
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Yuan Yang
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Xiao Ming Gao
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| |
Collapse
|