1
|
Ruan Y, Yu Y, Wu M, Jiang Y, Qiu Y, Ruan S. The renin-angiotensin-aldosterone system: An old tree sprouts new shoots. Cell Signal 2024; 124:111426. [PMID: 39306263 DOI: 10.1016/j.cellsig.2024.111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The intricate physiological and pathological diversity of the Renin-Angiotensin-Aldosterone System (RAAS) underpins its role in maintaining bodily equilibrium. This paper delves into the classical axis (Renin-ACE-Ang II-AT1R axis), the protective arm (ACE2-Ang (1-7)-MasR axis), the prorenin-PRR-MAP kinases ERK1/2 axis, and the Ang IV-AT4R-IRAP cascade of RAAS, examining their functions in both physiological and pathological states. The dysregulation or hyperactivation of RAAS is intricately linked to numerous diseases, including cardiovascular disease (CVD), renal damage, metabolic disease, eye disease, Gastrointestinal disease, nervous system and reproductive system diseases. This paper explores the pathological mechanisms of RAAS in detail, highlighting its significant role in disease progression. Currently, in addition to traditional drugs like ACEI, ARB, and MRA, several novel therapeutics have emerged, such as angiotensin receptor-enkephalinase inhibitors, nonsteroidal mineralocorticoid receptor antagonists, aldosterone synthase inhibitors, aminopeptidase A inhibitors, and angiotensinogen inhibitors. These have shown potential efficacy and application prospects in various clinical trials for related diseases. Through an in-depth analysis of RAAS, this paper aims to provide crucial insights into its complex physiological and pathological mechanisms and offer valuable guidance for developing new therapeutic approaches. This comprehensive discussion is expected to advance the RAAS research field and provide innovative ideas and directions for future clinical treatment strategies.
Collapse
Affiliation(s)
- Yaqing Ruan
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China
| | - Yongxin Yu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meiqin Wu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China
| | - Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuliang Qiu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China.
| | - Shiwei Ruan
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China.
| |
Collapse
|
2
|
Du C, Wang S, Shi X, Jing P, Wang H, Wang L. Identification of senescence related hub genes and potential therapeutic compounds for dilated cardiomyopathy via comprehensive transcriptome analysis. Comput Biol Med 2024; 179:108901. [PMID: 39029429 DOI: 10.1016/j.compbiomed.2024.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a common cause of heart failure. However, the role of cellular senescence in DCM has not been fully elucidated. Here, we aimed to investigate senescence in DCM, identify senescence related characteristic genes, and explore the potential small molecule compounds for DCM treatment. METHODS DCM-associated datasets and senescence-related genes were respectively obtained from Gene Expression Omnibus (GEO) database and CellAge database. The characteristic genes were identified through methods including weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), and random forest. The expression of characteristic genes was verified in the mouse DCM model. Moreover, the CIBERSORT algorithm was applied to analyze immune characteristics of DCM. Finally, several therapeutic compounds were predicted by CMap analysis, and the potential mechanism of chlorogenic acid (CGA) was investigated by molecular docking and molecular dynamics simulation. RESULTS Three DCM- and senescence-related characteristic genes (MME, GNMT and PLA2G2A) were ultimately identified through comprehensive transcriptome analysis, and were experimentally verified in the doxorubicin induced mouse DCM. Meanwhile, the established diagnostic model, derived from dataset analysis, showed ideal diagnostic performance for DCM. Immune cell infiltration analysis suggested dysregulation of inflammation in DCM, and the characteristic genes were significantly associated with invasive immune cells. Finally, based on the specific gene expression profile of DCM, several potential therapeutic compounds were predicted through CMap analysis. In addition, molecular docking and molecular dynamics simulations suggested that CGA could bind to the active pocket of MME protein. CONCLUSION Our study presents three characteristic genes (MME, PLA2G2A, and GNMT) and a novel senescence-based diagnostic nomogram, and discusses potential therapeutic compounds, providing new insights into the diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Chong Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Sibo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinying Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Jing
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Shah SK, Chaple DR, Masand VH, Jawarkar RD, Chaudhari S, Abiramasundari A, Zaki MEA, Al-Hussain SA. Multi-Target In-Silico modeling strategies to discover novel angiotensin converting enzyme and neprilysin dual inhibitors. Sci Rep 2024; 14:15991. [PMID: 38987327 PMCID: PMC11237057 DOI: 10.1038/s41598-024-66230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Cardiovascular diseases, including heart failure, stroke, and hypertension, affect 608 million people worldwide and cause 32% of deaths. Combination therapy is required in 60% of patients, involving concurrent Renin-Angiotensin-Aldosterone-System (RAAS) and Neprilysin inhibition. This study introduces a novel multi-target in-silico modeling technique (mt-QSAR) to evaluate the inhibitory potential against Neprilysin and Angiotensin-converting enzymes. Using both linear (GA-LDA) and non-linear (RF) algorithms, mt-QSAR classification models were developed using 983 chemicals to predict inhibitory effects on Neprilysin and Angiotensin-converting enzymes. The Box-Jenkins method, feature selection method, and machine learning algorithms were employed to obtain the most predictive model with ~ 90% overall accuracy. Additionally, the study employed virtual screening of designed scaffolds (Chalcone and its analogues, 1,3-Thiazole, 1,3,4-Thiadiazole) applying developed mt-QSAR models and molecular docking. The identified virtual hits underwent successive filtration steps, incorporating assessments of drug-likeness, ADMET profiles, and synthetic accessibility tools. Finally, Molecular dynamic simulations were then used to identify and rank the most favourable compounds. The data acquired from this study may provide crucial direction for the identification of new multi-targeted cardiovascular inhibitors.
Collapse
Affiliation(s)
- Sapan K Shah
- Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Hingna Road, Nagpur, 440016, Maharashtra, India.
| | - Dinesh R Chaple
- Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Hingna Road, Nagpur, 440016, Maharashtra, India
| | - Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, 444602, Maharashtra, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr. Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati, 444603, India
| | - Somdatta Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Nigdi, Pune, India
| | | | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia.
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
| |
Collapse
|
4
|
Nair S, Razo-Azamar M, Jayabalan N, Dalgaard LT, Palacios-González B, Sørensen A, Kampmann U, Handberg A, Carrion F, Salomon C. Advances in extracellular vesicles as mediators of cell-to-cell communication in pregnancy. Cytokine Growth Factor Rev 2024; 76:86-98. [PMID: 38233286 DOI: 10.1016/j.cytogfr.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Cell-to-cell communication mediated by Extracellular Vesicles (EVs) is a novel and emerging area of research, especially during pregnancy, in which placenta derived EVs can facilitate the feto-maternal communication. EVs comprise a heterogeneous group of vesicle sub-populations with diverse physical and biochemical characteristics and originate by specific biogenesis mechanisms. EVs transfer molecular cargo (including proteins, nucleic acids, and lipids) between cells and are critical mediators of cell communication. There is growing interest among researchers to explore into the molecular cargo of EVs and their functions in a physiological and pathological context. For example, inflammatory mediators such as cytokines are shown to be released in EVs and EVs derived from immune cells play key roles in mediating the immune response as well as immunoregulatory pathways. Pregnancy complications such as gestational diabetes mellitus, preeclampsia, intrauterine growth restriction and preterm birth are associated with altered levels of circulating EVs, with differential EV cargo and bioactivity in target cells. This implicates the intriguing roles of EVs in reprogramming the maternal physiology during pregnancy. Moreover, the capacity of EVs to carry bioactive molecules makes them a promising tool for biomarker development and targeted therapies in pregnancy complications. This review summarizes the physiological and pathological roles played by EVs in pregnancy and pregnancy-related disorders and describes the potential of EVs to be translated into clinical applications in the diagnosis and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia.
| | - Melissa Razo-Azamar
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; Laboratorio de Envejecimiento Saludable del Instituto Nacional de Medicina Genómica (INMEGEN) en el Centro de Investigación sobre Envejecimiento (CIE-CINVESTAV Sede Sur), CDMX, 14330, Mexico
| | - Nanthini Jayabalan
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| | | | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable del Instituto Nacional de Medicina Genómica (INMEGEN) en el Centro de Investigación sobre Envejecimiento (CIE-CINVESTAV Sede Sur), CDMX, 14330, Mexico
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, and Department of Clinical Medicine, Aarhus University, Denmark
| | - Aase Handberg
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
5
|
Chen XJ, Liu SY, Li SM, Feng JK, Hu Y, Cheng XZ, Hou CZ, Xu Y, Hu M, Feng L, Xiao L. The recent advance and prospect of natural source compounds for the treatment of heart failure. Heliyon 2024; 10:e27110. [PMID: 38444481 PMCID: PMC10912389 DOI: 10.1016/j.heliyon.2024.e27110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure is a continuously developing syndrome of cardiac insufficiency caused by diseases, which becomes a major disease endangering human health as well as one of the main causes of death in patients with cardiovascular diseases. The occurrence of heart failure is related to hemodynamic abnormalities, neuroendocrine hormones, myocardial damage, myocardial remodeling etc, lead to the clinical manifestations including dyspnea, fatigue and fluid retention with complex pathophysiological mechanisms. Currently available drugs such as cardiac glycoside, diuretic, angiotensin-converting enzyme inhibitor, vasodilator and β receptor blocker etc are widely used for the treatment of heart failure. In particular, natural products and related active ingredients have the characteristics of mild efficacy, low toxicity, multi-target comprehensive efficacy, and have obvious advantages in restoring cardiac function, reducing energy disorder and improving quality of life. In this review, we mainly focus on the recent advance including mechanisms and active ingredients of natural products for the treatment of heart failure, which will provide the inspiration for the development of more potent clinical drugs against heart failure.
Collapse
Affiliation(s)
- Xing-Juan Chen
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Si-Yuan Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Si-Ming Li
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | | | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xiao-Zhen Cheng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Cheng-Zhi Hou
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Yun Xu
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- Peking University International Hospital, Beijing, 102206, China
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Lu Xiao
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| |
Collapse
|
6
|
Hayes G, Pinto J, Sparks SN, Wang C, Suri S, Bulte DP. Vascular smooth muscle cell dysfunction in neurodegeneration. Front Neurosci 2022; 16:1010164. [PMID: 36440263 PMCID: PMC9684644 DOI: 10.3389/fnins.2022.1010164] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the key moderators of cerebrovascular dynamics in response to the brain's oxygen and nutrient demands. Crucially, VSMCs may provide a sensitive biomarker for neurodegenerative pathologies where vasculature is compromised. An increasing body of research suggests that VSMCs have remarkable plasticity and their pathophysiology may play a key role in the complex process of neurodegeneration. Furthermore, extrinsic risk factors, including environmental conditions and traumatic events can impact vascular function through changes in VSMC morphology. VSMC dysfunction can be characterised at the molecular level both preclinically, and clinically ex vivo. However the identification of VSMC dysfunction in living individuals is important to understand changes in vascular function at the onset and progression of neurological disorders such as dementia, Alzheimer's disease, and Parkinson's disease. A promising technique to identify changes in the state of cerebral smooth muscle is cerebrovascular reactivity (CVR) which reflects the intrinsic dynamic response of blood vessels in the brain to vasoactive stimuli in order to modulate regional cerebral blood flow (CBF). In this work, we review the role of VSMCs in the most common neurodegenerative disorders and identify physiological systems that may contribute to VSMC dysfunction. The evidence collected here identifies VSMC dysfunction as a strong candidate for novel therapeutics to combat the development and progression of neurodegeneration, and highlights the need for more research on the role of VSMCs and cerebrovascular dynamics in healthy and diseased states.
Collapse
Affiliation(s)
- Genevieve Hayes
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sierra N. Sparks
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Congxiyu Wang
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Daniel P. Bulte
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Mascolo A, di Mauro G, Cappetta D, De Angelis A, Torella D, Urbanek K, Berrino L, Nicoletti GF, Capuano A, Rossi F. Current and future therapeutic perspective in chronic heart failure. Pharmacol Res 2021; 175:106035. [PMID: 34915125 DOI: 10.1016/j.phrs.2021.106035] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
The incidence of heart failure is primarily flat or declining for a presumably reflecting better management of cardiovascular diseases, but that of heart failure with preserved ejection fraction (HFpEF) is probably increasing for the lack of an established effective treatment. Moreover, there is no specific pharmacological treatment for patients with heart failure with mildly reduced ejection fraction (HFmrEF) since no substantial prospective randomized clinical trial has been performed exclusively in such population. According to the recent 2021 European Society of Cardiology (ESC) guidelines, the triad composed of an Angiotensin Converting Enzyme inhibitor or Angiotensin Receptor-Neprilysin Inhibitor (ARNI), a beta-blocker, and a Mineralcorticoid Receptor Antagonist is the cornerstone therapy for all patients with heart failure with reduced ejection fraction (HFrEF) but a substantial gap exists for patients with HFpEF/HFmrEF. Despite the important role of the Renin-Angiotensin-Aldosterone System (RAAS) in heart failure pathophysiology, RAAS blockers were found ineffective for HFpEF patients. Indeed, even the new drug class of ARNI was found effective only in HFrEF patients. In this regard, a therapeutic alternative may be represented by drug stimulating the non-classic RAAS (ACE2 and A1-7) as well as other emerging drug classes (such as SGLT2 inhibitors). Reflecting on this global health burden and the gap in treatments among heart failure phenotypes, we summarize the leading players of heart failure pathophysiology, the available pharmacological treatments for each heart failure phenotype, and that in future development.
Collapse
Affiliation(s)
- Annamaria Mascolo
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy.
| | - Gabriella di Mauro
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Konrad Urbanek
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Liberato Berrino
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Giovanni Francesco Nicoletti
- Plastic Surgery Unit, University of Campania "Luigi Vanvitelli, Multidisciplinary Department of Medical Surgical and Dental Sciences, Napoli, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Rossi
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
8
|
Protective Effects of Estrogen on Cardiovascular Disease Mediated by Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5523516. [PMID: 34257804 PMCID: PMC8260319 DOI: 10.1155/2021/5523516] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Perimenopause is an important stage of female senescence. Epidemiological investigation has shown that the incidence of cardiovascular disease in premenopausal women is lower than that in men, and the incidence of cardiovascular disease in postmenopausal women is significantly higher than that in men. This phenomenon reveals that estrogen has a definite protective effect on the cardiovascular system. In the cardiovascular system, oxidative stress is considered important in the pathogenesis of atherosclerosis, myocardial dysfunction, cardiac hypertrophy, heart failure, and myocardial ischemia. From the perspective of oxidative stress, estrogen plays a regulatory role in the cardiovascular system through the estrogen receptor, providing strategies for the treatment of menopausal women with cardiovascular diseases.
Collapse
|
9
|
Dual stimuli-responsive nanoplatform based on core-shell structured graphene oxide/mesoporous silica@alginate. Int J Biol Macromol 2021; 175:209-216. [PMID: 33549662 DOI: 10.1016/j.ijbiomac.2021.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/22/2022]
Abstract
A dual stimuli-responsive nanoplatform was rationally designed for controlled drug delivery. The nanosheets of graphene oxide (GO) were first modified with aminated mesoporous silica (NH2-mSiO2), and then methotrexate (MTX) was loaded into the mesopores of mSiO2. Alginate (Alg) acted as the "gatekeeper" was then anchored to the MTX-loaded GO/NH2-mSiO2 by amidation reaction, achieving the encapsulation of MTX in the core-shell structured GO/mSiO2@Alg. Due to the high pH sensitivity of amide bond and the excellent photothermal conversion ability of GO, the constructed nanoplatform could be used for pH and near-infrared (NIR) controlled delivery of MTX. The results of cell viability test demonstrate the high inhibitory rate of the dual stimuli-responsive nanoplatform toward hepatoma (HepG2) cells.
Collapse
|
10
|
Sun J, Xu W, Hua H, Xiao Y, Chen X, Gao Z, Li S, Jing X, Du F, Sun G. Pharmacodynamic and pharmacokinetic effects of S086, a novel angiotensin receptor neprilysin inhibitor. Biomed Pharmacother 2020; 129:110410. [PMID: 32570118 DOI: 10.1016/j.biopha.2020.110410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Angiotensin receptor-NEP inhibitor (ARNi), which includes an angiotensin receptor blocker (ARB) and a neprilysin inhibitor (NEPi), has been proven safe and effective for treating heart failure with reduced ejection fraction (HF-REF). S086 is a novel single-molecule ARNi that includes the molecular moieties of EXP3174 (the active metabolite of the ARB losartan) and sacubitril (a NEP inhibitor prodrug) in a 1:1 M ratio. We performed preclinical animal model studies to evaluate the efficacy of S086 in treating HF. EXPERIMENTAL APPROACH Rat and dog models of myocardial ischemia-induced chronic heart failure were used in this research. PRINCIPAL RESULTS The oral administration of S086 dose-dependently lowered the heart weight index, attenuated cardiac fibrosis, and improved left ventricular ejection fraction, shortening fraction, and cardiac output, without effects on hemodynamics in animal models of myocardial ischemia-induced chronic heart failure. A comparable protective effect to LCZ696 was observed for S086 at an equal molar dose in dog models. In addition, S086 was superior to LCZ696 since it significantly reversed the decrease in left ventricular posterior wall end-systolic thickness. CONCLUSION This animal study suggests that S086 is effective in treating myocardial ischemia-induced chronic heart failure.
Collapse
Affiliation(s)
- Jingchao Sun
- Shenzhen Salubris Pharmaceutical Co., Ltd., Shenzhen, Guangdong, China.
| | - Wenjie Xu
- Shenzhen Salubris Pharmaceutical Co., Ltd., Shenzhen, Guangdong, China
| | - Huaijie Hua
- Shenzhen Salubris Pharmaceutical Co., Ltd., Shenzhen, Guangdong, China
| | - Ying Xiao
- Shenzhen Salubris Pharmaceutical Co., Ltd., Shenzhen, Guangdong, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwei Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Song Li
- Shenzhen Salubris Pharmaceutical Co., Ltd., Shenzhen, Guangdong, China
| | - Xiaolong Jing
- Shenzhen Salubris Pharmaceutical Co., Ltd., Shenzhen, Guangdong, China
| | - Frank Du
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Guofeng Sun
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| |
Collapse
|
11
|
Savitha MN, Suvilesh KN, Siddesha JM, Milan Gowda MD, Choudhury M, Velmurugan D, Umashankar M, Vishwanath BS. Combinatorial inhibition of Angiotensin converting enzyme, Neutral endopeptidase and Aminopeptidase N by N-methylated peptides alleviates blood pressure and fibrosis in rat model of dexamethasone-induced hypertension. Peptides 2020; 123:170180. [PMID: 31715212 DOI: 10.1016/j.peptides.2019.170180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 01/07/2023]
Abstract
Angiotensin converting enzyme (ACE), neutral endopeptidase (NEP) and aminopeptidase N (APN) are responsible for generation of vasoactive peptides that regulates vasoconstriction, vasodilation and natriuresis, which altogether regulate blood pressure. Cumulative inhibition of ACE, NEP and APN effectively blocks the progression of respective pathways. In this study, N-methylated peptide inhibitors F-N(Me)H-L, V-N(Me)F-R and R-N(Me)V-Y were synthesized against ACE, NEP and APN respectively, using their respective physiological substrates. F-N(Me)H-L inhibited ACE activity with an IC50 of 83 nmol/L, V-N(Me)F-R inhibited NEP activity with an IC50 of 1.173 μmol/L and R-N(Me)V-Y inhibited APN activity with an IC50 of 3.94 nmol/L respectively. Further, the anti-hypertensive effect of N-methylated peptides was evaluated using rat model of dexamethasone-induced hypertension. Individual peptides and their cocktail treatment were started from day 6 of the study period and blood pressure was measured on every alternate day during 15 day study. Administration of F-N(Me)H-L (138 ± 3 mmHg) and cocktail of all the three peptides at a dose of 100 mg/kg significantly reduced systolic blood pressure (SBP) compared to dexamethasone group (SBP of Groups-dexamethasone; (167 ± 5 mmHg), F-N(Me)H-L (138 ± 3 mmHg), and Cocktail (122 ± 3 mmHg). Anti-hypertensive, anti-hypertrophic and anti-fibrotic effects of N-methylated peptides and cocktail was further reflected by the decreased levels of circulating Ang II and increased ANP levels in sera of hypertensive rats along with decrease in collagen deposition in heart and kidney. Though, ACE inhibition is adequate to reduce SBP, targeting NEP and APN along with ACE is beneficial in tackling hypertension and associated fibrosis of heart.
Collapse
Affiliation(s)
- Mysuru Natarajan Savitha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570006, India
| | - Kanve Nagaraj Suvilesh
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570006, India
| | - Jalahalli Mariswamy Siddesha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570006, India; Division of Biochemistry, JSS Academy of Higher education and Research, Mysuru 570015
| | - M D Milan Gowda
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, 570006, India
| | - Manisha Choudhury
- Department of Crystallography and Biophysics, University of Madras, Chennai, 600005, India
| | - Devadasan Velmurugan
- Department of Crystallography and Biophysics, University of Madras, Chennai, 600005, India
| | - Muddegowda Umashankar
- Department of Chemistry, Karnataka State Open University, Mukthagangotri, Mysuru, 570006, India
| | | |
Collapse
|
12
|
Abstract
Objective, noninvasive, clinical assessment of patients with heart failure can be made using biomarker measurements, including natriuretic peptides, cardiac troponins, soluble suppression of tumorigenicity 2, and galectin-3. The aim of this review is to provide clinicians with guidance on the use of heart failure biomarkers in clinical practice. The authors provide a didactic narrative based on current literature, an exemplary case study, and their clinical experience.
Collapse
|
13
|
Effects of dual angiotensin type 1 receptor/neprilysin inhibition vs. angiotensin type 1 receptor inhibition on target organ injury in the stroke-prone spontaneously hypertensive rat. J Hypertens 2019; 36:1902-1914. [PMID: 29916993 DOI: 10.1097/hjh.0000000000001762] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The combination of AT1 blocker/neutroendopeptidase neprilysin inhibition (ARNi) represents an interesting approach to reduce cardiovascular risk in hypertension. We assessed the efficacy of ARNi, compared with angiotensin II type 1 receptor blockade alone, on blood pressure (BP) and on protection from target organ damage development in the stroke-prone spontaneously hypertensive rat (SHRSP). METHODS In high-salt fed SHRSP, we assessed plasma and tissue natriuretic peptides, urinary volume, BP and body weight over a short-term treatment (6 weeks) with either ARNi (sacubitril/valsartan 68 mg/kg per day) or valsartan (30 mg/kg per day), protection from stroke and renal damage (as documented by proteinuria) over 4 months of treatment with either sacubitril/valsartan or valsartan; the ability of either treatment to reduce progression of cerebrovascular and renal damage after 2 weeks of high-salt diet. RESULTS Higher levels of plasma and tissue atrial natriuretic peptide, of urinary cyclic guanosine 3'5'monophosphate and urine volumes, along with lower BP levels, were found upon sacubitril/valsartan as compared with valsartan over the short-term treatment. Sacubitril/valsartan caused a significant reduction of both BP and proteinuria levels and complete prevention of stroke over the long-term treatment. Once organ damage was established, a significant delay of its progression was observed with sacubitril/valsartan. CONCLUSION The dual angiotensin II type 1 receptor/neutroendopeptidase inhibition significantly increased atrial natriuretic peptide level and reduced BP. Complete prevention of stroke was achieved in this model. The ability of sacubitril/valsartan to reduce organ damage progression was superior to that of valsartan alone. ARNi may represent a highly effective therapeutic agent to protect from target organ damage development in hypertension.
Collapse
|
14
|
Rubattu S, Forte M, Marchitti S, Volpe M. Molecular Implications of Natriuretic Peptides in the Protection from Hypertension and Target Organ Damage Development. Int J Mol Sci 2019; 20:E798. [PMID: 30781751 PMCID: PMC6412747 DOI: 10.3390/ijms20040798] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of hypertension, as a multifactorial trait, is complex. High blood pressure levels, in turn, concur with the development of cardiovascular damage. Abnormalities of several neurohormonal mechanisms controlling blood pressure homeostasis and cardiovascular remodeling can contribute to these pathological conditions. The natriuretic peptide (NP) family (including ANP (atrial natriuretic peptide), BNP (brain natriuretic peptide), and CNP (C-type natriuretic peptide)), the NP receptors (NPRA, NPRB, and NPRC), and the related protease convertases (furin, corin, and PCSK6) constitute the NP system and represent relevant protective mechanisms toward the development of hypertension and associated conditions, such as atherosclerosis, stroke, myocardial infarction, heart failure, and renal injury. Initially, several experimental studies performed in different animal models demonstrated a key role of the NP system in the development of hypertension. Importantly, these studies provided relevant insights for a better comprehension of the pathogenesis of hypertension and related cardiovascular phenotypes in humans. Thus, investigation of the role of NPs in hypertension offers an excellent example in translational medicine. In this review article, we will summarize the most compelling evidence regarding the molecular mechanisms underlying the physiological and pathological impact of NPs on blood pressure regulation and on hypertension development. We will also discuss the protective effect of NPs toward the increased susceptibility to hypertensive target organ damage.
Collapse
Affiliation(s)
- Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
- IRCCS Neuromed, 86077 Pozzilli, Italy.
| | | | | | - Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
- IRCCS Neuromed, 86077 Pozzilli, Italy.
| |
Collapse
|
15
|
Volpe M, Battistoni A, Rubattu S. Natriuretic peptides in heart failure: Current achievements and future perspectives. Int J Cardiol 2018; 281:186-189. [PMID: 30545616 DOI: 10.1016/j.ijcard.2018.04.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/28/2022]
Abstract
The last two centuries have witnessed countless discoveries in the field of medicine that found their roots in the up growing development of technology as well as in the visionary ideas of brilliant scientists and research groups. One of the most important discoveries in the field of cardiovascular medicine allowed to break the paradigm identifying the heart with mere mechanical pump and to characterize its intriguing endocrine properties. Indeed, the discovery of hormones produced by the cardiac chambers, the natriuretic peptides, represents one of the milestones of the current conception of complexity of integrated human physiology. In the last four decades, the role of these hormones in the regulation of the cardiovascular system, in physiology and diseases, has been defined piece after piece. From diagnostic and prognostic markers, natriuretic peptides have become one of the most relevant clinical biomarker and a reliable target for establishing the efficacy of therapies. Recently and successfully, natriuretic peptide-based strategies are proposed as therapeutic weapons to improve outcome in heart failure. The future will witness potential further therapeutic application of natriuretic peptides that are currently being actively investigated.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | - Allegra Battistoni
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
16
|
Mochel JP, Teng CH, Peyrou M, Giraudel J, Danhof M, Rigel DF. Sacubitril/valsartan (LCZ696) significantly reduces aldosterone and increases cGMP circulating levels in a canine model of RAAS activation. Eur J Pharm Sci 2018; 128:103-111. [PMID: 30508581 DOI: 10.1016/j.ejps.2018.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Simultaneous blockade of angiotensin receptors and enhancement of natriuretic peptides (NP) by the first-in-class angiotensin receptor neprilysin (NEP) inhibitor sacubitril/valsartan constitutes an effective approach to treating heart failure. This study examined the effects of sacubitril/valsartan (225 and 675 mg/day) vs. placebo, sacubitril (360 mg/day), valsartan (900 mg/day), and benazepril (5 mg/day) on the dynamics of the renin-angiotensin-aldosterone system (RAAS) and the NP system in dogs. Beagle dogs (n = 18) were fed a low-salt diet (0.05% Na) for 15 days to model RAAS activation observed in clinical heart failure. Drugs were administered once daily during the last 10 days, while the effects on the RAAS and NPs were assessed on Day 1, 5, and 10. Steady-state pharmacokinetics of the test agents were evaluated on Day 5. Compared with placebo, sacubitril/valsartan (675 mg) substantially increased cGMP circulating levels, while benazepril and valsartan showed no effect. Additionally, sacubitril/valsartan (675 mg) and valsartan significantly increased plasma renin activity, angiotensin I and angiotensin II concentrations. Finally, sacubitril/valsartan (both doses), and valsartan significantly decreased plasma aldosterone vs. placebo. Systemic exposure to valsartan following sacubitril/valsartan 675 mg administration was similar to that observed with valsartan 900 mg administration alone. Sacubitril/valsartan favorably modulates the dynamics of the renin and NP cascades through complementary NEP and RAAS inhibition.
Collapse
Affiliation(s)
- Jonathan P Mochel
- Pharmacometrics, Novartis Pharma AG, Werk Saint Johann, 4056 Basel, Switzerland; Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, 1800 Christensen Drive, 50010 Ames, USA.
| | - Chi Hse Teng
- Biostatistics NIBR, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Mathieu Peyrou
- Department of Research & Development, Elanco Animal Health, c/o Novartis Animal Health, 4002 Basel, Switzerland
| | - Jerome Giraudel
- Department of Research & Development, Elanco Animal Health, c/o Novartis Animal Health, 4002 Basel, Switzerland
| | - Meindert Danhof
- Department of Pharmacology, Leiden-Academic Centre for Drug Research, Pharmacology, 2300 Leiden, the Netherlands
| | - Dean F Rigel
- Novartis Institutes for BioMedical Research, East Hanover, NJ, USA
| |
Collapse
|
17
|
Povsic TJ, Scott R, Mahaffey KW, Blaustein R, Edelberg JM, Lefkowitz MP, Solomon SD, Fox JC, Healy KE, Khakoo AY, Losordo DW, Malik FI, Monia BP, Montgomery RL, Riesmeyer J, Schwartz GG, Zelenkofske SL, Wu JC, Wasserman SM, Roe MT. Navigating the Future of Cardiovascular Drug Development-Leveraging Novel Approaches to Drive Innovation and Drug Discovery: Summary of Findings from the Novel Cardiovascular Therapeutics Conference. Cardiovasc Drugs Ther 2018; 31:445-458. [PMID: 28735360 DOI: 10.1007/s10557-017-6739-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The need for novel approaches to cardiovascular drug development served as the impetus to convene an open meeting of experts from the pharmaceutical industry and academia to assess the challenges and develop solutions for drug discovery in cardiovascular disease. METHODS The Novel Cardiovascular Therapeutics Summit first reviewed recent examples of ongoing or recently completed programs translating basic science observations to targeted drug development, highlighting successes (protein convertase sutilisin/kexin type 9 [PCSK9] and neprilysin inhibition) and targets still under evaluation (cholesteryl ester transfer protein [CETP] inhibition), with the hope of gleaning key lessons to successful drug development in the current era. Participants then reviewed the use of innovative approaches being explored to facilitate rapid and more cost-efficient evaluations of drug candidates in a short timeframe. RESULTS We summarize observations gleaned from this summit and offer insight into future cardiovascular drug development. CONCLUSIONS The rapid development in genetic and high-throughput drug evaluation technologies, coupled with new approaches to rapidly evaluate potential cardiovascular therapies with in vitro techniques, offer opportunities to identify new drug targets for cardiovascular disease, study new therapies with better efficiency and higher throughput in the preclinical setting, and more rapidly bring the most promising therapies to human testing. However, there must be a critical interface between industry and academia to guide the future of cardiovascular drug development. The shared interest among academic institutions and pharmaceutical companies in developing promising therapies to address unmet clinical needs for patients with cardiovascular disease underlies and guides innovation and discovery platforms that are significantly altering the landscape of cardiovascular drug development.
Collapse
Affiliation(s)
- Thomas J Povsic
- Duke Clinical Research Institute, Duke University School of Medicine, 2400 Pratt Street, Duke Medicine, Durham, NC, 27705, USA.
| | - Rob Scott
- AbbVie Pharmaceuticals, Chicago, IL, USA
| | - Kenneth W Mahaffey
- Stanford Center for Clinical Research (SCCR), Stanford University School of Medicine, Stanford, CA, USA
| | - Robert Blaustein
- Merck Research Laboratories, Merck & Co., Inc, Kenilworth, NJ, USA
| | | | | | | | | | - Kevin E Healy
- University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | | | | | | | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Matthew T Roe
- Duke Clinical Research Institute, Duke University School of Medicine, 2400 Pratt Street, Duke Medicine, Durham, NC, 27705, USA
| |
Collapse
|
18
|
Kuruppu S, Rajapakse NW, Spicer AJ, Parkington HC, Smith AI. Stimulating the Activity of Amyloid-Beta Degrading Enzymes: A Novel Approach for the Therapeutic Manipulation of Amyloid-Beta Levels. J Alzheimers Dis 2018; 54:891-895. [PMID: 27567865 DOI: 10.3233/jad-160492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease is a debilitating neurological disease placing significant burden on health care budgets around the world. It is widely believed that accumulation of amyloid-beta (Aβ) in the brain is a key event that initiates neurodegeneration, thus the clearance of Aβ from brain could be a key therapeutic strategy. Aβ exists in an equilibrium in healthy individuals, and recent research would suggest that dysfunction in the clearance pathways is the driving force behind its accumulation. One mechanism of clearance is proteolytic degradation by enzymes, and increasing the expression of these enzymes in animal models of Alzheimer's disease has indeed shown promising results. This approach could be challenging to translate into the clinic given the likely need for genetic manipulation. We hypothesize that stimulating the activity of these enzymes (as opposed to increasing expression) through pharmacological agents will enhance degradation or at least prevent amyloid deposition, and is therefore another potentially novel avenue to manipulate Aβ levels for therapeutic purposes. We discuss the recent research supporting this hypothesis as well as possible drawbacks to this approach.
Collapse
Affiliation(s)
- Sanjaya Kuruppu
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Niwanthi W Rajapakse
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC3004, Australia.,Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Alexander J Spicer
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - A Ian Smith
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| |
Collapse
|
19
|
Marques da Silva P, Aguiar C. Sacubitril/valsartan: An important piece in the therapeutic puzzle of heart failure. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.repce.2016.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Sacubitril/valsartan: um importante avanço no puzzle terapêutico da insuficiência cardíaca. Rev Port Cardiol 2017; 36:655-668. [DOI: 10.1016/j.repc.2016.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/26/2016] [Indexed: 12/18/2022] Open
|
21
|
Malek V, Gaikwad AB. Neprilysin inhibitors: A new hope to halt the diabetic cardiovascular and renal complications? Biomed Pharmacother 2017; 90:752-759. [DOI: 10.1016/j.biopha.2017.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 11/26/2022] Open
|
22
|
Rubattu S, Triposkiadis F. Resetting the neurohormonal balance in heart failure (HF): the relevance of the natriuretic peptide (NP) system to the clinical management of patients with HF. Heart Fail Rev 2017; 22:279-288. [PMID: 28378286 PMCID: PMC5438418 DOI: 10.1007/s10741-017-9605-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The natriuretic peptide (NP) system, which includes atrial natriuretic peptide, B-type natriuretic peptide, and C-type natriuretic peptide, has an important role in cardiovascular homeostasis, promoting a number of physiological effects including diuresis, vasodilation, and inhibition of the renin-angiotensin-aldosterone system. Heart failure (HF) is associated with defects in NP processing and synthesis, and there is a strong relationship between NP levels and disease state. NPs are useful biomarkers in HF, and their use in diagnosis and evaluation of prognosis is well established, particularly in patients with HF with reduced ejection fraction (HFrEF). There has also been interest in their use to guide disease management and therapeutic decision making. An understanding of NPs in HF has also resulted in interest in synthetic NPs for the treatment of HF and in treatments that target neprilysin, a protease that degrades NPs. A novel drug, the angiotensin receptor neprilysin inhibitor sacubitril/valsartan (LCZ696), which simultaneously inhibits neprilysin and blocks the angiotensin II type I receptor, was shown to have a favorable efficacy and safety profile in patients with HFrEF and has been approved for use in such patients in Europe and the USA. In light of the development of treatments that target neprilysin and of recent data in relation to synthetic NPs, it is timely to review the current understanding of the role of NPs in HF and their use in diagnosis, evaluating prognosis and guiding treatment, as well as their place in HF therapy.
Collapse
Affiliation(s)
- Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy.
| | | |
Collapse
|
23
|
Liu MY, Li N, Li WA, Khan H. Association between psychosocial stress and hypertension: a systematic review and meta-analysis. Neurol Res 2017; 39:573-580. [PMID: 28415916 DOI: 10.1080/01616412.2017.1317904] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mei-Yan Liu
- Department of Cardiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Na Li
- Department of Cardiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - William A. Li
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hajra Khan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
24
|
Sabbah HN. Silent disease progression in clinically stable heart failure. Eur J Heart Fail 2017; 19:469-478. [PMID: 27976514 PMCID: PMC5396296 DOI: 10.1002/ejhf.705] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) is a progressive disorder whereby cardiac structure and function continue to deteriorate, often despite the absence of clinically apparent signs and symptoms of a worsening disease state. This silent yet progressive nature of HFrEF can contribute to the increased risk of death-even in patients who are 'clinically stable', or who are asymptomatic or only mildly symptomatic-because it often goes undetected and/or undertreated. Current therapies are aimed at improving clinical symptoms, and several agents more directly target the underlying causes of disease; however, new therapies are needed that can more fully address factors responsible for underlying progressive cardiac dysfunction. In this review, mechanisms that drive HFrEF, including ongoing cardiomyocyte loss, mitochondrial abnormalities, impaired calcium cycling, elevated LV wall stress, reactive interstitial fibrosis, and cardiomyocyte hypertrophy, are discussed. Additionally, limitations of current HF therapies are reviewed, with a focus on how these therapies are designed to counteract the deleterious effects of compensatory neurohumoral activation but do not fully prevent disease progression. Finally, new investigational therapies that may improve the underlying molecular, cellular, and structural abnormalities associated with HF progression are reviewed.
Collapse
|
25
|
Abstract
A key feature of chronic heart failure (HF) is the sustained activation of endogenous neurohormonal systems in response to impaired cardiac pumping and/or filling properties. The clinical use of neurohormonal blockers has revolutionised the care of HF patients over the past three decades. Drug therapy that is active against imbalance in both the autonomic and renin-angiotensin-aldosterone systems consistently reduces morbidity and mortality in chronic HF with reduced left ventricular ejection fraction and in sinus rhythm. This article provides an assessment of the major neurohormonal systems and their therapeutic blockade in patients with chronic HF.
Collapse
Affiliation(s)
- Thomas G von Lueder
- Department of Cardiology, Oslo University Hospital UllevÅl, Oslo, Norway.,Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia and Alfred Hospital, Melbourne, Australia
| | - Dipak Kotecha
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia and Alfred Hospital, Melbourne, Australia.,University of Birmingham Institute of Cardiovascular Sciences, Birmingham, UK
| | - Dan Atar
- Department of Cardiology, Oslo University Hospital UllevÅl, Oslo, Norway
| | - Ingrid Hopper
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia and Alfred Hospital, Melbourne, Australia
| |
Collapse
|
26
|
Abstract
Hypertension (HTN) is a well-known health problem associated with considerable morbidity and mortality and it is an important risk factor for the development of heart failure (HF). These findings support the need for optimizing the antihypertensive strategies to prevent the progression to HF. Interestingly, the progression from HTN to HF, among other things, may be a consequence of inappropriate over-activation of the renin-angiotensin-aldosterone system (RAAS), sympathetic nervous system (SNS), and the natriuretic peptide system (NPS). In the present review, we will discuss the pathophysiological aspects of the progression from HTN to HF with reduced ejection fraction (HFrEF) and we will focus on the evolution of different pharmacological therapies which are reported to be effective in reducing BP and improving HF outcomes, paying particular attention to the recent trials that have demonstrated the efficacy of the combined therapy of RAAS blockade and Neprilysin (NEP) inhibitor in lowering BP and mediating several beneficial actions within cardiovascular tissues, such as avoiding the worsening of HF.
Collapse
|
27
|
Mascolo A, Sessa M, Scavone C, De Angelis A, Vitale C, Berrino L, Rossi F, Rosano G, Capuano A. New and old roles of the peripheral and brain renin-angiotensin-aldosterone system (RAAS): Focus on cardiovascular and neurological diseases. Int J Cardiol 2016; 227:734-742. [PMID: 27823897 DOI: 10.1016/j.ijcard.2016.10.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
Abstract
It is commonly accepted that the renin-angiotensin-aldosterone system (RAAS) is a cardiovascular circulating hormonal system that plays also an important role in the modulation of several patterns in the brain. The pathway of the RAAS can be divided into two classes: the traditional pathway of RAAS, also named classic RAAS, and the non-classic RAAS. Both pathways play a role in both cardiovascular and neurological diseases through a peripheral or central control. In this regard, renewed interest is growing in the last years for the consideration that the brain RAAS could represent a new important therapeutic target to regulate not only the blood pressure via central nervous control, but also neurological diseases. However, the development of compounds able to cross the blood-brain barrier and to act on the brain RAAS is challenging, especially if the metabolic stability and the half-life are taken into consideration. To date, two drug classes (aminopeptidase type A inhibitors and angiotensin IV analogues) acting on the brain RAAS are in development in pre-clinical or clinical stages. In this article, we will present an overview of the biological functions played by peripheral and brain classic and non-classic pathways of the RAAS in several clinical conditions, focusing on the brain RAAS and on the new pharmacological targets of the RAAS.
Collapse
Affiliation(s)
- A Mascolo
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy.
| | - M Sessa
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - C Scavone
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - A De Angelis
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - C Vitale
- IRCCS San Raffaele Pisana, Rome, Italy
| | - L Berrino
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - F Rossi
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - G Rosano
- IRCCS San Raffaele Pisana, Rome, Italy; Cardiovascular and Cell Sciences Research Institute, St. George's, University of London, London, UK
| | - A Capuano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| |
Collapse
|
28
|
Yorek MS, Obrosov A, Lu B, Gerard C, Kardon RH, Yorek MA. Effect of Inhibition or Deletion of Neutral Endopeptidase on Neuropathic Endpoints in High Fat Fed/Low Dose Streptozotocin-Treated Mice. J Neuropathol Exp Neurol 2016; 75:1072-1080. [PMID: 27634964 PMCID: PMC7714044 DOI: 10.1093/jnen/nlw083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously we demonstrated that a vasopeptidase inhibitor of angiotensin converting enzyme and neutral endopeptidase (NEP), a protease that degrades vaso- and neuro-active peptides, improves neural function in diabetic rodent models. The purpose of this study was to determine whether inhibition or deletion of NEP provides protection from neuropathy caused by diabetes with an emphasis on morphology of corneal nerves as a primary endpoint. Diabetes, modeling type 2, was induced in C57Bl/6J and NEP deficient mice through a combination of a high fat diet and streptozotocin. To inhibit NEP activity, diabetic C57Bl/6J mice were treated with candoxatril using a prevention or intervention protocol. Twelve weeks after the induction of diabetes in C57Bl/6J mice, the existence of diabetic neuropathy was determined through multiple endpoints including decrease in corneal nerves in the epithelium and sub-epithelium layer. Treatment of diabetic C57Bl/6J mice with candoxatril improved diabetic peripheral neuropathy and protected corneal nerve morphology with the prevention protocol being more efficacious than intervention. Unlike C57Bl/6J, mice deficient in NEP were protected from the development of neuropathologic alterations and loss of corneal nerves upon induction of diabetes. These studies suggest that NEP contributes to the development of diabetic neuropathy and may be a treatable target.
Collapse
Affiliation(s)
- Matthew S Yorek
- From the Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA(MSY, RHK, MAY), Department of Internal Medicine, University of Iowa, Iowa City, IA(AO, MAY), Department of Pediatrics and Medicine, Harvard Medical School, Ina Sue Perlmutter Laboratory, Children's Hospital, Boston, MA(BL), Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA(RHK), Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA(RHK, MAY) and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA(MAY)
| | - Alexander Obrosov
- From the Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA(MSY, RHK, MAY), Department of Internal Medicine, University of Iowa, Iowa City, IA(AO, MAY), Department of Pediatrics and Medicine, Harvard Medical School, Ina Sue Perlmutter Laboratory, Children's Hospital, Boston, MA(BL), Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA(RHK), Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA(RHK, MAY) and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA(MAY)
| | - Bao Lu
- From the Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA(MSY, RHK, MAY), Department of Internal Medicine, University of Iowa, Iowa City, IA(AO, MAY), Department of Pediatrics and Medicine, Harvard Medical School, Ina Sue Perlmutter Laboratory, Children's Hospital, Boston, MA(BL), Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA(RHK), Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA(RHK, MAY) and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA(MAY)
| | - Craig Gerard
- From the Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA(MSY, RHK, MAY), Department of Internal Medicine, University of Iowa, Iowa City, IA(AO, MAY), Department of Pediatrics and Medicine, Harvard Medical School, Ina Sue Perlmutter Laboratory, Children's Hospital, Boston, MA(BL), Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA(RHK), Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA(RHK, MAY) and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA(MAY)
| | - Randy H Kardon
- From the Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA(MSY, RHK, MAY), Department of Internal Medicine, University of Iowa, Iowa City, IA(AO, MAY), Department of Pediatrics and Medicine, Harvard Medical School, Ina Sue Perlmutter Laboratory, Children's Hospital, Boston, MA(BL), Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA(RHK), Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA(RHK, MAY) and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA(MAY)
| | - Mark A Yorek
- From the Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA(MSY, RHK, MAY), Department of Internal Medicine, University of Iowa, Iowa City, IA(AO, MAY), Department of Pediatrics and Medicine, Harvard Medical School, Ina Sue Perlmutter Laboratory, Children's Hospital, Boston, MA(BL), Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA(RHK), Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA(RHK, MAY) and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA(MAY)
| |
Collapse
|
29
|
Combined Neprilysin and RAS Inhibition in Cardiovascular Diseases: A Review of Clinical Studies. J Cardiovasc Pharmacol 2016; 68:183-90. [DOI: 10.1097/fjc.0000000000000402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Antunes AMDS, Guerrante RDS, Ávila JDPC, Lins Mendes FM, Fierro IM. Case study of patents related to captopril, Squibb's first blockbuster. Expert Opin Ther Pat 2016; 26:1449-1457. [PMID: 27573807 DOI: 10.1080/13543776.2016.1227321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Arterial hypertension affects over one billion people around the world, making the prevention and treatment of this disease vital. Despite the efforts made to develop new antihypertensive drugs, few new therapies have become available. Angiotensin-converting enzyme (ACE) inhibitors have heralded major steps forward in the treatment of arterial hypertension and cardiovascular diseases since the first compound of this class, captopril, was approved for clinical use in 1981. Areas covered: In this review, the authors investigated the patent documents that cite the priority patent for captopril, Squibb's first blockbuster, or any other patent from its patent family. The documents were classified into the following: new compounds, new compositions, treatment, process (preparation of a compound), use of a compound, and process for the preparation of an intermediate. Therefore, the readers can identify potential innovations in the field. Expert opinion: The pharmaceutical sector has attempted to provide significant technological developments on anti-hypertensive drugs based on the patenting of captopril, including the development of new compositions further comprising an ACE inhibitor and other antihypertensive agent, along with dual action compounds, novel molecules with dual activity. The target is to find a new agent with better blood pressure-lowering efficacy, improved safety and good tolerability profile.
Collapse
Affiliation(s)
- Adelaide Maria de Souza Antunes
- a Postgraduate Program in Technology of Chemical & Biochemical Processes , Federal University of Rio de Janeiro (UFRJ)/National Institute of Industrial Property, Academy of Innovation and Intellectual Property (INPI-Brazil) , Rio de Janeiro , Brazil
| | - Rafaela Di Sabato Guerrante
- b National Institute of Industrial Property, Academy of Innovation and Intellectual Property, General Coordination of International Affairs (INPI-Brazil) , Rio de Janeiro , Brazil
| | - Jorge de Paula Costa Ávila
- c Federal University of the State of Rio de Janeiro, Public Administration School (UNIRIO) , Rio de Janeiro , Brazil
| | - Flavia Maria Lins Mendes
- d School of Chemistry (SIQUIM) , Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brazil
| | - Iolanda M Fierro
- b National Institute of Industrial Property, Academy of Innovation and Intellectual Property, General Coordination of International Affairs (INPI-Brazil) , Rio de Janeiro , Brazil
| |
Collapse
|
31
|
Lother A, Hein L. Pharmacology of heart failure: From basic science to novel therapies. Pharmacol Ther 2016; 166:136-49. [PMID: 27456554 DOI: 10.1016/j.pharmthera.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/08/2016] [Indexed: 01/10/2023]
Abstract
Chronic heart failure is one of the leading causes for hospitalization in the United States and Europe, and is accompanied by high mortality. Current pharmacological therapy of chronic heart failure with reduced ejection fraction is largely based on compounds that inhibit the detrimental action of the adrenergic and the renin-angiotensin-aldosterone systems on the heart. More than one decade after spironolactone, two novel therapeutic principles have been added to the very recently released guidelines on heart failure therapy: the HCN-channel inhibitor ivabradine and the combined angiotensin and neprilysin inhibitor valsartan/sacubitril. New compounds that are in phase II or III clinical evaluation include novel non-steroidal mineralocorticoid receptor antagonists, guanylate cyclase activators or myosine activators. A variety of novel candidate targets have been identified and the availability of gene transfer has just begun to accelerate translation from basic science to clinical application. This review provides an overview of current pharmacology and pharmacotherapy in chronic heart failure at three stages: the updated clinical guidelines of the American Heart Association and the European Society of Cardiology, new drugs which are in clinical development, and finally innovative drug targets and their mechanisms in heart failure which are emerging from preclinical studies will be discussed.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Heart Center, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Aydemir EA, Şimşek E, Korcum AF, Fişkin K. Endostatin and irradiation modifies the activity of ADAM10 and neprilysin in breast cancer cells. Mol Med Rep 2016; 14:2343-51. [PMID: 27430992 DOI: 10.3892/mmr.2016.5463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/06/2016] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is regarded as a key cancer cell property. Endostatin (ES) is a potential antiangiogenic agent and it may be useful when implemented in combination with other cancer therapeutic strategies. The present study investigated the in vitro effects of ES, radiotherapy (RT) or combination therapy (ES + RT) on two important proteases, a disintegrin and metalloproteinase domain‑containing protein 10 (ADAM10) and neprilysin (NEP) in 4T1 mouse breast cancer cells and the more metastatic phenotype of 4THMpc breast cancer cells. 4T1 and 4THMpc cells were treated with recombinant murine ES (4 µg/ml) alone, RT (45 Gy) alone or with ES + RT. ADAM10 enzyme activity was determined using a tumor necrosis factor‑α converting enzyme (α‑secretase) activity assay kit, and NEP enzyme activity was measured with a fluorometric assay based on the generation of free dansyl‑D‑Ala‑Gly from N-dansyl-Ala-Gly-D-nitro-Phe-Gly, the substrate of NEP. Western blotting analysis was performed to determine whether the altered enzyme activity levels of the two cell lines occurred due to changes in expression level. These data indicate that ES independently potentiates the activity of ADAM10 and NEP enzymes in 4T1 and 4THMpc breast cancer cells.
Collapse
Affiliation(s)
- Esra Arslan Aydemir
- Department of Biology, Science Faculty, Akdeniz University, Antalya 07058, Turkey
| | - Ece Şimşek
- Department of Nutrition and Dietetics, Antalya School of Health, Akdeniz University, Antalya 07058, Turkey
| | - Aylin Fidan Korcum
- Department of Radiation Oncology, School of Medicine, Akdeniz University, Antalya 07058, Turkey
| | - Kayahan Fişkin
- Department of Nutrition and Dietetics, Antalya School of Health, Akdeniz University, Antalya 07058, Turkey
| |
Collapse
|
33
|
Scalese MJ, Reinaker TS. Pharmacologic management of angioedema induced by angiotensin-converting enzyme inhibitors. Am J Health Syst Pharm 2016; 73:873-9. [DOI: 10.2146/ajhp150482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract
Purpose
The published evidence on pharmacologic approaches to the management of angiotensin-converting enzyme inhibitor (ACEI)–induced angioedema is reviewed.
Summary
Angioedema is a serious, potentially life-threatening adverse effect of ACEI use. Although the underlying mechanism is not fully understood, excess bradykinin produced through a complex interplay between the kallikrein-kinin and renin-angiotensin-aldosterone systems is thought to play a major role. The nonallergic nature of the reaction renders traditional therapies (corticosteroids and antihistamines) ineffective because those agents do not modify the proposed pathophysiology. Fresh frozen plasma (FFP) provides kinase II, a protein that breaks down bradykinin. Case reports support FFP as a treatment for ACEI-induced angioedema, but no formal evaluations have been completed to date. Both ecallantide and complement 1 esterase (C1) inhibitor concentrate reduce bradykinin production through upstream inhibition of kallikrein. C1 inhibitor concentrate has been used successfully to manage ACEI-induced angioedema in a few reported cases, but robust supportive studies are lacking. Conversely, ecallantide has been evaluated in multiple randomized trials but has not been shown to offer advantages over traditional therapies. The use of icatibant, a direct antagonist of bradykinin B2 receptors, was reported to be beneficial in several case reports and in a small Phase II study, safely and rapidly reducing symptoms of ACEI-induced angioedema. An ongoing Phase III trial (NCT01919801) will better define the role of icatibant in the management of ACEI-induced angioedema.
Conclusion
FFP, C1 inhibitor, and icatibant appear to be safe and effective therapeutic options for the management of ACEI-induced angioedema, whereas it appears ecallantide should be avoided.
Collapse
Affiliation(s)
- Michael J. Scalese
- Department of Pharmacy Practice, Auburn University Harrison School of Pharmacy, Mobile, AL
| | | |
Collapse
|
34
|
O'Neill S, Bohl M, Gregersen S, Hermansen K, O'Driscoll L. Blood-Based Biomarkers for Metabolic Syndrome. Trends Endocrinol Metab 2016; 27:363-374. [PMID: 27150849 DOI: 10.1016/j.tem.2016.03.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 01/08/2023]
Abstract
Metabolic syndrome (MetS) is a constellation of factors increasing the risk of type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), and cancer. MetS diagnosis is cumbersome and the precise diagnosis differs throughout the world. Efforts are underway to find MetS biomarkers that could all be analysed in a single blood sample. Here we review recent advances, including progress on circulating exosomes and microvesicles and their molecular contents, as well as DNA, RNAs, and proteins taken directly from blood samples. While additional research is now warranted to advance upon these findings, there is reason for optimising that such blood-based entities will be beneficial for MetS diagnosis and will help reduce risk of T2DM, CVD, and cancers, contributing both societal and economic benefit.
Collapse
Affiliation(s)
- Sadhbh O'Neill
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Mette Bohl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Soren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
35
|
Mollace V, Gliozzi M, Capuano A, Rossi F. Modulation of RAAS-natriuretic peptides in the treatment of HF: Old guys and newcomers. Int J Cardiol 2016; 226:126-131. [PMID: 27075034 DOI: 10.1016/j.ijcard.2016.03.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/19/2016] [Indexed: 01/10/2023]
Abstract
The use of renin-angiotensin-aldosterone system (RAAS) inhibitors in the treatment of chronic heart failure (HF) and arterial hypertension is recommended by the European Society of Cardiology Guidelines on the basis of consolidated evidence supporting their efficacy in the development of such a disease. However, the high incidence of re-hospitalization and mortality in patients undergoing chronic HF, leads to the need for the development of novel RAAS inhibitors possessing a better pharmacokinetic/pharmacodynamics profile in approaching hemodynamic imbalance and myocardial dysfunction associated with the development of chronic HF. Here we summarize some of the recent advances in the area of RAAS-modulators, including novel renin inhibitors, mineralcorticoid receptor antagonists and novel AT1 and AT2-receptor modulators. In addition, the pharmacology of a new class of compounds which display both AT1-receptor blocking properties combined with inhibition of neprilysin, the vasopeptidase enzyme degradating natriuretic peptide (ARNi), will be reviewed, alongside with their impact in the pathophysiology of chronic HF.
Collapse
Affiliation(s)
- Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Italy.
| | - Annalisa Capuano
- Second University of Naples, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology L. Donatelli of Medicine and Surgery, Napoli, Italy
| | - Francesco Rossi
- Second University of Naples, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology L. Donatelli of Medicine and Surgery, Napoli, Italy
| |
Collapse
|
36
|
Rossi F, Mascolo A, Mollace V. The pathophysiological role of natriuretic peptide-RAAS cross talk in heart failure. Int J Cardiol 2016; 226:121-125. [PMID: 27062428 DOI: 10.1016/j.ijcard.2016.03.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/19/2016] [Indexed: 12/22/2022]
Abstract
Chronic Heart Failure (HF) is still a disease state characterized by elevated morbidity and mortality and represents an unresolved problem for its socio-economic impact. Besides many of the pathophysiological events leading to advanced HF have been widely disclosed in the past decades, the role of neuro-hormonal dysregulation accompanying HF has to be clearly assessed with the objective of better therapeutic approaches in treating such a disease. In the present review article, alongside with a brief re-evaluation of general aspects of HF physiopathology, we summarize recent advances in the cross talk between renin-angiotensin-aldosterone system (RAAS) with natriuretic peptides (NPs) which have been shown to play a relevant role in the development of severe HF. The role of RAAS-NPs interplay has been shown to be crucial in both hemodynamic and tissue remodeling associated to cardiomyocyte dysfunction, leading to advanced impairment of left ventricular performance. On the basis of these results, the development of drugs resetting both RAAS and NPs system seems to be promising for a successful long term treatment of chronic HF.
Collapse
Affiliation(s)
- Francesco Rossi
- Second University of Naples, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Napoli, Italy
| | - Annamaria Mascolo
- Second University of Naples, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Napoli, Italy.
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Italy
| |
Collapse
|
37
|
Wills B, Prada LP, Rincón A, Buitrago AF. Inhibición dual de la neprilisina y del receptor de la angiotensina (ARNI): una alternativa en los pacientes con falla cardiaca. REVISTA COLOMBIANA DE CARDIOLOGÍA 2016. [DOI: 10.1016/j.rccar.2015.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Bas M, Greve J, Strassen U, Khosravani F, Hoffmann TK, Kojda G. Angioedema induced by cardiovascular drugs: new players join old friends. Allergy 2015; 70:1196-200. [PMID: 26119220 DOI: 10.1111/all.12680] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 12/11/2022]
Abstract
During the last years, two new cardiovascular drug classes, namely inhibitors of DPP IV or neprilysin, have been developed. In both cases, there is clinical evidence for their potential to induce angioedema as known already from blockers of the renin-angiotensin-aldosterone system (RAAS). The majority of angioedema induced by DPP IV inhibitors occurs during concomitant treatment with ACEi and is therefore likely mediated by overactivation of bradykinin type 2 receptors (B2). In striking contrast, the molecular pathways causing angioedema induced by neprilysin inhibitors, that is, sacubitril, are unclear, although a contribution of bradykinin appears likely. Nevertheless, there is no clinical evidence suggesting that inhibition of B2 might relieve the symptoms and/or prevent invasive treatment including coniotomy or tracheotomy in angioedema caused by these drugs. Therefore, the risk of angioedema should always be considered, especially in ambulatory care situations where patients have no rapid access to intensive care.
Collapse
Affiliation(s)
- M. Bas
- Otorhinolaryngology Department; University Hospital Rechts der Isar; Munich Technical University; Munich Germany
| | - J. Greve
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery; Ulm University Medical Center; Ulm Germany
| | - U. Strassen
- Otorhinolaryngology Department; University Hospital Rechts der Isar; Munich Technical University; Munich Germany
| | - F. Khosravani
- Institute of Pharmacology and Clinical Pharmacology; Heinrich Heine University; Düsseldorf Germany
| | - T. K. Hoffmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery; Ulm University Medical Center; Ulm Germany
| | - G. Kojda
- Institute of Pharmacology and Clinical Pharmacology; Heinrich Heine University; Düsseldorf Germany
| |
Collapse
|
39
|
Abstract
Heart failure (HF) can rightfully be called the epidemic of the 21(st) century. Historically, the only available medical treatment options for HF have been diuretics and digoxin, but the capacity of these agents to alter outcomes has been brought into question by the scrutiny of modern clinical trials. In the past 4 decades, neurohormonal blockers have been introduced into clinical practice, leading to marked reductions in morbidity and mortality in chronic HF with reduced left ventricular ejection fraction (LVEF). Despite these major advances in pharmacotherapy, our understanding of the underlying disease mechanisms of HF from epidemiological, clinical, pathophysiological, molecular, and genetic standpoints remains incomplete. This knowledge gap is particularly evident with respect to acute decompensated HF and HF with normal (preserved) LVEF. For these clinical phenotypes, no drug has been shown to reduce long-term clinical event rates substantially. Ongoing developments in the pharmacotherapy of HF are likely to challenge our current best-practice algorithms. Novel agents for HF therapy include dual-acting neurohormonal modulators, contractility-enhancing agents, vasoactive and anti-inflammatory peptides, and myocardial protectants. These novel compounds have the potential to enhance our armamentarium of HF therapeutics.
Collapse
Affiliation(s)
- Thomas G von Lueder
- Department of Cardiology, Oslo University Hospital Ullevål, 0407 Oslo, Norway
| | - Henry Krum
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC 3004, Australia
| |
Collapse
|
40
|
Role of the Renin-Angiotensin-Aldosterone System and Its Pharmacological Inhibitors in Cardiovascular Diseases: Complex and Critical Issues. High Blood Press Cardiovasc Prev 2015; 22:429-44. [PMID: 26403596 DOI: 10.1007/s40292-015-0120-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 01/11/2023] Open
Abstract
Hypertension is one of the major risk factor able to promote development and progression of several cardiovascular diseases, including left ventricular hypertrophy and dysfunction, myocardial infarction, stroke, and congestive heart failure. Also, it is one of the major driven of high cardiovascular risk profile in patients with metabolic complications, including obesity, metabolic syndrome and diabetes, as well as in those with renal disease. Thus, effective control of hypertension is a key factor for any preventing strategy aimed at reducing the burden of hypertension-related cardiovascular diseases in the clinical practice. Among various regulatory and contra-regulatory systems involved in the pathogenesis of cardiovascular and renal diseases, renin-angiotensin system (RAS) plays a major role. However, despite the identification of renin and the availability of various assays for measuring its plasma activity, the specific pathophysiological role of RAS has not yet fully characterized. In the last years, however, several notions on the RAS have been improved by the results of large, randomized clinical trials, performed in different clinical settings and in different populations treated with RAS inhibiting drugs, including angiotensin converting enzyme (ACE) inhibitors and antagonists of the AT1 receptor for angiotensin II (ARBs). These findings suggest that the RAS should be considered to have a central role in the pathogenesis of different cardiovascular diseases, for both therapeutic and preventive purposes, without having to measure its level of activation in each patient. The present document will discuss the most critical issues of the pathogenesis of different cardiovascular diseases with a specific focus on RAS blocking agents, including ACE inhibitors and ARBs, in the light of the most recent evidence supporting the use of these drugs in the clinical management of hypertension and hypertension-related cardiovascular diseases.
Collapse
|
41
|
Schmedt auf der Günne W, Zhao Y, Hedderich J, Gohlke P, Culman J. Omapatrilat: penetration across the blood–brain barrier and effects on ischaemic stroke in rats. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:939-51. [DOI: 10.1007/s00210-015-1126-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/08/2015] [Indexed: 12/27/2022]
|
42
|
Vodovar N, Séronde MF, Laribi S, Gayat E, Lassus J, Januzzi JL, Boukef R, Nouira S, Manivet P, Samuel JL, Logeart D, Cohen-Solal A, Richards AM, Launay JM, Mebazaa A. Elevated Plasma B-Type Natriuretic Peptide Concentrations Directly Inhibit Circulating Neprilysin Activity in Heart Failure. JACC-HEART FAILURE 2015; 3:629-36. [DOI: 10.1016/j.jchf.2015.03.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/23/2015] [Accepted: 03/06/2015] [Indexed: 12/24/2022]
|
43
|
Raymer B, Ebner D. Small molecule and peptide therapies for chronic heart failure: a patent review (2011 - 2014). Expert Opin Ther Pat 2015; 25:1175-90. [PMID: 26173447 DOI: 10.1517/13543776.2015.1061997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Chronic heart failure (CHF) is the long-term inability of the heart to meet circulatory demands under normal conditions. Effects of CHF can include increased blood volume, increased vascular resistance and compromised contractility leading to fluid retention, dyspnea and fatigue. Current standard of care for chronic systolic heart failure is directed towards managing hypoperfusion through the renin-angiotensin-aldosterone and sympathetic nervous systems. Treatment may also involve reversal of maladaptive cardiac remodeling and prevention of life-threatening arrhythmias. AREAS COVERED This review highlights small molecule and peptidic agents for the treatment of CHF with patents published between 2011 and 2014. Targets are subdivided into inotropic agents, ventricular remodeling, diuretics and the renin-angiotensin-aldosterone system. EXPERT OPINION CHF represents a large, unmet medical need where improved therapies are needed. The renin-angiotensin-aldosterone system pathway continues to be a major source of new therapies for CHF with new inotropic therapies emerging. Promising initial clinical results for a few approaches combined with the expectation of additional clinical results in the near future make this an exciting time in the pursuit of new treatments for CHF.
Collapse
Affiliation(s)
- Brian Raymer
- a Cardiovascular, Metabolic, and Endocrine Diseases Chemistry, Pfizer Worldwide Research and Development , Cambridge, MA, USA +1 617 551 3414 ; +1 617 551 3082 ;
| | - David Ebner
- a Cardiovascular, Metabolic, and Endocrine Diseases Chemistry, Pfizer Worldwide Research and Development , Cambridge, MA, USA +1 617 551 3414 ; +1 617 551 3082 ;
| |
Collapse
|
44
|
Minguet J, Sutton G, Ferrero C, Gomez T, Bramlage P. LCZ696 : a new paradigm for the treatment of heart failure? Expert Opin Pharmacother 2015; 16:435-46. [PMID: 25597387 DOI: 10.1517/14656566.2015.1000300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Heart failure (HF) represents a significant healthcare issue because of its ever-increasing prevalence, poor prognosis and complex pathophysiology. Currently, blockade of the renin-angiotensin-aldosterone system (RAAS) is the cornerstone of treatment; however, the combination of RAAS blockade with inhibition of neprilysin (NEP), an enzyme that degrades natriuretic peptides, has recently emerged as a potentially superior treatment strategy. AREAS COVERED Following the results of the recent Phase III Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure clinical trial in patients with chronic HF with reduced ejection fraction (HF-REF), this review focuses on LCZ696 , a first-in-class angiotensin receptor NEP inhibitor. This drug consists of a supramolecular complex containing the angiotensin receptor inhibitor valsartan in combination with the NEP inhibitor prodrug, AHU377. Following oral administration, the LCZ696 complex dissociates and the NEP inhibitor component is metabolized to the active form (LBQ657). Aspects of the trial that might be relevant to clinical practice are also discussed. EXPERT OPINION Speculation that LCZ696 will pass the scrutiny of regulatory agencies for HF-REF appears to be justified, and it is likely to become a core therapeutic component in the near future. Replication of the eligibility criteria and titration protocol used in the PARADIGM-HF trial would be valuable in clinical practice and may minimize the risk of adverse events. Although long-term data remain to be generated, the promising results regarding hypertension are likely to expedite acceptance of the drug for HF-REF.
Collapse
Affiliation(s)
- Joan Minguet
- Institute for Research and Medicine Advancement (IRMEDICA) , Barcelona , Spain
| | | | | | | | | |
Collapse
|
45
|
da Silva AR, Fraga-Silva RA, Stergiopulos N, Montecucco F, Mach F. Update on the role of angiotensin in the pathophysiology of coronary atherothrombosis. Eur J Clin Invest 2015; 45:274-87. [PMID: 25586671 DOI: 10.1111/eci.12401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/10/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Coronary atherothrombosis due to atherosclerotic plaque rupture or erosion is frequently associated with acute coronary syndromes (ACS). Significant efforts have been made to elucidate the pathophysiological mechanisms underlying acute coronary events. MATERIALS AND METHODS This narrative review is based on the material searched for and obtained via PubMed up to August 2014. The search terms we used were as follows: 'angiotensin, acute coronary syndromes, acute myocardial infarction' in combination with 'atherosclerosis, vulnerability, clinical trial, ACE inhibitors, inflammation'. RESULTS Among several regulatory components, the renin-angiotensin system (RAS) was shown as a key pathway modulating coronary atherosclerotic plaque vulnerability. Indeed, these molecules are involved in all stages of atherogenesis. Classically, the RAS is composed by a series of enzymatic reactions leading to the angiotensin (Ang) II generation and activity. However, the knowledge of RAS has expanded and become more complex. The discovery of novel components and their functions has revealed additional pathways that contribute to or counterbalance the actions of Ang II. In this review, we discussed on recent findings concerning the role of different angiotensin peptides in the pathophysiology of ACS and coronary atherothrombosis, exploring the link between these molecules and atherosclerotic plaque vulnerability. CONCLUSIONS Treatments selectively targeting angiotensins (including Mas and AT2 agonists, ACE2 recombinant, or Ang-(1-7) and almandine in oral formulations) have been tested in animal studies or in small human subgroups, expanding the perspective in the ACS prevention. These novel strategies, especially in the counter-regulatory axis ACE2/Ang-(1-7)/Mas, might be promising to reduce plaque vulnerability and inflammation.
Collapse
Affiliation(s)
- Analina R da Silva
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
46
|
von Lueder TG, Wang BH, Kompa AR, Huang L, Webb R, Jordaan P, Atar D, Krum H. Angiotensin Receptor Neprilysin Inhibitor LCZ696 Attenuates Cardiac Remodeling and Dysfunction After Myocardial Infarction by Reducing Cardiac Fibrosis and Hypertrophy. Circ Heart Fail 2015; 8:71-8. [DOI: 10.1161/circheartfailure.114.001785] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Angiotensin receptor neprilysin inhibitors (ARNi), beyond blocking angiotensin II signaling, augment natriuretic peptides by inhibiting their breakdown by neprilysin. The myocardial effects of ARNi have been little studied until recently. We hypothesized that LCZ696 attenuates left ventricular (LV) remodeling after experimental myocardial infarction (MI), and that this may be contributed to by inhibition of hypertrophy and fibrosis in cardiac cells.
Methods and Results—
One week after MI, adult male Sprague–Dawley rats were randomized to treatment for 4 weeks with LCZ696 (68 mg/kg body weight perorally; MI-ARNi, n=11) or vehicle (MI-vehicle, n=6). Five weeks after MI, MI-ARNi versus MI-vehicle demonstrated lower LV end-diastolic diameter (by echocardiography; 9.7±0.2 versus 10.5±0.3 mm), higher LV ejection fraction (60±2 versus 47±5%), diastolic wall strain (0.23±0.02 versus 0.13±0.02), and circular strain (−9.8±0.5 versus −7.3±0.5%; all
P
<0.05). LV pressure–volume loops confirmed improved LV function. Despite similar infarct size, MI-ARNi versus MI-vehicle had lower cardiac weights (
P
<0.01) and markedly reduced fibrosis in peri-infarct and remote myocardium. Angiotensin II–stimulated incorporation of 3[H]leucine in cardiac myocytes and 3[H]proline in cardiac fibroblast was used to evaluate hypertrophy and fibrosis, respectively. The neprilysin inhibitor component of LCZ696, LBQ657, inhibited hypertrophy but not fibrosis. The angiotensin receptor blocker component of LCZ696, valsartan inhibited both hypertrophy and fibrosis. Dual valsartan+LBQ augmented the inhibitory effects of valsartan and the highest doses completely abrogated angiotensin II–mediated effects.
Conclusions—
LCZ696 attenuated cardiac remodeling and dysfunction after MI. This may be contributed to by superior inhibition of LCZ696 on cardiac fibrosis and cardiac hypertrophy than either stand-alone neprilysin inhibitor or angiotensin receptor blocker.
Collapse
Affiliation(s)
- Thomas G. von Lueder
- From the Department of Epidemiology and Preventive Medicine, Monash Center of Cardiovascular Research and Education in Therapeutics, Monash University, Alfred Hospital, Melbourne, Australia (T.G.v.L., B.H.W., A.R.K., L.H., H.K.); Department of Cardiology B, Oslo University Hospital Ullevål, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway (T.G.v.L., D.A.); Department of Medicine, University of Melbourne, St Vincent’s Hospital, Fitzroy, Australia (A.R.K.)
| | - Bing H. Wang
- From the Department of Epidemiology and Preventive Medicine, Monash Center of Cardiovascular Research and Education in Therapeutics, Monash University, Alfred Hospital, Melbourne, Australia (T.G.v.L., B.H.W., A.R.K., L.H., H.K.); Department of Cardiology B, Oslo University Hospital Ullevål, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway (T.G.v.L., D.A.); Department of Medicine, University of Melbourne, St Vincent’s Hospital, Fitzroy, Australia (A.R.K.)
| | - Andrew R. Kompa
- From the Department of Epidemiology and Preventive Medicine, Monash Center of Cardiovascular Research and Education in Therapeutics, Monash University, Alfred Hospital, Melbourne, Australia (T.G.v.L., B.H.W., A.R.K., L.H., H.K.); Department of Cardiology B, Oslo University Hospital Ullevål, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway (T.G.v.L., D.A.); Department of Medicine, University of Melbourne, St Vincent’s Hospital, Fitzroy, Australia (A.R.K.)
| | - Li Huang
- From the Department of Epidemiology and Preventive Medicine, Monash Center of Cardiovascular Research and Education in Therapeutics, Monash University, Alfred Hospital, Melbourne, Australia (T.G.v.L., B.H.W., A.R.K., L.H., H.K.); Department of Cardiology B, Oslo University Hospital Ullevål, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway (T.G.v.L., D.A.); Department of Medicine, University of Melbourne, St Vincent’s Hospital, Fitzroy, Australia (A.R.K.)
| | - Randy Webb
- From the Department of Epidemiology and Preventive Medicine, Monash Center of Cardiovascular Research and Education in Therapeutics, Monash University, Alfred Hospital, Melbourne, Australia (T.G.v.L., B.H.W., A.R.K., L.H., H.K.); Department of Cardiology B, Oslo University Hospital Ullevål, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway (T.G.v.L., D.A.); Department of Medicine, University of Melbourne, St Vincent’s Hospital, Fitzroy, Australia (A.R.K.)
| | - Pierre Jordaan
- From the Department of Epidemiology and Preventive Medicine, Monash Center of Cardiovascular Research and Education in Therapeutics, Monash University, Alfred Hospital, Melbourne, Australia (T.G.v.L., B.H.W., A.R.K., L.H., H.K.); Department of Cardiology B, Oslo University Hospital Ullevål, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway (T.G.v.L., D.A.); Department of Medicine, University of Melbourne, St Vincent’s Hospital, Fitzroy, Australia (A.R.K.)
| | - Dan Atar
- From the Department of Epidemiology and Preventive Medicine, Monash Center of Cardiovascular Research and Education in Therapeutics, Monash University, Alfred Hospital, Melbourne, Australia (T.G.v.L., B.H.W., A.R.K., L.H., H.K.); Department of Cardiology B, Oslo University Hospital Ullevål, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway (T.G.v.L., D.A.); Department of Medicine, University of Melbourne, St Vincent’s Hospital, Fitzroy, Australia (A.R.K.)
| | - Henry Krum
- From the Department of Epidemiology and Preventive Medicine, Monash Center of Cardiovascular Research and Education in Therapeutics, Monash University, Alfred Hospital, Melbourne, Australia (T.G.v.L., B.H.W., A.R.K., L.H., H.K.); Department of Cardiology B, Oslo University Hospital Ullevål, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway (T.G.v.L., D.A.); Department of Medicine, University of Melbourne, St Vincent’s Hospital, Fitzroy, Australia (A.R.K.)
| |
Collapse
|