1
|
Jeon S, Youn K, Jun M. Discovery of Kuraridin as a Potential Natural Anti-Melanogenic Agent: Focusing on Specific Target Genes and Multidirectional Signaling Pathways. Int J Mol Sci 2024; 25:11227. [PMID: 39457011 PMCID: PMC11509080 DOI: 10.3390/ijms252011227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Abnormal melanogenesis upon UV exposure causes excessive oxidative stress, leading to hyperpigmentation disorders. As a key rate-limiting enzyme in melanogenesis, tyrosinase is considered a primary target for depigmenting agents. Sophora flavescens is used as a food and in traditional medicine as a valuable source of prenylated flavonoids. The present study aimed to elucidate the anti-melanogenic effect and potential mechanism of kuraridin, one of the major prenylated flavonoids. Kuraridin showed anti-tyrosinase activity with an IC50 value in the nanomolar range, superior to that of kojic acid, a positive control. It significantly reduced tyrosinase activity with the least cytotoxicity, suppressing melanogenesis in α-MSH-induced B16F10 cells. Furthermore, kuraridin considerably reduced melanogenesis in a 3D human skin model. To elucidate the anti-melanogenic mechanism of kuraridin, target genes (KIT, MAP2K1, and PRKCA) and pathways (c-KIT and ETB-R pathways) were identified using network pharmacology. KIT and MAP2K1 are simultaneously involved in the c-KIT cascade and are considered the most important in melanogenesis. PRKCA acts directly on MITF and its downstream enzymes through another pathway. Docking simulation showed strong interactions between kuraridin and c-KIT, ERK1/2, and PKC encoded by target genes. Overall, the present study showed kuraridin to be a novel natural anti-melanogenic agent in hyperpigmentation disorders.
Collapse
Affiliation(s)
- Subin Jeon
- Department of Health Science, The Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea;
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Mira Jun
- Department of Health Science, The Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea;
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| |
Collapse
|
2
|
Chatterjee P, Stevens HY, Kippner LE, Bowles-Welch AC, Drissi H, Mautner K, Yeago C, Gibson G, Roy K. Single-cell transcriptome and crosstalk analysis reveals immune alterations and key pathways in the bone marrow of knee OA patients. iScience 2024; 27:110827. [PMID: 39310769 PMCID: PMC11416684 DOI: 10.1016/j.isci.2024.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Knee osteoarthritis (OA) is a significant medical and economic burden. To understand systemic immune effects, we performed deep exploration of bone marrow aspirate concentrates (BMACs) from knee-OA patients via single-cell RNA sequencing and proteomic analyses from a randomized clinical trial (MILES: NCT03818737). We found significant cellular and immune alterations in the bone marrow, specifically in MSCs, T cells and NK cells, along with changes in intra-tissue cellular crosstalk during OA progression. Unlike previous studies focusing on injury sites or peripheral blood, our probe into the bone marrow-an inflammation and immune regulation hub-highlights remote organ impact of OA, identifying cell types and pathways for potential therapeutic targeting. Our findings highlight increased cellular senescence and inflammatory pathways, revealing key upstream genes, transcription factors, and ligands. Additionally, we identified significant enrichment in key biological pathways like PI3-AKT-mTOR signaling and IFN responses, showing their potentially crucial role in OA onset and progression.
Collapse
Affiliation(s)
- Paramita Chatterjee
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Hazel Y. Stevens
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Linda E. Kippner
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Annie C. Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kenneth Mautner
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carolyn Yeago
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishnendu Roy
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Xu R, Ma LL, Cui S, Chen L, Xu H. Bioinformatics and Systems Biology Approach to Identify the Pathogenetic Link between Heart Failure and Sarcopenia. Arq Bras Cardiol 2023; 120:e20220874. [PMID: 37909603 PMCID: PMC10586817 DOI: 10.36660/abc.20220874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/15/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023] Open
Abstract
Despite increasing evidence that patients with heart failure (HF) are susceptible to sarcopenia, the reason for the association is not well understood. The purpose of this study is to explore further the molecular mechanism of the occurrence of this complication. Gene expression datasets for HF (GSE57345) and Sarcopenia (GSE1428) were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using 'edgeR' and "limma" packages of R, and their functions were analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Protein-protein interaction (PPI) networks were constructed and visualized using Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. Hub genes were selected using the plugin cytoHubba and validation with GSE76701 for HF and GSE136344 for Sarcopenia. The related pathways and molecular mechanisms of the hub genes were performed by Gene set enrichment analysis (GSEA). The statistical analyses were performed using R software. P < 0.05 was considered statistically significant. A total of 114 common DEGs were found. Pathways related to growth factor, Insulin secretion and cGMP-PKG were enriched in both HF and Sarcopenia. CYP27A1, KCNJ8, PIK3R5, TIMP2, CXCL12, KIT, and VCAM1 were found to be significant hub genes after validation, with GSEA emphasizing the importance of the hub genes in the regulation of the inflammatory response. Our study reveals that HF and Sarcopenia share common pathways and pathogenic mechanisms. These findings may suggest new directions for future research into the underlying pathogenesis.
Collapse
Affiliation(s)
- Rui Xu
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| | - Ling-ling Ma
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| | - Shuai Cui
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| | - Ling Chen
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| | - Hong Xu
- Gerontology centerPeople’s Hospital of Xinjiang Uygur Autonomous RegionUrumqiChinaGerontology center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi – China
| |
Collapse
|
4
|
Immune Checkpoint and Other Receptor-Ligand Pairs Modulating Macrophages in Cancer: Present and Prospects. Cancers (Basel) 2022; 14:cancers14235963. [PMID: 36497444 PMCID: PMC9736575 DOI: 10.3390/cancers14235963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy, especially immune checkpoint blocking, has become the primary anti-tumor treatment in recent years. However, the current immune checkpoint inhibitor (ICI) therapy is far from satisfactory. Macrophages are a key component of anti-tumor immunity as they are a common immune cell subset in tumor tissues and act as a link between innate and adaptive immunity. Hence, understanding the regulation of macrophage activation in tumor tissues by receptor-ligand interaction will provide promising macrophage-targeting strategies to complement current adaptive immunity-based immunotherapy and traditional anti-tumor treatment. This review aims to offer a systematic summary of the current advances in number, structure, expression, biological function, and interplay of immune checkpoint and other receptor-ligand between macrophages and tumor cells.
Collapse
|
5
|
Fuselli A, de Los Milagros Bürgi M, Kratje R, Prieto C. Generation and functional evaluation of novel monoclonal antibodies targeting glycosylated human stem cell factor. Appl Microbiol Biotechnol 2022; 106:8121-8137. [PMID: 36401641 DOI: 10.1007/s00253-022-12282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022]
Abstract
Human stem cell factor (hSCF) is an early-acting growth factor that promotes proliferation, differentiation, migration, and survival in several tissues. It plays a crucial role in hematopoiesis, gametogenesis, melanogenesis, intestinal motility, and in development and recovery of nervous and cardiovascular systems. Potential therapeutic applications comprise anemia treatment, mobilization of hematopoietic stem/progenitor cells to peripheral blood, and increasing gene transduction efficiency for gene therapy. Developing new tools to characterize recombinant hSCF in most native-like form as possible is crucial to understand the complexity of its in vivo functions and for improving its biotechnological applications. The soluble domain of hSCF was expressed in HEK293 cells. Highly purified rhSCF showed great molecular mass variability due to the presence of N- and O-linked carbohydrates, and it presented a 2.5-fold increase on proliferative activity compared to bacteria-derived hSCF. Three hybridoma clones producing monoclonal antibodies (mAbs) with high specificity for the glycoprotein were obtained. 1C4 and 2D3 mAbs were able to detect bacteria-derived and glycosylated rhSCF and demonstrated to be excellent candidates to develop a sandwich ELISA assay for rhSCF quantification, with detection limits of 0.18 and 0.07 ng/ml, respectively. Interestingly, 1A10 mAb only recognized glycosylated rhSCF, suggesting that sugar moieties might be involved in epitope recognition. 1A10 mAb showed the highest binding affinity, and it constituted the best candidate for immunodetection of the entire set rhSCF glycoforms in western blot assays, and for intracellular cytokine staining. Our work shows that combining glycosylated rhSCF expression with hybridoma technology is a powerful strategy to obtain specific suitable immunochemical assays and thus improve glycoprotein-producing bioprocesses. KEY POINTS: • Soluble glycosylated human SCF exerted improved proliferative activity on UT-7 cells. • Three mAbs with high specificity targeting glycosylated human SCF were obtained. • mAbs applications comprise sandwich ELISA, western blot, and immunofluorescence assays.
Collapse
Affiliation(s)
- Antonela Fuselli
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242 (S3000ZAA), Santa Fe, Argentina
| | - María de Los Milagros Bürgi
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242 (S3000ZAA), Santa Fe, Argentina
| | - Ricardo Kratje
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242 (S3000ZAA), Santa Fe, Argentina
| | - Claudio Prieto
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242 (S3000ZAA), Santa Fe, Argentina.
- Cellargen Biotech S.R.L., Antonia Godoy 6369 (S3000ZAA), Santa Fe, Argentina.
| |
Collapse
|
6
|
Noren Hooten N, Torres S, Mode NA, Zonderman AB, Ghosh P, Ezike N, Evans MK. Association of extracellular vesicle inflammatory proteins and mortality. Sci Rep 2022; 12:14049. [PMID: 35982068 PMCID: PMC9386667 DOI: 10.1038/s41598-022-17944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Even before the COVID-19 pandemic declines in life expectancy in the United States were attributed to increased mortality rates in midlife adults across racial and ethnic groups, indicating a need for markers to identify individuals at risk for early mortality. Extracellular vesicles (EVs) are small, lipid-bound vesicles capable of shuttling functional proteins, nucleic acids, and lipids. Given their role as intercellular communicators and potential biomarkers of disease, we explored whether circulating EVs may be markers of mortality in a prospective, racially, and socioeconomically diverse middle-aged cohort. We isolated plasma EVs from 76 individuals (mean age = 59.6 years) who died within a 5 year period and 76 surviving individuals matched by age, race, and poverty status. There were no significant differences in EV concentration, size, or EV-associated mitochondrial DNA levels associated with mortality. We found that several EV-associated inflammatory proteins including CCL23, CSF-1, CXCL9, GDNF, MCP-1, STAMBP, and 4E-BP1 were significantly associated with mortality. IL-10RB and CDCP1 were more likely to be present in plasma EVs from deceased individuals than in their alive counterparts. We also report differences in EV-associated inflammatory proteins with poverty status, race, and sex. Our results suggest that plasma EV-associated inflammatory proteins are promising potential clinical biomarkers of mortality.
Collapse
Affiliation(s)
- Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Stephanie Torres
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.,Edward Via College of Osteopathic Medicine at University of Louisiana Monroe, Monroe, LA, USA
| | - Nicolle A Mode
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Paritosh Ghosh
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Ngozi Ezike
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
7
|
Firouzi F, Echeagaray O, Esquer C, Gude NA, Sussman MA. 'Youthful' phenotype of c-Kit + cardiac fibroblasts. Cell Mol Life Sci 2022; 79:424. [PMID: 35841449 PMCID: PMC10544823 DOI: 10.1007/s00018-022-04449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cardiac fibroblast (CF) population heterogeneity and plasticity present a challenge for categorization of biological and functional properties. Distinct molecular markers and associated signaling pathways provide valuable insight for CF biology and interventional strategies to influence injury response and aging-associated remodeling. Receptor tyrosine kinase c-Kit mediates cell survival, proliferation, migration, and is activated by pathological injury. However, the biological significance of c-Kit within CF population has not been addressed. An inducible reporter mouse detects c-Kit promoter activation with Enhanced Green Fluorescent Protein (EGFP) expression in cardiac cells. Coincidence of EGFP and c-Kit with the DDR2 fibroblast marker was confirmed using flow cytometry and immunohistochemistry. Subsequently, CFs expressing DDR2 with or without c-Kit was isolated and characterized. A subset of DDR2+ CFs also express c-Kit with coincidence in ~ 8% of total cardiac interstitial cells (CICs). Aging is associated with decreased number of c-Kit expressing DDR2+ CFs, whereas pathological injury induces c-Kit and DDR2 as well as the frequency of coincident expression in CICs. scRNA-Seq profiling reveals the transcriptome of c-Kit expressing CFs as cells with transitional phenotype. Cultured cardiac DDR2+ fibroblasts that are c-Kit+ exhibit morphological and functional characteristics consistent with youthful phenotypes compared to c-Kit- cells. Mechanistically, c-Kit expression correlates with signaling implicated in proliferation and cell migration, including phospho-ERK and pro-caspase 3. The phenotype of c-kit+ on DDR2+ CFs correlates with multiple characteristics of 'youthful' cells. To our knowledge, this represents the first evaluation of c-Kit biology within DDR2+ CF population and provides a fundamental basis for future studies to influence myocardial biology, response to pathological injury and physiological aging.
Collapse
Affiliation(s)
- Fareheh Firouzi
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Oscar Echeagaray
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Carolina Esquer
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Natalie A Gude
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Mark A Sussman
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| |
Collapse
|
8
|
Ni C, Qiu H, Zhang S, Zhang Q, Zhang R, Zhou J, Zhu J, Niu C, Wu R, Shao C, Mamun AA, Han B, Chu M, Jia C. CircRNA-3302 promotes endothelial-to-mesenchymal transition via sponging miR-135b-5p to enhance KIT expression in Kawasaki disease. Cell Death Dis 2022; 8:299. [PMID: 35768408 PMCID: PMC9243129 DOI: 10.1038/s41420-022-01092-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is implicated in myofibroblast-like cell-mediated damage to coronary artery wall of Kawasaki disease (KD) patients, which subsequently increases the risk of coronary artery aneurysm. Many circular RNAs (circRNAs) have been reported to be associated with cardiovascular diseases. However, the roles and underlying molecular mechanism of circRNAs in KD-associated EndMT remains indefinite. In this research, we screened out circRNA-3302 from human umbilical vein endothelial cells (HUVECs) treated by sera from healthy controls (HCs) or KD patients via circRNA sequencing (circRNA-seq). In addition, circRNA-3302 upregulation was verified in endothelial cells stimulated by KD serum and pathological KD mice modeled with Candida albicans cell wall extracts (CAWS). Moreover, in vitro experiments demonstrated that overexpression of circRNA-3302 could markedly induce EndMT, and silencing of circRNA-3302 significantly alleviated KD serum-mediated EndMT. To further explore the molecular mechanisms of circRNA-3302 inducing EndMT, RNA sequencing (RNA-seq), a dual-luciferase reporter system, nuclear and extra-nuclear RNA isolation, RT-qPCR and Western blot analyses and so on, were utilized. Our data demonstrated that circRNA-3302 contributed to the KD-associated EndMT via sponging miR-135b-5p to enhance KIT expression. Collectively, our results imply that circRNA-3302 plays an important role in KD-associated EndMT, providing new insights into minimizing the risks of developing coronary artery aneurysms.
Collapse
Affiliation(s)
- Chao Ni
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Huixian Qiu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Shuchi Zhang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Qihao Zhang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Ruiyin Zhang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Jinhui Zhou
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Jinshun Zhu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Rongzhou Wu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Chuxiao Shao
- Department of Hepatopancreatobiliary Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Maoping Chu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China. .,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China. .,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China. .,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China. .,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| |
Collapse
|
9
|
Differentiation of fetal hematopoietic stem cells requires ARID4B to restrict autocrine KITLG/KIT-Src signaling. Cell Rep 2021; 37:110036. [PMID: 34818550 PMCID: PMC8722094 DOI: 10.1016/j.celrep.2021.110036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/15/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022] Open
Abstract
Balance between the hematopoietic stem cell (HSC) duality to either possess self-renewal capacity or differentiate into multipotency progenitors (MPPs) is crucial for maintaining homeostasis of the hematopoietic stem/progenitor cell (HSPC) compartment. To retain the HSC self-renewal activity, KIT, a receptor tyrosine kinase, in HSCs is activated by its cognate ligand KITLG originating from niche cells. Here, we show that AT-rich interaction domain 4B (ARID4B) interferes with KITLG/KIT signaling, consequently allowing HSC differentiation. Conditional Arid4b knockout in mouse hematopoietic cells blocks fetal HSC differentiation, preventing hematopoiesis. Mechanistically, ARID4B-deficient HSCs self-express KITLG and overexpress KIT. As to downstream pathways of KITLG/KIT signaling, inhibition of Src family kinases rescues the HSC differentiation defect elicited by ARID4B loss. In summary, the intrinsic ARID4B-KITLG/KIT-Src axis is an HSPC regulatory program that enables the differentiation state, while KIT stimulation by KITLG from niche cells preserves the HSPC undifferentiated pool. Hematopoietic stem cells (HSCs) at the top of the hematopoietic hierarchy are able to self-renew and differentiate to mature blood cells. Young et al. report that an HSC self-control mechanism established by ARID4B ensures HSC differentiation. ARID4B-deficient HSCs produce KITLG to stimulate KIT, leading to blockage of HSC differentiation and eventual hematopoietic failure.
Collapse
|
10
|
Jackson CW, Pratt CM, Rupprecht CP, Pattanaik D, Krishnaswamy G. Mastocytosis and Mast Cell Activation Disorders: Clearing the Air. Int J Mol Sci 2021; 22:ijms222011270. [PMID: 34681933 PMCID: PMC8540348 DOI: 10.3390/ijms222011270] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
Mast cells are derived from hematopoietic stem cell precursors and are essential to the genesis and manifestations of the allergic response. Activation of these cells by allergens leads to degranulation and elaboration of inflammatory mediators, responsible for regulating the acute dramatic inflammatory response seen. Mast cells have also been incriminated in such diverse disorders as malignancy, arthritis, coronary artery disease, and osteoporosis. There has been a recent explosion in our understanding of the mast cell and the associated clinical conditions that affect this cell type. Some mast cell disorders are associated with specific genetic mutations (such as the D816V gain-of-function mutation) with resultant clonal disease. Such disorders include cutaneous mastocytosis, systemic mastocytosis (SM), its variants (indolent/ISM, smoldering/SSM, aggressive systemic mastocytosis/ASM) and clonal (or monoclonal) mast cell activation disorders or syndromes (CMCAS/MMAS). Besides clonal mast cell activations disorders/CMCAS (also referred to as monoclonal mast cell activation syndromes/MMAS), mast cell activation can also occur secondary to allergic, inflammatory, or paraneoplastic disease. Some disorders are idiopathic as their molecular pathogenesis and evolution are unclear. A genetic disorder, referred to as hereditary alpha-tryptasemia (HαT) has also been described recently. This condition has been shown to be associated with increased severity of allergic and anaphylactic reactions and may interact variably with primary and secondary mast cell disease, resulting in complex combined disorders. The role of this review is to clarify the classification of mast cell disorders, point to molecular aspects of mast cell signaling, elucidate underlying genetic defects, and provide approaches to targeted therapies that may benefit such patients.
Collapse
Affiliation(s)
- Clayton Webster Jackson
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (C.W.J.); (C.M.P.)
| | - Cristina Marie Pratt
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (C.W.J.); (C.M.P.)
| | | | - Debendra Pattanaik
- The Division of Allergy and Immunology, UT Memphis College of Medicine, Memphis, TN 38103, USA;
| | - Guha Krishnaswamy
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (C.W.J.); (C.M.P.)
- The Bill Hefner VA Medical Center, The Division of Allergy and Immunology, Salisbury, NC 28144, USA
- Correspondence: or
| |
Collapse
|
11
|
Song X, Hu Y, Li Y, Shao R, Liu F, Liu Y. Overview of current targeted therapy in gallbladder cancer. Signal Transduct Target Ther 2020; 5:230. [PMID: 33028805 PMCID: PMC7542154 DOI: 10.1038/s41392-020-00324-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/08/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC) is rare, but is the most malignant type of biliary tract tumor. Unfortunately, only a small population of cancer patients is acceptable for the surgical resection, the current effective regimen; thus, the high mortality rate has been static for decades. To substantially circumvent the stagnant scenario, a number of therapeutic approaches owing to the creation of advanced technologic measures (e.g., next-generation sequencing, transcriptomics, proteomics) have been intensively innovated, which include targeted therapy, immunotherapy, and nanoparticle-based delivery systems. In the current review, we primarily focus on the targeted therapy capable of specifically inhibiting individual key molecules that govern aberrant signaling cascades in GBC. Global clinical trials of targeted therapy in GBC are updated and may offer great value for novel pathologic and therapeutic insights of this deadly disease, ultimately improving the efficacy of treatment.
Collapse
Affiliation(s)
- Xiaoling Song
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yunping Hu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yongsheng Li
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Rong Shao
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Fatao Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Yingbin Liu
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
12
|
Chen Y, Yang W, Shi X, Zhang C, Song G, Huang D. The Factors and Pathways Regulating the Activation of Mammalian Primordial Follicles in vivo. Front Cell Dev Biol 2020; 8:575706. [PMID: 33102482 PMCID: PMC7554314 DOI: 10.3389/fcell.2020.575706] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Mammalian ovaries consist of follicles as basic functional units. Each follicle comprised an innermost oocyte and several surrounding flattened granulosa cells. Unlike males, according to the initial size of the primordial follicle pool and the rate of its activation and depletion, a female's reproductive life has been determined early in life. Primordial follicles, once activated, will get into an irreversible process of development. Most follicles undergo atretic degeneration, and only a few of them could mature and ovulate. Although there are a lot of researches contributing to exploring the activation of primordial follicles, little is known about its underlying mechanisms. Thus, in this review, we collected the latest papers and summarized the signaling pathways as well as some factors involved in the activation of primordial follicles, hoping to lead to a more profound understanding of the cellular and molecular mechanisms of primordial follicle activation.
Collapse
Affiliation(s)
- Yao Chen
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weina Yang
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Shi
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlu Zhang
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Song
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Donghui Huang
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Tian Z, Niu X, Yao W. Receptor Tyrosine Kinases in Osteosarcoma Treatment: Which Is the Key Target? Front Oncol 2020; 10:1642. [PMID: 32984034 PMCID: PMC7485562 DOI: 10.3389/fonc.2020.01642] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Recent clinical trials have shown several multi-target tyrosine kinase inhibitors (TKIs) to be effective in the treatment of osteosarcoma. However, these TKIs have a number of targets, and it is yet unclear which of these targets has a key role in osteosarcoma treatment. In this review, we first summarize the TKIs that were studied in clinical trials registered on ClinicalTrials.gov. Further, we compare and discuss the targets of these TKIs. We found that TKIs with promising therapeutic effect for osteosarcoma include apatinib, cabozantinib, lenvatinib, regorafenib, and sorafenib. The key targets for osteosarcoma treatment may include VEGFRs and RET. The receptor tyrosine kinases (RTKs) MET, IGF-1R, AXL, PDGFRs, KIT, and FGFRs might be relevant but unimportant targets for osteosarcoma treatment. Inhibition of one type of RTK for the treatment of osteosarcoma is not effective. It is necessary to inhibit several relevant RTKs simultaneously to achieve a breakthrough in osteosarcoma treatment. This review provides comprehensive information on TKI targets relevant in osteosarcoma treatment, and it will be useful for further research in this field.
Collapse
Affiliation(s)
- Zhichao Tian
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaohui Niu
- Department of Orthopedic Oncology, Beijing Jishuitan Hospital, Beijing, China
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
14
|
Qian W, Liu W, Zhu D, Cao Y, Tang A, Gong G, Su H. Natural skin-whitening compounds for the treatment of melanogenesis (Review). Exp Ther Med 2020; 20:173-185. [PMID: 32509007 PMCID: PMC7271691 DOI: 10.3892/etm.2020.8687] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/17/2020] [Indexed: 01/23/2023] Open
Abstract
Melanogenesis is the process for the production of melanin, which is the primary cause of human skin pigmentation. Skin-whitening agents are commercially available for those who wish to have a lighter skin complexions. To date, although numerous natural compounds have been proposed to alleviate hyperpigmentation, insufficient attention has been focused on potential natural skin-whitening agents and their mechanism of action from the perspective of compound classification. In the present article, the synthetic process of melanogenesis and associated core signaling pathways are summarized. An overview of the list of natural skin-lightening agents, along with their compound classifications, is also presented, where their efficacy based on their respective mechanisms of action on melanogenesis is discussed.
Collapse
Affiliation(s)
- Wenhui Qian
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Wenya Liu
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Yanli Cao
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Anfu Tang
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Guangming Gong
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Hua Su
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
15
|
Kalmarzi RN, Foroutan A, Abdi M, Ataee P, Jalili A, Babaei E, Kashefi H, Mohamadi S, Sigari N, Kooti W. Serum level of stem cell factor and its soluble receptor in aspirin-exacerbated respiratory disease. Immunotherapy 2019; 11:1283-1291. [PMID: 31530062 DOI: 10.2217/imt-2019-0042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Stem cell factor (SCF) may be associated with inflammatory processes leading to aspirin-induced asthma. This study evaluated the relationship between serum level of SCF and its soluble receptor with aspirin-induced asthma. Methods & materials: Twenty-five patients and 25 healthy controls were enrolled in this study. The concentration of SCF and mast/stem cell growth factor receptor (C-kit) was determined in serum samples. Spirometry and rhinometry were performed to determine the severity of the disease. p < 0.05 were considered significant. Results: The serum levels of SCF and C-kit receptor were significantly higher in the case group. The serum SCF and C-kit level had a significant positive correlation with the severity of asthma, disease duration and nasal obstruction. Conclusion: Our findings suggest that SCF and C-kit receptors have a direct effect on the severity of aspirin-induced asthma.
Collapse
Affiliation(s)
- Rasoul Nasiri Kalmarzi
- Lung Diseases & Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Aida Foroutan
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular & Molecular Research Center, Research Institute for Health Development, Kurdistan, University of Medical Sciences, Sanandaj, Iran
| | - Pedram Ataee
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan Universityof Medical Sciences, Sanandaj, Iran
| | - Ali Jalili
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences,Sanandaj, Iran
| | - Erfan Babaei
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hajar Kashefi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shilan Mohamadi
- Lung Diseases & Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Naseh Sigari
- Lung Diseases & Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Wesam Kooti
- Lung Diseases & Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|