1
|
Onoi Y, Matsumoto T, Anjiki K, Hayashi S, Nakano N, Kuroda Y, Tsubosaka M, Kamenaga T, Ikuta K, Tachibana S, Suda Y, Wada K, Maeda T, Saitoh A, Hiranaka T, Sobajima S, Iwaguro H, Matsushita T, Kuroda R. Human uncultured adipose-derived stromal vascular fraction shows therapeutic potential against osteoarthritis in immunodeficient rats via direct effects of transplanted M2 macrophages. Stem Cell Res Ther 2024; 15:325. [PMID: 39334434 PMCID: PMC11438128 DOI: 10.1186/s13287-024-03946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The uncultured adipose-derived stromal vascular fraction (SVF), consisting of adipose-derived stromal cells (ADSCs), M2 macrophages (M2Φ) and others, has shown therapeutic potential against osteoarthritis (OA), however, the mechanisms underlying its therapeutic effects remain unclear. Therefore, this study investigated the effects of the SVF on OA in a human-immunodeficient rat xenotransplantation model. METHODS OA model was induced in the knees of female immunodeficient rats by destabilization of the medial meniscus. Immediately after the surgery, human SVF (1 × 105), ADSCs (1 × 104), or phosphate buffered saline as a control group were transplanted into the knees. At 4 and 8 weeks postoperatively, OA progression and synovitis were analyzed by macroscopic and histological analyses, and the expression of collagen II, SOX9, MMP-13, ADAMTS-5, F4/80, CD86 (M1), CD163 (M2), and human nuclear antigen (hNA) were evaluated immunohistochemically. In vitro, flow cytometry was performed to collect CD163-positive cells as M2Φ from the SVF. Chondrocyte pellets (1 × 105) were co-cultured with SVF (1 × 105), M2Φ (1 × 104), and ADSCs (1 × 104) or alone as a control group, and the pellet size was compared. TGF-β, IL-10 and MMP-13 concentrations in the medium were evaluated using enzyme-linked immunosorbent assay. RESULTS In comparison with the control and ADSC groups, the SVF group showed significantly slower OA progression and less synovitis with higher expression of collagen II and SOX9, lower expression of MMP-13 and ADAMTS-5, and lower F4/80 and M1/M2 ratio in the synovium. Only the SVF group showed partial expression of hNA-, CD163-, and F4/80-positive cells in the rat synovium. In vitro, the SVF, M2Φ, ADSC and control groups, in that order, showed larger pellet sizes, higher TGF-β and IL-10, and lower MMP-13 concentrations. CONCLUSIONS The M2Φ in the transplanted SVF directly affected recipient tissue, enhancing the secretion of growth factors and chondrocyte-protecting cytokines, and partially improving chondrocytes and joint homeostasis. These findings indicate that the SVF is as an effective option for regenerative therapy for OA, with mechanisms different from those of ADSCs.
Collapse
Affiliation(s)
- Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kensuke Anjiki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kemmei Ikuta
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shotaro Tachibana
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshihito Suda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kensuke Wada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takuma Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Akira Saitoh
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takafumi Hiranaka
- Department of Orthopaedic Surgery and Joint Surgery Center, Takatsuki General Hospital, Osaka, Japan
| | - Satoshi Sobajima
- Department of Orthopaedic Surgery, Sobajima Clinic, Osaka, Japan
| | - Hideki Iwaguro
- Department of Orthopaedic Surgery, Sobajima Clinic, Osaka, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
2
|
Guo T, Xu J. Cancer-associated fibroblasts: a versatile mediator in tumor progression, metastasis, and targeted therapy. Cancer Metastasis Rev 2024; 43:1095-1116. [PMID: 38602594 PMCID: PMC11300527 DOI: 10.1007/s10555-024-10186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Tumor microenvironment (TME) has been demonstrated to play a significant role in tumor initiation, progression, and metastasis. Cancer-associated fibroblasts (CAFs) are the major component of TME and exhibit heterogeneous properties in their communication with tumor cells. This heterogeneity of CAFs can be attributed to various origins, including quiescent fibroblasts, mesenchymal stem cells (MSCs), adipocytes, pericytes, endothelial cells, and mesothelial cells. Moreover, single-cell RNA sequencing has identified diverse phenotypes of CAFs, with myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs) being the most acknowledged, alongside newly discovered subtypes like antigen-presenting CAFs (apCAFs). Due to these heterogeneities, CAFs exert multiple functions in tumorigenesis, cancer stemness, angiogenesis, immunosuppression, metabolism, and metastasis. As a result, targeted therapies aimed at the TME, particularly focusing on CAFs, are rapidly developing, fueling the promising future of advanced tumor-targeted therapy.
Collapse
Affiliation(s)
- Tianchen Guo
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
3
|
Sun J, Shi M, Song Z, Hua F, Yan X, Zhang M, Duan H, Liu J. CD146-dependent macrophage infiltration promotes epidural fibrosis via the Erdr1/ERK/CCR2 pathway. Int Immunopharmacol 2024; 137:112528. [PMID: 38908086 DOI: 10.1016/j.intimp.2024.112528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Low back pain due to epidural fibrosis is a major complication after spine surgery. Macrophages infiltrate the wound area post laminectomy, but the role of macrophages in epidural fibrosis remains largely elusive. In a mouse model of laminectomy, macrophage depletion decreased epidural fibrosis. CD146, an adhesion molecule involved in cell migration, is expressed by macrophages. CD146-defective macrophages exhibited impaired migration, which was mediated by reduced expression of CCR2 and suppression of the MAPK/ERK signaling pathway. CD146-defective macrophages suppress the MAPK/ERK signaling pathway by increasing Erdr1. In vivo, CD146 deficiency decreased macrophage infiltration and reduced extracellular matrix deposition in wound tissues. Moreover, the anti-CD146 antibody AA98 suppressed macrophage infiltration and epidural fibrosis. Taken together, these findings demonstrated that CD146 deficiency alleviates epidural fibrosis by decreasing the migration of macrophages via the Erdr1/ERK/CCR2 pathway. Blocking CD146 and macrophage infiltration may help alleviate epidural fibrosis.
Collapse
Affiliation(s)
- Jinpeng Sun
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mohan Shi
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeyuan Song
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Hua
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Hammer FA, Hölmich P, Nehlin JO, Vomstein K, Blønd L, Hölmich LR, Barfod KW, Bagge J. Microfragmented abdominal adipose tissue-derived stem cells from knee osteoarthritis patients aged 29-65 years demonstrate in vitro stemness and low levels of cellular senescence. J Exp Orthop 2024; 11:e12056. [PMID: 38911188 PMCID: PMC11190460 DOI: 10.1002/jeo2.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose To investigate the level of cellular senescence in stem cells derived from microfragmented abdominal adipose tissue harvested from patients with knee osteoarthritis (OA). Methods Stem cells harvested from microfragmented abdominal adipose tissue from 20 patients with knee OA, aged 29-65 years (mean = 49.8, SD = 9.58), were analysed as a function of patient age and compared with control cells exhibiting signs of cellular senescence. Steady-state mRNA levels of a panel of genes associated with senescence were measured by qPCR. Intracellular senescence-associated proteins p16 and p21, and senescence-associated β-galactosidase activity were measured by flow cytometry. Cellular proliferation was assessed using a 5-ethynyl-2'-deoxyuridine proliferation assay. Stemness was assessed by stem cell surface markers using flow cytometry and the capacity to undergo adipogenic and osteogenic differentiation in vitro. Results No correlation was found between cellular senescence levels of the microfragmented adipose tissue-derived stem cells and patient age for any of the standard assays used to quantify senescence. The level of cellular senescence was generally low across all senescence-associated assays compared to the positive senescence control. Stemness was verified for all samples. An increased capacity to undergo adipogenic differentiation was shown with increasing patient age (p = 0.02). No effect of patient age was found for osteogenic differentiation. Conclusions Autologous microfragmented adipose tissue-derived stem cells may be used in clinical trials of knee OA of patients aged 29-65 years, at least until passage 4, as they show stemness potential and negligible senescence in vitro. Level of Evidence Not applicable.
Collapse
Affiliation(s)
- Freja Aabæk Hammer
- Sports Orthopedic Research Center—Copenhagen (SORC‐C), Department of Orthopedic SurgeryCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Per Hölmich
- Sports Orthopedic Research Center—Copenhagen (SORC‐C), Department of Orthopedic SurgeryCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Jan O. Nehlin
- Department of Clinical ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Kilian Vomstein
- Department of Obstetrics and Gynecology, The Fertility ClinicCopenhagen University Hospital—HvidovreHvidovreDenmark
| | - Lars Blønd
- Department of Orthopedic SurgeryZealand University Hospital—KøgeKøgeDenmark
| | | | - Kristoffer Weisskirchner Barfod
- Sports Orthopedic Research Center—Copenhagen (SORC‐C), Department of Orthopedic SurgeryCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Jasmin Bagge
- Sports Orthopedic Research Center—Copenhagen (SORC‐C), Department of Orthopedic SurgeryCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| |
Collapse
|
5
|
Polat S, Yazir Y, Duruksu G, Kiliç KC, Mert S, Gacar G, Öncel Duman B, Halbutoğullari ZS. Investigation of the differentiation potential of pericyte cells as an alternative source of mesenchymal stem cells. Acta Histochem 2024; 126:152145. [PMID: 38432161 DOI: 10.1016/j.acthis.2024.152145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The mesenchymal stem cells (MSCs) with characterized by their multipotency and capacity to differentiate into various tissue cell types, have led to their incorporation in regenerative medicine research. However, the limited numbers of MSCs in the human body and their diverse differentiation capabilities in tissues highlight the need for exploring alternative regenerative cell sources. In this study, therefore, we conducted molecular level examinations to determine whether pericytes, specialized cell communities situated near blood vessels, could serve as a substitute for human bone marrow-derived mesenchymal stem cells (hBM-MSCs). In this context, the potential application of pericytes surrounds the vessels when MSCs are insufficient for functional purposes. METHODS The pericytes utilized in this investigation were derived from the placenta and characterized at the third passage. Similarly, the hBM-MSCs were also characterized at the third passage. The pluripotent properties of the two cell types were assessed at the gene expression level. Thereafter, both pericytes and hBM-MSCs were directed towards adipogenic, osteogenic and chondrogenic differentiation. The cells in both groups were examined on days 7, 14, and, 21 and their differentiation status was compared both immunohistochemically and through gene expression analysis. RESULTS Upon comparing the pluripotency characteristics of placental pericytes and hBM-MSCs, it was discovered that there was a substantial upregulation of the pluripotency genes FoxD3, Sox2, ZPF42, UTF1, and, Lin28 in both cell types. However, no significant expression of the genes Msx1, Nr6a1, Pdx1, and, GATA6 was observed in either cell type. It was also noted that pericytes differentiate into adipogenic, osteogenic and, chondrogenic lineages similar to hBM-MSCs. DISCUSSION As a result, it has been determined that pericytes exhibit high differentiation and proliferation properties similar to those of MSCs, and therefore can be considered a suitable alternative cell source for regenerative medicine and tissue engineering research, in cases where MSCs are not available or insufficient. It is notable that pericytes have been suggested as a potential substitute in studies where MSCs are lacking.
Collapse
Affiliation(s)
- Selen Polat
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| | - Yusufhan Yazir
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
| | - Gökhan Duruksu
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Kamil Can Kiliç
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| | - Serap Mert
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Chemistry and Chemical Processing Technologies, Kocaeli University, Kocaeli, Turkey; Department of Polymer Science and Technology, Kocaeli University, Kocaeli, Turkey
| | - Gülçin Gacar
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Büşra Öncel Duman
- Medical Laboratory Techniques Program, European Vocational School, Kocaeli Health and Technology University, Kocaeli, Turkey
| | - Zehra Seda Halbutoğullari
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
6
|
Picoli CDC, Birbrair A, Li Z. Pericytes as the Orchestrators of Vasculature and Adipogenesis. Genes (Basel) 2024; 15:126. [PMID: 38275607 PMCID: PMC10815550 DOI: 10.3390/genes15010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Pericytes (PCs) are located surrounding the walls of small blood vessels, particularly capillaries and microvessels. In addition to their functions in maintaining vascular integrity, participating in angiogenesis, and regulating blood flow, PCs also serve as a reservoir for multi-potent stem/progenitor cells in white, brown, beige, and bone marrow adipose tissues. Due to the complex nature of this cell population, the identification and characterization of PCs has been challenging. A comprehensive understanding of the heterogeneity of PCs may enhance their potential as therapeutic targets for metabolic syndromes or bone-related diseases. This mini-review summarizes multiple PC markers commonly employed in lineage-tracing studies, with an emphasis on their contribution to adipogenesis and functions in different adipose depots under diverse metabolic conditions.
Collapse
Affiliation(s)
| | - Alexander Birbrair
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Madison, WI 53706, USA;
| | - Ziru Li
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA;
| |
Collapse
|
7
|
Issabekova A, Kudaibergen G, Sekenova A, Dairov A, Sarsenova M, Mukhlis S, Temirzhan A, Baidarbekov M, Eskendirova S, Ogay V. The Therapeutic Potential of Pericytes in Bone Tissue Regeneration. Biomedicines 2023; 12:21. [PMID: 38275382 PMCID: PMC10813325 DOI: 10.3390/biomedicines12010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pericytes, as perivascular cells, are present in all vascularized organs and tissues, and they actively interact with endothelial cells in capillaries and microvessels. Their involvement includes functions like blood pressure regulation, tissue regeneration, and scarring. Studies have confirmed that pericytes play a crucial role in bone tissue regeneration through direct osteodifferentiation processes, paracrine actions, and vascularization. Recent preclinical and clinical experiments have shown that combining perivascular cells with osteogenic factors and tissue-engineered scaffolds can be therapeutically effective in restoring bone defects. This approach holds promise for addressing bone-related medical conditions. In this review, we have emphasized the characteristics of pericytes and their involvement in angiogenesis and osteogenesis. Furthermore, we have explored recent advancements in the use of pericytes in preclinical and clinical investigations, indicating their potential as a therapeutic resource in clinical applications.
Collapse
Affiliation(s)
- Assel Issabekova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Gulshakhar Kudaibergen
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Aliya Sekenova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Aidar Dairov
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Madina Sarsenova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Sholpan Mukhlis
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Abay Temirzhan
- National Scientific Center of Traumatology and Orthopedics Named after Academician N.D. Batpenov, Astana 010000, Kazakhstan; (A.T.); (M.B.)
| | - Murat Baidarbekov
- National Scientific Center of Traumatology and Orthopedics Named after Academician N.D. Batpenov, Astana 010000, Kazakhstan; (A.T.); (M.B.)
| | - Saule Eskendirova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| |
Collapse
|
8
|
James AW, Thottappillil N, Péault B, Zhang X. Editorial: Chondrogenic potentials, protocols and mechanisms of mesenchymal progenitor cells. Front Cell Dev Biol 2023; 11:1289438. [PMID: 37786809 PMCID: PMC10541955 DOI: 10.3389/fcell.2023.1289438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023] Open
Affiliation(s)
- Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | | | - Bruno Péault
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xinli Zhang
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Sun S, Yang H, Xin J, Yao H, Yuan L, Ren K, Jiang J, Shi D, Li J, Zhou Q, An Z, Guo B, Chen J, He L, Liang X, Cheng T, Xia N, Li J. Transcriptomics confirm the establishment of a liver-immune dual-humanized mouse model after transplantation of a single type of human bone marrow mesenchymal stem cell. Liver Int 2023; 43:1345-1356. [PMID: 36810858 DOI: 10.1111/liv.15546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/20/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND AND AIMS Human bone marrow mesenchymal stem cells (hBMSCs) are important for developing a dual-humanized mouse model to clarify disease pathogenesis. We aimed to elucidate the characteristics of hBMSC transdifferentiation into liver and immune cells. METHODS A single type of hBMSCs was transplanted into immunodeficient Fah-/- Rag2-/- IL-2Rγc-/- SCID (FRGS) mice with fulminant hepatic failure (FHF). Liver transcriptional data from the hBMSC-transplanted mice were analysed to identify transdifferentiation with traces of liver and immune chimerism. RESULTS Mice with FHF were rescued by implanted hBMSCs. Human albumin/leukocyte antigen (HLA) and CD45/HLA double-positive hepatocytes and immune cells were observed in the rescued mice during the initial 3 days. The transcriptomics analysis of liver tissues from dual-humanized mice identified two transdifferentiation phases (cellular proliferation at 1-5 days and cellular differentiation/maturation at 5-14 days) and ten cell lineages transdifferentiated from hBMSCs: human hepatocytes, cholangiocytes, stellate cells, myofibroblasts, endothelial cells and immune cells (T/B/NK/NKT/Kupffer cells). Two biological processes, hepatic metabolism and liver regeneration, were characterized in the first phase, and two additional biological processes, immune cell growth and extracellular matrix (ECM) regulation, were observed in the second phase. Immunohistochemistry verified that the ten hBMSC-derived liver and immune cells were present in the livers of dual-humanized mice. CONCLUSIONS A syngeneic liver-immune dual-humanized mouse model was developed by transplanting a single type of hBMSC. Four biological processes linked to the transdifferentiation and biological functions of ten human liver and immune cell lineages were identified, which may help to elucidate the molecular basis of this dual-humanized mouse model for further clarifying disease pathogenesis.
Collapse
Affiliation(s)
- Suwan Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Keke Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Li
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhanglu An
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beibei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxian Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lulu He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Yang L, Zhang H, Dong C, Yue W, Xue R, Liu F, Yang L, Li L. Neuron-Glial Antigen 2 Participates in Liver Fibrosis via Regulating the Differentiation of Bone Marrow Mesenchymal Stem Cell to Myofibroblast. Int J Mol Sci 2023; 24:ijms24021177. [PMID: 36674693 PMCID: PMC9864665 DOI: 10.3390/ijms24021177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Neuron-glial antigen 2 (NG2, gene name: Cspg4) has been characterized as an important factor in many diseases. However, the pathophysiological relevance of NG2 in liver disease specifically regarding bone marrow mesenchymal stem cell (BMSC) differentiation to myofibroblast (MF) and the molecular details remain unknown. Human liver tissues were obtained from patients with different chronic liver diseases, and mouse liver injury models were induced by feeding a methionine-choline-deficient and high-fat diet, carbon tetrachloride administration, or bile duct ligation operation. NG2 expression was increased in human and mouse fibrotic liver and positively correlated with MF markers α-smooth muscle actin (αSMA) and other fibrotic markers in the liver. There was a co-localization between NG2 and αSMA, NG2 and EGFP (BMSC-derived MF) in the fibrotic liver determined by immunofluorescence analysis. In vitro, TGFβ1-treated BMSC showed a progressive increase in NG2 levels, which were mainly expressed on the membrane surface. Interestingly, there was a translocation of NG2 from the cell membrane into cytoplasm after the transfection of Cspg4 siRNA in TGFβ1-treated BMSC. siRNA-mediated inhibition of Cspg4 abrogated the TGFβ1-induced BMSC differentiation to MF. Importantly, inhibition of NG2 in vivo significantly attenuated the extent of liver fibrosis in methionine-choline-deficient and high fat (MCDHF) mice, as demonstrated by the decreased mRNA expression of fibrotic parameters, collagen deposition, serum transaminase levels, liver steatosis and inflammation after the administration of Cspg4 siRNA in MCDHF mice. We identify the positive regulation of NG2 in BMSC differentiation to MF during liver fibrosis, which may provide a promising target for the treatment of liver disease.
Collapse
Affiliation(s)
- Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Hang Zhang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Chengbin Dong
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100069, China
| | - Wenhui Yue
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Renmin Xue
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Fuquan Liu
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
- Correspondence: ; Tel.: +86-10-83950468
| |
Collapse
|
11
|
Zhao Y, Mei S, Huang Y, Chen J, Zhang X, Zhang P. Integrative analysis deciphers the heterogeneity of cancer-associated fibroblast and implications on clinical outcomes in ovarian cancers. Comput Struct Biotechnol J 2022; 20:6403-6411. [PMID: 36420154 PMCID: PMC9679440 DOI: 10.1016/j.csbj.2022.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence has recognized that cancer-associated fibroblasts (CAFs) are major players in the desmoplastic stroma of ovarian cancer, modulating tumor progression and therapeutic response. However, it is unclear regarding the signatures of CAFs could be utilized to predict the clinical outcomes of ovarian cancer patients. To fill in this gap, we explored the intratumoral compartment of ovarian cancer by analyzing the single-cell RNA-sequencing (scRNA-seq) datasets of ovarian carcinoma samples, and identified two distinct CAFs (tumor-promoting CAF_c1 subtype and myofibroblasts-like CAF_c2 subtype). The clinical significance of CAF subtypes was further validated in The Cancer Genomics Atlas (TCGA) database and other independent immunotherapy response datasets, and the results revealed that the patients with a higher expression of CAF_c1 signatures had a worse prognosis and showed a tendency of resistance to immunotherapy. This work uncovered the signatures of the CAF_c1 subtype that could serve as a novel prognostic indicator and predictive marker for immunotherapy.
Collapse
|
12
|
Zhu S, Chen M, Ying Y, Wu Q, Huang Z, Ni W, Wang X, Xu H, Bennett S, Xiao J, Xu J. Versatile subtypes of pericytes and their roles in spinal cord injury repair, bone development and repair. Bone Res 2022; 10:30. [PMID: 35296645 PMCID: PMC8927336 DOI: 10.1038/s41413-022-00203-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular regeneration is a challenging topic in tissue repair. As one of the important components of the neurovascular unit (NVU), pericytes play an essential role in the maintenance of the vascular network of the spinal cord. To date, subtypes of pericytes have been identified by various markers, namely the PDGFR-β, Desmin, CD146, and NG2, each of which is involved with spinal cord injury (SCI) repair. In addition, pericytes may act as a stem cell source that is important for bone development and regeneration, whilst specific subtypes of pericyte could facilitate bone fracture and defect repair. One of the major challenges of pericyte biology is to determine the specific markers that would clearly distinguish the different subtypes of pericytes, and to develop efficient approaches to isolate and propagate pericytes. In this review, we discuss the biology and roles of pericytes, their markers for identification, and cell differentiation capacity with a focus on the potential application in the treatment of SCI and bone diseases in orthopedics.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,Molecular Pharmacology Research Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiyang Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Samuel Bennett
- Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,Molecular Pharmacology Research Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
13
|
Abstract
Human pericytes are a perivascular cell population with mesenchymal stem cell properties, present in all vascularized tissues. Human pericytes have a distinct immunoprofile, which may be leveraged for purposes of cell purification. Adipose tissue is the most commonly used cell source for human pericyte derivation. Pericytes can be isolated by FACS (fluorescence-activated cell sorting), most commonly procured from liposuction aspirates. Pericytes have clonal multilineage differentiation potential, and their potential utility for bone regeneration has been described across multiple animal models. The following review will discuss in vivo methods for assessing the bone-forming potential of purified pericytes. Potential models include (1) mouse intramuscular implantation, (2) mouse calvarial defect implantation, and (3) rat spinal fusion models. In addition, the presented surgical protocols may be used for the in vivo analysis of other osteoprogenitor cell types.
Collapse
|
14
|
Negri S, Wang Y, Sono T, Lee S, Hsu GC, Xu J, Meyers CA, Qin Q, Broderick K, Witwer KW, Peault B, James AW. Human perivascular stem cells prevent bone graft resorption in osteoporotic contexts by inhibiting osteoclast formation. Stem Cells Transl Med 2020; 9:1617-1630. [PMID: 32697440 PMCID: PMC7695633 DOI: 10.1002/sctm.20-0152] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/24/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
The vascular wall stores mesenchymal progenitor cells which are able to induce bone regeneration, via direct and paracrine mechanisms. Although much is known regarding perivascular cell regulation of osteoblasts, their regulation of osteoclasts, and by extension utility in states of high bone resorption, is not known. Here, human perivascular stem cells (PSCs) were used as a means to prevent autograft resorption in a gonadectomy-induced osteoporotic spine fusion model. Furthermore, the paracrine regulation by PSCs of osteoclast formation was evaluated, using coculture, conditioned medium, and purified extracellular vesicles. Results showed that PSCs when mixed with autograft bone induce an increase in osteoblast:osteoclast ratio, promote bone matrix formation, and prevent bone graft resorption. The confluence of these factors resulted in high rates of fusion in an ovariectomized rat lumbar spine fusion model. Application of PSCs was superior across metrics to either the use of unpurified, culture-defined adipose-derived stromal cells or autograft bone alone. Under coculture conditions, PSCs negatively regulated osteoclast formation and did so via secreted, nonvesicular paracrine factors. Total RNA sequencing identified secreted factors overexpressed by PSCs which may explain their negative regulation of graft resorption. In summary, PSCs reduce osteoclast formation and prevent bone graft resorption in high turnover states such as gonadectomy-induced osteoporosis.
Collapse
Affiliation(s)
- Stefano Negri
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, DentistryPaediatrics and Gynaecology of the University of VeronaVeronaItaly
| | - Yiyun Wang
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Takashi Sono
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Seungyong Lee
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Jiajia Xu
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Qizhi Qin
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Kristen Broderick
- Department of Plastic SurgeryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Departments of Molecular and Comparative Pathobiology and NeurologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesCaliforniaUSA
- Center for Cardiovascular Science and MRC Center for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | - Aaron W. James
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
15
|
Xu J, Wang Y, Hsu CY, Negri S, Tower RJ, Gao Y, Tian Y, Sono T, Meyers CA, Hardy WR, Chang L, Hu S, Kahn N, Broderick K, Péault B, James AW. Lysosomal protein surface expression discriminates fat- from bone-forming human mesenchymal precursor cells. eLife 2020; 9:e58990. [PMID: 33044169 PMCID: PMC7550188 DOI: 10.7554/elife.58990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022] Open
Abstract
Tissue resident mesenchymal stem/stromal cells (MSCs) occupy perivascular spaces. Profiling human adipose perivascular mesenchyme with antibody arrays identified 16 novel surface antigens, including endolysosomal protein CD107a. Surface CD107a expression segregates MSCs into functionally distinct subsets. In culture, CD107alow cells demonstrate high colony formation, osteoprogenitor cell frequency, and osteogenic potential. Conversely, CD107ahigh cells include almost exclusively adipocyte progenitor cells. Accordingly, human CD107alow cells drove dramatic bone formation after intramuscular transplantation in mice, and induced spine fusion in rats, whereas CD107ahigh cells did not. CD107a protein trafficking to the cell surface is associated with exocytosis during early adipogenic differentiation. RNA sequencing also suggested that CD107alow cells are precursors of CD107ahigh cells. These results document the molecular and functional diversity of perivascular regenerative cells, and show that relocation to cell surface of a lysosomal protein marks the transition from osteo- to adipogenic potential in native human MSCs, a population of substantial therapeutic interest.
Collapse
Affiliation(s)
- Jiajia Xu
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Yiyun Wang
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Ching-Yun Hsu
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Stefano Negri
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Robert J Tower
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
- Departments of Orthopaedics, Johns Hopkins UniversityBaltimoreUnited States
| | - Yongxing Gao
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Ye Tian
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical UniversityShenyangChina
| | - Takashi Sono
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Carolyn A Meyers
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Winters R Hardy
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesUnited States
| | - Leslie Chang
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Shuaishuai Hu
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesUnited States
| | - Nusrat Kahn
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesUnited States
| | - Kristen Broderick
- Departments of Plastic Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | - Bruno Péault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesUnited States
- Center For Cardiovascular Science and Center for Regenerative Medicine, University of EdinburghEdinburghUnited Kingdom
| | - Aaron W James
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesUnited States
| |
Collapse
|
16
|
Vyas C, Mishbak H, Cooper G, Peach C, Pereira RF, Bartolo P. Biological perspectives and current biofabrication strategies in osteochondral tissue engineering. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40898-020-00008-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractArticular cartilage and the underlying subchondral bone are crucial in human movement and when damaged through disease or trauma impacts severely on quality of life. Cartilage has a limited regenerative capacity due to its avascular composition and current therapeutic interventions have limited efficacy. With a rapidly ageing population globally, the numbers of patients requiring therapy for osteochondral disorders is rising, leading to increasing pressures on healthcare systems. Research into novel therapies using tissue engineering has become a priority. However, rational design of biomimetic and clinically effective tissue constructs requires basic understanding of osteochondral biological composition, structure, and mechanical properties. Furthermore, consideration of material design, scaffold architecture, and biofabrication strategies, is needed to assist in the development of tissue engineering therapies enabling successful translation into the clinical arena. This review provides a starting point for any researcher investigating tissue engineering for osteochondral applications. An overview of biological properties of osteochondral tissue, current clinical practices, the role of tissue engineering and biofabrication, and key challenges associated with new treatments is provided. Developing precisely engineered tissue constructs with mechanical and phenotypic stability is the goal. Future work should focus on multi-stimulatory environments, long-term studies to determine phenotypic alterations and tissue formation, and the development of novel bioreactor systems that can more accurately resemble the in vivo environment.
Collapse
|
17
|
Comparison of skeletal and soft tissue pericytes identifies CXCR4 + bone forming mural cells in human tissues. Bone Res 2020; 8:22. [PMID: 32509378 PMCID: PMC7244476 DOI: 10.1038/s41413-020-0097-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
Human osteogenic progenitors are not precisely defined, being primarily studied as heterogeneous multipotent cell populations and termed mesenchymal stem cells (MSCs). Notably, select human pericytes can develop into bone-forming osteoblasts. Here, we sought to define the differentiation potential of CD146+ human pericytes from skeletal and soft tissue sources, with the underlying goal of defining cell surface markers that typify an osteoblastogenic pericyte. CD146+CD31-CD45- pericytes were derived by fluorescence-activated cell sorting from human periosteum, adipose, or dermal tissue. Periosteal CD146+CD31-CD45- cells retained canonical features of pericytes/MSC. Periosteal pericytes demonstrated a striking tendency to undergo osteoblastogenesis in vitro and skeletogenesis in vivo, while soft tissue pericytes did not readily. Transcriptome analysis revealed higher CXCR4 signaling among periosteal pericytes in comparison to their soft tissue counterparts, and CXCR4 chemical inhibition abrogated ectopic ossification by periosteal pericytes. Conversely, enrichment of CXCR4+ pericytes or stromal cells identified an osteoblastic/non-adipocytic precursor cell. In sum, human skeletal and soft tissue pericytes differ in their basal abilities to form bone. Diversity exists in soft tissue pericytes, however, and CXCR4+ pericytes represent an osteoblastogenic, non-adipocytic cell precursor. Indeed, enrichment for CXCR4-expressing stromal cells is a potential new tactic for skeletal tissue engineering.
Collapse
|
18
|
Bowles AC, Kouroupis D, Willman MA, Perucca Orfei C, Agarwal A, Correa D. Signature quality attributes of CD146 + mesenchymal stem/stromal cells correlate with high therapeutic and secretory potency. Stem Cells 2020; 38:1034-1049. [PMID: 32379908 DOI: 10.1002/stem.3196] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/01/2020] [Indexed: 12/22/2022]
Abstract
CD146+ bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) play key roles in the perivascular niche, skeletogenesis, and hematopoietic support; however, comprehensive evaluation of therapeutic potency has yet to be determined. In this study, in vitro inflammatory priming to crude human BM-MSCs (n = 8) captured a baseline of signature responses, including enriched CD146+ with coexpression of CD107aHigh , CXCR4High , and LepRHigh , transcriptional profile, enhanced secretory capacity, and robust immunomodulatory secretome and function, including immunopotency assays (IPAs) with stimulated immune cells. These signatures were significantly more pronounced in CD146+ (POS)-sorted subpopulation than in the CD146- (NEG). Mechanistically, POS BM-MSCs showed a markedly higher secretory capacity with significantly greater immunomodulatory and anti-inflammatory protein production upon inflammatory priming compared with the NEG BM-MSCs. Moreover, IPAs with stimulated peripheral blood mononuclear cells and T lymphocytes demonstrated robust immunosuppression mediated by POS BM-MSC while inducing significant frequencies of regulatory T cells. in vivo evidence showed that POS BM-MSC treatment promoted pronounced M1-to-M2 macrophage polarization, ameliorating inflammation/fibrosis of knee synovium and fat pad, unlike treatment with NEG BM-MSCs. These data correlate the expression of CD146 with innately higher immunomodulatory and secretory capacity, and thus therapeutic potency. This high-content, reproducible evidence suggests that the CD146+ (POS) MSC subpopulation are the mediators of the beneficial effects achieved using crude BM-MSCs, leading to translational implications for improving cell therapy and manufacturing.
Collapse
Affiliation(s)
- Annie C Bowles
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Department of Biomedical Engineering College of Engineering, University of Miami, Miami, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, Florida, USA
| | - Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Melissa A Willman
- Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Ashutosh Agarwal
- Department of Biomedical Engineering College of Engineering, University of Miami, Miami, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, Florida, USA
| | - Diego Correa
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, Florida, USA
| |
Collapse
|
19
|
Rong Q, Li S, Zhou Y, Geng Y, Liu S, Wu W, Forouzanfar T, Wu G, Zhang Z, Zhou M. A novel method to improve the osteogenesis capacity of hUCMSCs with dual-directional pre-induction under screened co-culture conditions. Cell Prolif 2020; 53:e12740. [PMID: 31820506 PMCID: PMC7078770 DOI: 10.1111/cpr.12740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) based therapy for bone regeneration has been regarded as a promising method in the clinic. However, hBMSCs with invasive harvesting process and undesirable proliferation rate hinder the extensive usage. HUCMSCs of easier access and excellent performances provide an alternative for the fabrication of tissue-engineered bone construct. Evidence suggested the osteogenesis ability of hUCMSCs was weaker than that of hBMSCs. To address this issue, a co-culture strategy of osteogenically and angiogenically induced hUCMSCs has been proposed since thorough vascularization facilitates the blood-borne nutrition and oxygen to transport in the scaffold, synergistically expediting the process of ossification. MATERIALS AND METHODS Herein, we used osteogenic- and angiogenic-differentiated hUCMSCs for co-culture in screened culture medium to elevate the osteogenic capacity with in vitro studies and finally coupled with 3D TCP scaffold to repair rat's critical-sized calvarial bone defect. By dual-directional induction, hUCMSCs could differentiate into osteoblasts and endothelial cells, respectively. To optimize the co-culture condition, gradient ratios of dual-directional differentiated hUCMSCs co-cultured under different medium were studied to determine the appropriate condition. RESULTS It revealed that the osteogenic- and angiogenic-induced hUCMSCs mixed with the ratio of 3:1 co-cultured in the mixed medium of osteogenic induction medium to endothelial cell induction medium of 3:1 possessed more mineralization nodules. Similarly, ALP and osteogenesis/angiogenesis-related genes expressions were relatively higher. Further evidence of bone defect repair with 3D printed TCP of 3:1 group exhibited better restoration outcomes. CONCLUSIONS Our work demonstrated a favourable and convenient approach of dual-directional differentiated hUCMSCs co-culture to improve the osteogenesis, establishing a novel way to fabricate tissue-engineered bone graft with 3D TCP for large bone defect augmentation.
Collapse
Affiliation(s)
- Qiong Rong
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral DiseaseAffiliated Stomatology Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of StomatologyThe First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Shuyi Li
- Department of Oral and Maxillofacial Surgery/PathologyAmsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA)Vrije Universiteit AmsterdamAmsterdam Movement ScienceAmsterdamThe Netherlands
| | - Yang Zhou
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral DiseaseAffiliated Stomatology Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yuanming Geng
- Department of StomatologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shangbin Liu
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral DiseaseAffiliated Stomatology Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Wanqiu Wu
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral DiseaseAffiliated Stomatology Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgery/PathologyAmsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA)Vrije Universiteit AmsterdamAmsterdam Movement ScienceAmsterdamThe Netherlands
| | - Gang Wu
- Department of Oral Implantology and Prosthetic DentistryAcademic Center for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Zhiyong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical UniversityThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Miao Zhou
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral DiseaseAffiliated Stomatology Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
20
|
Adipose-Derived Stem Cells in Bone Tissue Engineering: Useful Tools with New Applications. Stem Cells Int 2019; 2019:3673857. [PMID: 31781238 PMCID: PMC6875209 DOI: 10.1155/2019/3673857] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose stem cells (ASCs) are a crucial element in bone tissue engineering (BTE). They are easy to harvest and isolate, and they are available in significative quantities, thus offering a feasible and valid alternative to other sources of mesenchymal stem cells (MSCs), like bone marrow. Together with an advantageous proliferative and differentiative profile, they also offer a high paracrine activity through the secretion of several bioactive molecules (such as growth factors and miRNAs) via a sustained exosomal release which can exert efficient conditioning on the surrounding microenvironment. BTE relies on three key elements: (1) scaffold, (2) osteoprogenitor cells, and (3) bioactive factors. These elements have been thoroughly investigated over the years. The use of ASCs has offered significative new advancements in the efficacy of each of these elements. Notably, the phenotypic study of ASCs allowed discovering cell subpopulations, which have enhanced osteogenic and vasculogenic capacity. ASCs favored a better vascularization and integration of the scaffolds, while improvements in scaffolds' materials and design tried to exploit the osteogenic features of ASCs, thus reducing the need for external bioactive factors. At the same time, ASCs proved to be an incredible source of bioactive, proosteogenic factors that are released through their abundant exosome secretion. ASC exosomes can exert significant paracrine effects in the surroundings, even in the absence of the primary cells. These paracrine signals recruit progenitor cells from the host tissues and enhance regeneration. In this review, we will focus on the recent discoveries which have involved the use of ASCs in BTE. In particular, we are going to analyze the different ASCs' subpopulations, the interaction between ASCs and scaffolds, and the bioactive factors which are secreted by ASCs or can induce their osteogenic commitment. All these advancements are ultimately intended for a faster translational and clinical application of BTE.
Collapse
|
21
|
Xu J, Wang Y, Hsu CY, Gao Y, Meyers CA, Chang L, Zhang L, Broderick K, Ding C, Peault B, Witwer K, James AW. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. eLife 2019; 8:e48191. [PMID: 31482845 PMCID: PMC6764819 DOI: 10.7554/elife.48191] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
The vascular wall is a source of progenitor cells that are able to induce skeletal repair, primarily by paracrine mechanisms. Here, the paracrine role of extracellular vesicles (EVs) in bone healing was investigated. First, purified human perivascular stem cells (PSCs) were observed to induce mitogenic, pro-migratory, and pro-osteogenic effects on osteoprogenitor cells while in non-contact co-culture via elaboration of EVs. PSC-derived EVs shared mitogenic, pro-migratory, and pro-osteogenic properties of their parent cell. PSC-EV effects were dependent on surface-associated tetraspanins, as demonstrated by EV trypsinization, or neutralizing antibodies for CD9 or CD81. Moreover, shRNA knockdown in recipient cells demonstrated requirement for the CD9/CD81 binding partners IGSF8 and PTGFRN for EV bioactivity. Finally, PSC-EVs stimulated bone repair, and did so via stimulation of skeletal cell proliferation, migration, and osteodifferentiation. In sum, PSC-EVs mediate the same tissue repair effects of perivascular stem cells, and represent an 'off-the-shelf' alternative for bone tissue regeneration.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Yiyun Wang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Ching-Yun Hsu
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Yongxing Gao
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | | | - Leslie Chang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Leititia Zhang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
- Department of Oral and Maxillofacial Surgery, School of StomatologyChina Medical UniversityShenyangChina
| | | | - Catherine Ding
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research CenterUCLA, Orthopaedic HospitalLos AngelesUnited States
| | - Bruno Peault
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research CenterUCLA, Orthopaedic HospitalLos AngelesUnited States
- Centre For Cardiovascular ScienceUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Kenneth Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins UniversityBaltimoreUnited States
- Department of NeurologyJohns Hopkins UniversityBaltimoreUnited States
| | | |
Collapse
|
22
|
Abstract
Besides seminal functions in angiogenesis and blood pressure regulation, microvascular pericytes possess a latent tissue regenerative potential that can be revealed in culture following transition into mesenchymal stem cells. Endowed with robust osteogenic potential, pericytes and other related perivascular cells extracted from adipose tissue represent a potent and abundant cell source for refined bone tissue engineering and improved cell therapies of fractures and other bone defects. The use of diverse bone formation assays in vivo, which include mouse muscle pocket osteogenesis and calvaria replenishment, rat and dog spine fusion, and rat non-union fracture healing, has confirmed the superiority of purified perivascular cells for skeletal (re)generation. As a surprising observation though, despite strong endogenous bone-forming potential, perivascular cells drive bone regeneration essentially indirectly, via recruitment by secreted factors of local osteo-progenitors.
Collapse
|
23
|
Mienaltowski MJ, Cánovas A, Fates VA, Hampton AR, Pechanec MY, Islas-Trejo A, Medrano JF. Transcriptome profiles of isolated murine Achilles tendon proper- and peritenon-derived progenitor cells. J Orthop Res 2019; 37:1409-1418. [PMID: 29926971 DOI: 10.1002/jor.24076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 06/18/2018] [Indexed: 02/04/2023]
Abstract
Progenitor cells of the tendon proper and peritenon have unique properties that could impact their utilization in tendon repair strategies. While a few markers have been found to aid in distinguishing progenitors cells from each region, there is great value in identifying more markers. In this study, we hypothesized that RNAseq could be used to improve our understanding of those markers that define these cell types. Transcriptome profiles were generated for pools of mouse Achilles tendon progenitor cells from both regions and catalogues of potential markers were generated. Moreover, common (e.g., glycoprotein, signaling, and proteinaceous extracellular matrix) and unique (e.g., cartilage development versus angiogenesis and muscle contraction) biological processes and molecular functions were described for progenitors from each region. Real-time quantitative PCR of a subset of genes was used to gain insight into the heterogeneity amongst individual progenitor colonies from each region. Markers like Scx, Mkx, Thbs4, and Wnt10a were consistently able to distinguish tendon proper progenitors from peritenon progenitors; expression variability for other genes suggested greater cell type complexity for potential peritenon progenitor markers. This is the first effort to define Achilles tendon progenitor markers by region. Further efforts to investigate the value of these cataloged markers are required by screening more individual colonies of progenitors for more markers. Clinical Significance: Findings from this study advance efforts in the discernment of cell type specific markers for tendon proper and peritenon progenitor cells; insight into marker sets could improve tracking and sorting strategies for these cells for future therapeutic strategies. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1409-1418, 2019.
Collapse
Affiliation(s)
- Michael J Mienaltowski
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616
| | - Angela Cánovas
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616.,Department of Animal Biosciences, University of Guelph, Ontario, Canada
| | - Valerie A Fates
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616
| | - Angela R Hampton
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616
| | - Monica Y Pechanec
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616
| | - Alma Islas-Trejo
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616
| | - Juan F Medrano
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616
| |
Collapse
|
24
|
Wang Y, Xu J, Chang L, Meyers CA, Zhang L, Broderick K, Lee M, Peault B, James AW. Relative contributions of adipose-resident CD146 + pericytes and CD34 + adventitial progenitor cells in bone tissue engineering. NPJ Regen Med 2019; 4:1. [PMID: 30622740 PMCID: PMC6323123 DOI: 10.1038/s41536-018-0063-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Pericytes and other perivascular stem/stromal cells are of growing interest in the field of tissue engineering. A portion of perivascular cells are well recognized to have MSC (mesenchymal stem cell) characteristics, including multipotentiality, self-renewal, immunoregulatory functions, and diverse roles in tissue repair. Here, we investigate the differential but overlapping roles of two perivascular cell subsets in paracrine induction of bone repair. CD146+CD34-CD31-CD45-pericytes and CD34+CD146-CD31-CD45-adventitial cells were derived from human adipose tissue and applied alone or in combination to calvarial bone defects in mice. In vitro, osteogenic differentiation and tubulogenesis assays were performed using either fluorescence activated cell sorting-derived CD146+ pericytes or CD34+ adventitial cells. Results showed that CD146+ pericytes induced increased cord formation in vitro and angiogenesis in vivo in comparison with patient-matched CD34+ adventitial cells. In contrast, CD34+ adventitial cells demonstrated heightened paracrine-induced osteogenesis in vitro. When applied in a critical-size calvarial defect model in NOD/SCID mice, the combination treatment of CD146+ pericytes with CD34+ adventitial cells led to greater re-ossification than either cell type alone. In summary, adipose-derived CD146+ pericytes and CD34+ adventitial cells display functionally distinct yet overlapping and complementary roles in bone defect repair. Consequently, CD146+ pericytes and CD34+ adventitial cells may demonstrate synergistic bone healing when applied as a combination cellular therapy.
Collapse
Grants
- G1000816 Medical Research Council
- K08 AR068316 NIAMS NIH HHS
- R01 AR070773 NIAMS NIH HHS
- R21 DE027922 NIDCR NIH HHS
- The present work was supported by the NIH/NIAMS (R01 AR070773, K08 AR068316), NIH/NIDCR (R21 DE027922), USAMRAA (W81XWH-18-1-0121, W81XWH-18-1-0336, W81XWH-18-10613), American Cancer Society (Research Scholar Grant, RSG-18-027-01-CSM), the Orthopaedic Research and Education Foundation with funding provided by the Musculoskeletal Transplant Foundation, the Maryland Stem Cell Research Foundation, and the Musculoskeletal Transplant Foundation.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Lei Zhang
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, 21205 Baltimore, MD USA
| | - Min Lee
- School of Dentistry, University of California, Los Angeles, 90095 CA USA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, 90095 Los Angeles, CA USA
- Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, 21205 Baltimore, MD USA
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, 90095 Los Angeles, CA USA
| |
Collapse
|
25
|
Meyers CA, Xu J, Asatrian G, Ding C, Shen J, Broderick K, Ting K, Soo C, Peault B, James AW. WISP-1 drives bone formation at the expense of fat formation in human perivascular stem cells. Sci Rep 2018; 8:15618. [PMID: 30353078 PMCID: PMC6199241 DOI: 10.1038/s41598-018-34143-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/08/2018] [Indexed: 01/21/2023] Open
Abstract
The vascular wall within adipose tissue is a source of mesenchymal progenitors, referred to as perivascular stem/stromal cells (PSC). PSC are isolated via fluorescence activated cell sorting (FACS), and defined as a bipartite population of pericytes and adventitial progenitor cells (APCs). Those factors that promote the differentiation of PSC into bone or fat cell types are not well understood. Here, we observed high expression of WISP-1 among human PSC in vivo, after purification, and upon transplantation in a bone defect. Next, modulation of WISP-1 expression was performed, using WISP-1 overexpression, WISP-1 protein, or WISP-1 siRNA. Results demonstrated that WISP-1 is expressed in the perivascular niche, and high expression is maintained after purification of PSC, and upon transplantation in a bone microenvironment. In vitro studies demonstrate that WISP-1 has pro-osteogenic/anti-adipocytic effects in human PSC, and that regulation of BMP signaling activity may underlie these effects. In summary, our results demonstrate the importance of the matricellular protein WISP-1 in regulation of the differentiation of human stem cell types within the perivascular niche. WISP-1 signaling upregulation may be of future benefit in cell therapy mediated bone tissue engineering, for the healing of bone defects or other orthopaedic applications.
Collapse
Affiliation(s)
- Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, 21205, United States
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, 21205, United States
| | - Greg Asatrian
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, California, Los Angeles, 90095, United States
| | - Catherine Ding
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, California, Los Angeles, 90095, United States
| | - Jia Shen
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, California, Los Angeles, 90095, United States
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, 21205, Baltimore, United States
| | - Kang Ting
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, California, Los Angeles, 90095, United States
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, California, Los Angeles, 90095, United States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, California, Los Angeles, 90095, United States
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, California, Los Angeles, 90095, United States
- Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, 21205, United States.
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, California, Los Angeles, 90095, United States.
| |
Collapse
|
26
|
Abstract
Pericytes have crucial roles in blood-brain barrier function, blood vessel function/stability, angiogenesis, endothelial cell proliferation/differentiation, wound healing, and hematopoietic stem cells maintenance. They can be isolated from fetal and adult tissues and have multipotential differentiation capacity as mesenchymal stem cells (MSCs). All of these properties make pericytes as preferred cells in the field of tissue engineering. Current developments have shown that tissue-engineered three-dimensional (3D) systems including multiple cell layers (or types) and a supporting biological matrix represent the in vivo environment better than those monolayers on plastic dishes. Tissue-engineered models are also more ethical and cheaper systems than animal models. This chapter describes the role of pericytes in tissue engineering for regenerative medicine.
Collapse
Affiliation(s)
- Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
27
|
Hardy WR, Moldovan NI, Moldovan L, Livak KJ, Datta K, Goswami C, Corselli M, Traktuev DO, Murray IR, Péault B, March K. Transcriptional Networks in Single Perivascular Cells Sorted from Human Adipose Tissue Reveal a Hierarchy of Mesenchymal Stem Cells. Stem Cells 2017; 35:1273-1289. [DOI: 10.1002/stem.2599] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- W. Reef Hardy
- Department of Orthopaedic Surgery and Broad Stem Cell Center; University of California at Los Angeles; California USA
- Department of Medicine; University of Indiana; Indianapolis Indiana USA
| | | | - Leni Moldovan
- Department of Ophthalmology; IUPUI; Indianapolis Indiana USA
| | | | - Krishna Datta
- Fluidigm Corporation; South San Francisco California USA
| | - Chirayu Goswami
- Thomas Jefferson University Hospitals; Philadelphia Pennsylvania USA
| | - Mirko Corselli
- Department of Orthopaedic Surgery and Broad Stem Cell Center; University of California at Los Angeles; California USA
- BD Biosciences; San Diego California
| | | | - Iain R. Murray
- Department of Orthopaedic Surgery and Broad Stem Cell Center; University of California at Los Angeles; California USA
- MRC Centre for Regenerative Medicine, University of Edinburgh; Scotland United Kingdom
| | - Bruno Péault
- Department of Orthopaedic Surgery and Broad Stem Cell Center; University of California at Los Angeles; California USA
- MRC Centre for Regenerative Medicine, University of Edinburgh; Scotland United Kingdom
| | - Keith March
- Department of Medicine; University of Indiana; Indianapolis Indiana USA
| |
Collapse
|