1
|
Guo Y, Di W, Qin C, Liu R, Cao H, Gao X. Covalent Organic Framework-Involved Sensors for Efficient Enrichment and Monitoring of Food Hazards: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23053-23081. [PMID: 39382449 DOI: 10.1021/acs.jafc.4c06755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The food safety issues caused by environmental pollution have posed great risks to human health that cannot be ignored. Hence, the precise monitoring of hazard factors in food has emerged as a critical concern for the food safety sector. As a novel porous material, covalent organic frameworks (COFs) have garnered significant attention due to their large specific surface area, excellent thermal and chemical stability, modifiability, and abundant recognition sites. This makes it a potential solution for food safety issues. In this research, the synthesis and regulation strategies of COFs were reviewed. The roles of COFs in enriching and detecting food hazards were discussed comprehensively and extensively. Taking representative hazard factors in food as the research object, the expression forms and participation approaches of COFs were explored, along with the effectiveness of corresponding detection methods. Finally, the development directions of COFs in the future as well as the problems existing in practical applications were discussed, which was beneficial to promote the application of COFs in food safety and beyond.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Wenli Di
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Rui Liu
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Hongqian Cao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Xibao Gao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| |
Collapse
|
2
|
Nah Y, Kim J, Lee S, Koh WG, Kim WJ. Tailored small molecule for inflammation treatment: Dual scavenger targeting nitric oxide and reactive oxygen species. J Control Release 2024; 374:525-537. [PMID: 39173954 DOI: 10.1016/j.jconrel.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Inflammation-related diseases are often marked by elevated levels of nitric oxide (NO) and reactive oxygen species (ROS), which play important roles in the modulation of inflammation. However, the development of organic materials effective in managing NO/ROS levels has remained a challenge. This study introduces a novel organic compound, NmeGA, engineered to scavenge both NO and ROS. NmeGA ingeniously integrates N-methyl-1,2,-phenylenediamine (Nme), a NO scavenger, with gallic acid (GA), a ROS scavenger, through an amide bond, endowing it with enhanced scavenging capabilities over its individual component. This compound exhibits reduced toxicity and increased lipophilicity value, underlining its increased biological applicability and highlighting its potential as an inflammation management tool. Through in vitro studies on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, NmeGA displayed remarkable scavenging efficiency for NO and ROS, coupled with significant anti-inflammatory effects. In an LPS-induced peritonitis model, administration of NmeGA substantially decreased mortality rates, NO and ROS levels, and inflammatory cytokine concentrations. These findings highlight NmeGA's versatility as a therapeutic agent against various inflammatory diseases.
Collapse
Affiliation(s)
- Yunyoung Nah
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea.
| | - Jaekwang Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.
| | - Seohee Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea; OmniaMed Co., Ltd, Pohang 37666, Republic of Korea.
| |
Collapse
|
3
|
Câmara I, Ventura de Souza V, Brasileiro Vidal AC, Soares Fernandes B, Magalhães Amaral F, Motteran F, Gavazza S. Optimizing intermittent micro-aeration as a strategy for enhancing aniline anaerobic biodegradation: kinetic, ecotoxicity, and microbial community dynamics analyses. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1181-1197. [PMID: 39215731 DOI: 10.2166/wst.2024.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Groundwater and soil contamination by aromatic amines (AAs), used in the production of polymers, plastics, and pesticides, often results from improper waste disposal and accidental leaks. These compounds are resistant to anaerobic degradation; however, micro-aeration can enhance this process by promoting microbial interactions. In batch assays, anaerobic degradation of aniline (0.14 mM), a model AA, was tested under three micro-aeration conditions: T30, T15, and T10 (30, 15, and 10 min of micro-aeration every 2 h, respectively). Aniline degradation occurred in all conditions, producing both aerobic (catechol) and anaerobic (benzoic acid) byproducts. The main genera involved in T30 and T15 were Comamonas, Clostridium, Longilinea, Petrimonas, Phenylobacterium, Pseudoxanthomonas, and Thiobacillus. In contrast, in T10 were Pseudomonas, Delftia, Leucobacter, and Thermomonas. While T30 and T15 promoted microbial cooperation for anaerobic degradation and facultative respiration, T10 resulted in a competitive environment due to dominance and oxygen scarcity. Despite aniline degradation in 9.4 h under T10, this condition was toxic to Allium cepa seeds and exhibited cytogenotoxic effects. Therefore, T15 emerged as the optimal condition, effectively promoting anaerobic degradation without accumulating toxic byproducts. Intermittent micro-aeration emerges as a promising strategy for enhancing the anaerobic degradation of AA-contaminated effluents.
Collapse
Affiliation(s)
- Isabelle Câmara
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Victor Ventura de Souza
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Ana Christina Brasileiro Vidal
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Bruna Soares Fernandes
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Fernanda Magalhães Amaral
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Fabrício Motteran
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Savia Gavazza
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil E-mail:
| |
Collapse
|
4
|
Wise JTF, Hein DW. N-acetyltransferase metabolism and DNA damage following exposure to 4,4'-oxydianiline in human bronchial epithelial cells. Toxicol Lett 2024; 398:65-68. [PMID: 38906436 PMCID: PMC11299505 DOI: 10.1016/j.toxlet.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Waterpipe smoking is increasingly popular and understanding how chemicals found in hookah smoke may be harmful to human bronchial epithelial cells is of great importance. 4,4'-Oxydianiline (ODA), is an aromatic amine which is present at comparatively high levels in hookah smoke. The metabolism and the subsequent toxicity of ODA in human bronchial epithelial cells remains unknown. Given that ODA is an aromatic amine, we hypothesized that ODA is N-acetylated and induces DNA damage following exposure to immortalized human bronchial epithelial cells (BEP2D cells). We measured the N-acetylation of ODA to mono-acetyl-ODA and the N-acetylation of mono-acetyl-ODA to diacetyl-ODA by BEP2D cells following separation and quantitation by high performance liquid chromatography. For ODA, the apparent KM in cells was 12.4 ± 3.7 µM with a Vmax of 0.69 ± 0.03 nmol/min/106 cells, while for mono-acetyl-ODA, the apparent KM was 111.2 ± 48.3 µM with a Vmax of 17.8 ± 5.7 nmol/min/106 cells ODA exposure for 24 h resulted in DNA damage to BEP2D cells following concentrations as low as 0.1 µM as measured by yH2Ax protein expression These results demonstrate that ODA, the most prevalent aromatic amine identified in hookah smoke, is N-acetylated and induces DNA damage in human bronchial epithelial cells.
Collapse
Affiliation(s)
- James T F Wise
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Wise Laboratory of Nutritional Toxicology and Metabolism, School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; School of Nutrition and Food Sciences, College of Agriculture, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
5
|
van den Brand AD, Hessel EVS, Rijk R, van de Ven B, Leijten NM, Rorije E, den Braver-Sewradj SP. A prioritization strategy for functional alternatives to bisphenol A in food contact materials. Crit Rev Toxicol 2024; 54:291-314. [PMID: 38726570 DOI: 10.1080/10408444.2024.2341020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/04/2024] [Indexed: 06/09/2024]
Abstract
The use of bisphenol A (BPA), a substance of very high concern, is proposed to be banned in food contact materials (FCMs) in the European Union. To prevent regrettable substitution of BPA by alternatives with similar or unknown hazardous properties, it is of importance to gain the relevant toxicological information on potential BPA alternative substances and monitor them adequately. We created an inventory of over 300 substances mentioned as potential BPA alternatives in regulatory reports and scientific literature. This study presents a prioritization strategy to identify substances that may be used as an alternative to BPA in FCMs. We prioritized 20 potential BPA alternatives of which 10 are less familiar. We subsequently reviewed the available information on the 10 prioritized less familiar substances regarding hazard profiles and migration potential obtained from scientific literature and in silico screening tools to identify a possible risk of the substances. Major data gaps regarding the hazard profiles of the prioritized substances exist, although the scarce available data give some indications on the possible hazard for some of the substances (like bisphenol TMC, 4,4-dihydroxybenzophenone, and tetrachlorobisphenol A). In addition, very little is known about the actual use and exposure to these substances. More toxicological research and monitoring of these substances in FCMs are, therefore, required to avoid regrettable substitution of BPA in FCM.
Collapse
Affiliation(s)
- Annick D van den Brand
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Bianca van de Ven
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Niels M Leijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Emiel Rorije
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Shalenie P den Braver-Sewradj
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
6
|
Lorenzo-Parodi N, Moebus S, Schmidt TC. Analysis of aromatic amines in human urine using comprehensive multi-dimensional gas chromatography-mass spectrometry (GCxGC-MS). Int J Hyg Environ Health 2024; 257:114343. [PMID: 38422601 DOI: 10.1016/j.ijheh.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Several aromatic amines (AA) are classified as human carcinogens, and tobacco smoke is one of the main sources of exposure. Once in the human body, they undergo different metabolic pathways which lead to either their excretion or ultimately to the formation of DNA and protein adducts. The aim of this study was to investigate AA in 68 urine samples (aged 29-79, 47% female), including 10 smokers (S), 28 past-smokers (PS) and 30 never-smokers (NS), and to study if there was a relation between the smoking status and the amount of the AA present. GCxGC-MS was used to analyze AA in complex urine samples due to its high peak capacity and the fact that it provides two sets of retention times and structural information, which facilitates the separation and identification of the target analytes. First, a qualitative comparison of an example set of a NS, PS and S sample was carried out, in which 38, 45 and 46 AA, respectively, could be tentatively identified. Afterwards, seven AA were successfully quantified in the samples. Of these, 4-ethylaniline (4EA, p = 0.015), 2,4,6-trimethylaniline (2,4,6TMA, p = 0.030), 2-naphthylamine (2NA, p = 0.014) and the sum of 2,4- and 2,6-dimethylaniline (DMA, p = 0.017) were found in significantly different (α = 0.05) concentrations for the S, 29 ± 14, 87 ± 49, 41 ± 26, and 105 ± 57 ng/L respectively, compared to the NS, 15 ± 6, 42 ± 30, 16 ± 6, and 48 ± 28 ng/L. And 2,4,6TMA (39 ± 26, p = 0.022), 2NA (18 ± 9, p = 0.025) and DMA (53 ± 46, p = 0.030), were also found at significantly higher concentrations in samples from S when compared to PS. However, some samples had AA concentrations outside the calibration curve and could not be taken into account, especially for 2-methylaniline (2MA). Therefore, all the samples were evaluated using a quantitative screening approach, by which the intensities of 4EA (p = 0.019), 2,4,6TMA (p = 0.048), 2NA (p = 0.016), DMA (p = 0.019) and 2MA (p = 0.006) in S were found to be significantly (α = 0.05) higher than in the NS, and 2MA (p = 0.019) and 4EA (p = 0.023) in S were found to be significantly higher than in the PS. An association between the smoking status and the amount of certain AA present could therefore be found. This information could be used to study the relation between the smoking status, the amount of AA present, and smoking related diseases like bladder cancer.
Collapse
Affiliation(s)
- Nerea Lorenzo-Parodi
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Susanne Moebus
- Institute for Urban Public Health, University Hospital Essen, University of Duisburg-Essen, Zweigerstrasse 37, 45130, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany; IWW Water Centre, Moritzstrasse 26, 45476, Mülheim an der Ruhr, Germany.
| |
Collapse
|
7
|
Dutta S, Adhikary S, Bhattacharya S, Roy D, Chatterjee S, Chakraborty A, Banerjee D, Ganguly A, Nanda S, Rajak P. Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120103. [PMID: 38280248 DOI: 10.1016/j.jenvman.2024.120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
Textile dyes are the burgeoning environmental contaminants across the world. They might be directly disposed of from textile industries into the aquatic bodies, which act as the direct source for the entire ecosystem, ultimately impacting the human beings. Hence, it is essential to dissect the potential adverse outcomes of textile dye exposure on aquatic plants, aquatic fauna, terrestrial entities, and humans. Analysis of appropriate literature has revealed that textile dye effluents could affect the aquatic biota by disrupting their growth and reproduction. Various aquatic organisms are targeted by textile dye effluents. In such organisms, these chemicals affect their development, behavior, and induce oxidative stress. General populations of humans are exposed to textile dyes via the food chain and drinking contaminated water. In humans, textile dyes are biotransformed into electrophilic intermediates and aromatic amines by the enzymes of the cytochrome family. Textile dyes and their biotransformed products form the DNA and protein adducts at sub-cellular moiety. Moreover, these compounds catalyze the production of free radicals and oxidative stress, and trigger the apoptotic cascades to produce lesions in multiple organs. In addition, textile dyes modulate epigenetic factors like DNA methyltransferase and histone deacetylase to promote carcinogenesis. Several bioremediation approaches involving algae, fungi, bacteria, biomembrane filtration techniques, etc., have been tested and some other hybrid systems are currently under investigation to treat textile dye effluents. However, many such approaches are at the trial stage and require further research to develop more efficient, cost-effective, and easy-to-handle techniques.
Collapse
Affiliation(s)
- Sohini Dutta
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | | | - Dipsikha Roy
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sovona Chatterjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Aritra Chakraborty
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Diyasha Banerjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
8
|
Li HZ, Zhu J, Weng GJ, Li JJ, Li L, Zhao JW. Application of nanotechnology in bladder cancer diagnosis and therapeutic drug delivery. J Mater Chem B 2023; 11:8368-8386. [PMID: 37580958 DOI: 10.1039/d3tb01323e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Bladder cancer (BC) is one of the most common malignant tumors in the urinary system, and its high recurrence rate is a great economic burden to patients. Traditional diagnosis and treatment methods have the disadvantages of insufficient targeting, obvious side effects and low sensitivity, which seriously limit the accurate diagnosis and efficient treatment of BC. Due to their small size, easy surface modification, optical properties such as plasmon resonance, and surface enhanced Raman scattering, good electrical conductivity and photothermal conversion properties, nanomaterials have great potential application value in the realization of specific diagnosis and targeted therapy of BC. At present, the application of nanomaterials in the diagnosis and treatment of BC is attracting great attention and achieving rich research results. Therefore, this paper summarizes the recent research on nanomaterials in the diagnosis and treatment of BC, clarifies the existing advantages and disadvantages, and provides theoretical guidance for promoting the accurate diagnosis and efficient treatment of BC.
Collapse
Affiliation(s)
- Hang-Zhuo Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
9
|
The role of flavonoids in mitigating food originated heterocyclic aromatic amines that concerns human wellness. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Liu Y, Li X, Pu Q, Fu R, Wang Z, Li Y, Li X. Innovative screening for functional improved aromatic amine derivatives: Toxicokinetics, free radical oxidation pathway and carcinogenic adverse outcome pathway. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131541. [PMID: 37146326 DOI: 10.1016/j.jhazmat.2023.131541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/08/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Aromatic amines, one of the most widely used low-cost antioxidants in rubbers, have been regarded as pollutants with human health concerns. To overcome this problem, this study developed a systematic molecular design, screening, and performance evaluation method to design functionally improved, environmentally friendly and synthesizable aromatic amine alternatives for the first time. Nine of 33 designed aromatic amine derivatives have improved antioxidant property (lower bond dissociation energy of N-H), and their environmental and bladder carcinogenicity impacts were evaluated through toxicokinetic model and molecular dynamics simulation. The environmental fate of the designed AAs-11-8, AAs-11-16, and AAs-12-2 after antioxidation (i.e., peroxyl radicals (ROO·), hydroxyl radicals (HO·), superoxide anion radicals (O2·-) and ozonation reaction) was also analyzed. Results showed that the by-products of AAs-11-8 and AAs-12-2 have less toxicity after antioxidation. In addition, human bladder carcinogenicity of the screened alternatives was also evaluated through adverse outcome pathway. The carcinogenic mechanisms were analyzed and verified through amino acid residue distribution characteristics, 3D-QSAR and 2D-QSAR models. AAs-12-2, with high antioxidation property, low environmental impacts and carcinogenicity, was screened as the optimum alternative for 3,5-Dimethylbenzenamine. This study provided theoretical support for designing environmentally friendly and functionally improved aromatic amine alternatives from toxicity evaluation and mechanism analysis.
Collapse
Affiliation(s)
- Yajing Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Xinao Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Rui Fu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Zhonghe Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
11
|
Souza MCO, González N, Herrero M, Marquès M, Rovira J, Nadal M, Barbosa F, Domingo JL. Screening of regulated aromatic amines in clothing marketed in Brazil and Spain: Assessment of human health risks. ENVIRONMENTAL RESEARCH 2023; 221:115264. [PMID: 36639013 DOI: 10.1016/j.envres.2023.115264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Azo dyes used in textile products contain aromatic amines (AAs), which may be released into the environment after skin bacteria cleavage the azo bond. In Europe, 22 carcinogenic AAs are regulated. Unfortunately, no information is available in many non-European countries, including Brazil. This study aimed to determine the concentrations of 20 regulated AAs in clothes marketed in Brazil and Spain. Generally, higher levels of regulated AAs were found in samples sold in Brazil than in Spain, which is linked to the lack of regulation. Sixteen AAs showed concentrations above 5 mg/kg in samples commercialized in Brazil, while 11 exceeded that threshold in Spain. Regulated AAs with levels above 5 mg/kg were more found in synthetic clothes of pink color. Concentrations in clothing were also used to evaluate the dermal exposure to AAs in 3 vulnerable population groups. The highest exposure corresponded to 2,4-diaminoanisole for toddlers in Brazil and 4,4-oxydianiline for newborns in Spain. Non-cancer risks associated with exposure to 4,4-benzidine by Brazilian toddlers was 14.5 (above the threshold). On the other hand, 3,3-dichlorobenzidine was associated with potential cancer risks for newborns and toddlers in Brazil. Given this topic's importance, we recommend conducting continuous studies to determine the co-occurrence of carcinogenic substances.
Collapse
Affiliation(s)
- Marília Cristina Oliveira Souza
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, ASTox - Analytical and System Toxicology Laboratory, Avenida Do Café S/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil; Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Neus González
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, ASTox - Analytical and System Toxicology Laboratory, Avenida Do Café S/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil; Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Marta Herrero
- Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Montse Marquès
- Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Joaquim Rovira
- Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Universitat Rovira I Virgili, Environmental Engineering Laboratory, Departament D'Enginyeria Quimica, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Martí Nadal
- Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, ASTox - Analytical and System Toxicology Laboratory, Avenida Do Café S/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - José Luis Domingo
- Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
12
|
Lin CJ, Lin YH, Chiang TC, Yu CY. Synthesis of the polymers containing norbornene and tetraphenylethene by ring-opening metathesis polymerization and their structural characterization, aggregation-induced emission and aniline detection. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Habil MR, Salazar-González RA, Doll MA, Hein DW. Differences in β-naphthylamine metabolism and toxicity in Chinese hamster ovary cell lines transfected with human CYP1A2 and NAT2*4, NAT2*5B or NAT2*7B N-acetyltransferase 2 haplotypes. Arch Toxicol 2022; 96:2999-3012. [PMID: 36040704 PMCID: PMC10187863 DOI: 10.1007/s00204-022-03367-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
β-naphthylamine (BNA) is an important aromatic amine carcinogen. Current exposures derive primarily from cigarette smoking including e-cigarettes. Occupational and environmental exposure to BNA is associated with urinary bladder cancer which is the fourth most frequent cancer in the United States. N-acetyltransferase 2 (NAT2) is an important metabolizing enzyme for aromatic amines. Previous studies investigated mutagenicity and genotoxicity of BNA in bacteria and in rabbit or rat hepatocytes. However, the effects of human NAT2 genetic polymorphism on N-acetylation and genotoxicity induced by BNA still need to be clarified. We used nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells that were stably transfected with human CYP1A2 and NAT2 alleles: NAT2*4 (reference allele), NAT2*5B (variant slow acetylator allele common in Europe) or NAT2*7B (variant slow acetylator allele common in Asia). BNA N-acetylation was measured both in vitro and in situ via high-performance liquid chromatography (HPLC). Hypoxanthine phosphoribosyl transferase (HPRT) mutations, double-strand DNA breaks, and reactive oxygen species (ROS) were measured as indices of toxicity. NAT2*4 cells showed significantly higher BNA N-acetylation rates followed by NAT2*7B and NAT2*5B. BNA caused concentration-dependent increases in DNA damage and ROS levels. NAT2*7B showed significantly higher levels of HPRT mutants, DNA damage and ROS than NAT2*5B (p < 0.001, p < 0.0001, p < 0.0001 respectively) although both are slow alleles. Our findings suggest that BNA N-acetylation and toxicity are modified by NAT2 polymorphism. Furthermore, they confirm heterogeneity among slow acetylator alleles for BNA metabolism and toxicity supporting differential risk for individuals carrying NAT2*7B allele.
Collapse
Affiliation(s)
- Mariam R Habil
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Raúl A Salazar-González
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA.
| |
Collapse
|
14
|
Antioxidant, Anti-Bacterial, and Congo Red Dye Degradation Activity of AgxO-Decorated Mustard Oil-Derived rGO Nanocomposites. Molecules 2022; 27:molecules27185950. [PMID: 36144688 PMCID: PMC9505018 DOI: 10.3390/molecules27185950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Scaling up the production of functional reduced graphene oxide (rGO) and its composites requires the use of low-cost, simple, and sustainable synthesis methods, and renewable feedstocks. In this study, silver oxide-decorated rGO (AgxO−rGO) composites were prepared by open-air combustion of mustard oil, essential oil-containing cooking oil commercially produced from the seeds of Brassica juncea. Silver oxide (AgxO) nanoparticles (NPs) were synthesized using Coleus aromaticus leaf extract as a reducing agent. Formation of mustard seed rGO and AgxO NPs was confirmed by UV-visible characteristic peaks at 258 nm and 444 nm, respectively. rGO had a flake-like morphology and a crystalline structure, with Raman spectra showing clear D and G bands with an ID/IG ratio of 0.992, confirming the fewer defects in the as-prepared mustard oil-derived rGO (M−rGO). The rGO-AgxO composite showed a degradation efficiency of 81.9% with a rate constant k−1 of 0.9506 min−1 for the sodium salt of benzidinediazo-bis-1-naphthylamine-4-sulfonic acid (known as the azo dye Congo Red) in an aqueous solution under visible light irradiation. The composite also showed some antimicrobial activity against Klebsilla pneomoniae, Escherichiacoli, and Staphylococcusaureus bacterial cells, with inhibition zones of ~15, 18, and 14 mm, respectively, for a concentration of 300 µg/mL. At 600 µg/mL concentration, the composite also showed moderate scavenging activity for 2,2-diphenyl-1-picrylhydrazyl of ~30.6%, with significantly lower activities measured for AgxO (at ~18.1%) and rGO (~8%) when compared to control.
Collapse
|
15
|
Deep eutectic solvents-derivated carbon dots-decorated silica stationary phase with enhanced separation selectivity in reversed-phase liquid chromatography. J Chromatogr A 2022; 1681:463425. [PMID: 36054993 DOI: 10.1016/j.chroma.2022.463425] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023]
Abstract
In this work, deep eutectic solvents-based carbon dots (DESCDs) were prepared and bonded to the silica surface for the first time to form a new hydrophobic chromatographic stationary phase (Sil-DESCDs). The successful preparation of DESCDs and Sil-DESCDs were demonstrated by a series of characterizations including transmission electron microscopies, laser scanning confocal microscope, Fourier transform infrared spectrometry, elemental analysis, etc. Retention behavior of Sil-DESCDs was evaluated using Tanaka and Engelhardt standard test mixtures. The results showed that this new stationary phase had excellent separation performance for polycyclic aromatic hydrocarbons, flavonoids, aromatic amines and phenolic compounds. Excellent separation selectivity for the 3-phenylene ring isomers including phenanthrene and anthracene, the 4-phenylene ring isomers including pyrene, triphenylene, chrysene and 1,2-benzanthracene was also obtained. Especially, prednisolone and hydrocortisone, which have very similar structures, can be separated using pure water as the mobile phase. In addition, the flavonoids in Astragalus extracts including calycosin-7-glucoside, ononin, calycosin and formononetin were determined using this new column, their concentrations were 0.050, 0.031, 0.023 and 0.034 mg/mL, respectively.
Collapse
|
16
|
Feng X, Sun H, Liu X, Zhu B, Liang W, Ruan T, Jiang G. Occurrence and Ecological Impact of Chemical Mixtures in a Semiclosed Sea by Suspect Screening Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10681-10690. [PMID: 35839457 DOI: 10.1021/acs.est.2c00966] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stress from mixtures of synthetic chemicals is among the key issues that have significant adverse impacts on the marine ecosystems. A robust screening workflow integrating toxicological-based ranking schemes is still deficient for comprehensive investigation on the main constituents in chemical mixtures that contribute to the ecological risks. In this study, the presence and compositions of a collection of priority pollutants were monitored by suspect screening analysis of seawater and estuarine water samples from the semiclosed Bohai Sea. In total, 108 organic pollutants in nine use categories were identified. Pesticides, intermediates, plastic additives, and per- and polyfluoroalkyl substances were the extensively detected chemical groups. Varied distribution patterns of the pollutants were illustrated intuitively in distinctive sampling areas by hierarchical cluster analysis, which were mainly influenced by run-off inputs, ocean currents, and chemical use history. Ecological risks of chemicals with quantified residue levels were first assessed by the toxicity-weighted concentration ranking scheme, and pentachlorophenol was found as the main contributor in the investigating areas. By optimization of multiple alternative variables (e.g., instrumental response and detection frequency), extended ranking of all the identified pollutants was plausible under the toxicological priority index framework. Similarity in toxicological endpoints of the prioritized pollutants could further been screened by ToxAlerts. Aromatic amine was highlighted as the most frequently detected structural alert (SA) for genotoxic carcinogenicity and mutagenicity. These findings fully demonstrate rationality of the ranking schemes integrated into the suspect screening analysis for profiling contamination characteristics, assessing ecological risk potentials, and prioritizing SAs.
Collapse
Affiliation(s)
- Xiaoxia Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Helin Sun
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xing Liu
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Ge K, Hu Y, Li G. Fabrication of branched gold copper nanoalloy doped mesoporous graphitic carbon nitride hybrid membrane for surface-enhanced Raman spectroscopy analysis of carcinogens. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128742. [PMID: 35338931 DOI: 10.1016/j.jhazmat.2022.128742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Carcinogens in food samples show great potential threat to human health due to their wide distribution and high carcinogenicity. In this work, branched AuCu nanoalloy doped mesoporous graphitic carbon nitride hybrid membrane (mpg-C3N4/AuCu) was fabricated for SERS analysis of carcinogens including benzidine and zearalenone in food. The AuCu was in-situ grown on mpg-C3N4 to form mpg-C3N4/AuCu composites. The as-fabricated mpg-C3N4/AuCu membrane can effectively combined synergistic effect of localized surface plasmon resonance properties of branched AuCu nanoalloy and semiconductor characteristics of mpg-C3N4. The limit of detection for crystal violet is 1.0 ng/L with enhancement factor of 3.7 × 108. The mechanism of high SERS activity of mpg-C3N4/AuCu membrane was investigated by density functional theory simulations. The mpg-C3N4/AuCu membrane was used for direct determination of benzidine, and indirect determination of zearalenone with 3,3',5,5'-tetramethylbenzidine as markers in food. The limits of detection of SERS method were 0.14 and 0.03 μg/L for benzidine and zearalenone, respectively. It provides a new strategy for design and fabrication of high-quality SERS substrates for carcinogens analysis.
Collapse
Affiliation(s)
- Kun Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Abu-Bakar A, Tan BH, Halim H, Ramli S, Pan Y, Ong6 CE. Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers. Curr Drug Metab 2022; 23:355-373. [DOI: 10.2174/1389200223666220328143828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Abstracts:
Cancer is a leading factor of mortality globally. Cytochrome P450 (CYP) enzymes play a pivotal role in the biotransformation of both endogenous and exogenous compounds. Evidence from numerous epidemiological, animal, and clinical studies points to instrumental role of CYPs in cancer initiation, metastasis, and prevention. Substantial research has found that CYPs are involved in activating different carcinogenic chemicals in the environment, such as polycyclic aromatic hydrocarbons and tobacco-related nitrosamines. Electrophilic intermediates produced from these chemicals can covalently bind to DNA, inducing mutation and cellular transformation that collectively result in cancer development. While bioactivation of procarcinogens and promutagens by CYPs has long been established, the role of CYP-derived endobiotics in carcinogenesis has emerged in recent years. Eicosanoids derived from arachidonic acid via CYP oxidative pathways have been implicated in tumorigenesis, cancer progression and metastasis. The purpose of this review is to update on the current state of knowledge about the cancer molecular mechanism involving CYPs with focus on the biochemical and biotransformation mechanisms in the various CYP-mediated carcinogenesis, and the role of CYP-derived reactive metabolites, from both external and endogenous sources, on cancer growth and tumour formation.
Collapse
Affiliation(s)
- A’edah Abu-Bakar
- Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, PETRONAS, Kuala Lumpur, Malaysia
| | - Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Salfarina Ramli
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong6
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Hein DW, Doll MA, Habil MR. Human N-Acetyltransferase 1 and 2 Differ in Affinity Towards Acetyl-Coenzyme A Cofactor and N-Hydroxy-Arylamine Carcinogens. Front Pharmacol 2022; 13:821133. [PMID: 35281898 PMCID: PMC8914035 DOI: 10.3389/fphar.2022.821133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Arylamine N-acetyltransferases catalyze the transfer of acetyl groups from the endogenous cofactor acetyl coenzyme A (AcCoA) to arylamine (N-acetylation) and N-hydroxy-arylamine (O-acetylation) acceptors. Humans express two arylamine N-acetyltransferase isozymes (NAT1 and NAT2) which catalyze both N- and O-acetylation but differ in genetic regulation, substrate selectivity, and expression in human tissues. We investigated recombinant human NAT1 and NAT2 expressed in an Escherichia coli JM105 and Schizosaccharomyces pombe expression systems as well as in Chinese hamster ovary (CHO) cells to assess the relative affinity of AcCoA for human NAT1 and NAT2. NAT1 and NAT2 affinity for AcCoA was higher for recombinant human NAT1 than NAT2 when catalyzing N-acetylation of aromatic amine carcinogens 2-aminofluroene (AF), 4-aminobiphenyl (ABP), and β-naphthylamine (BNA) and the metabolic activation of N-hydroxy-2-aminofluorene (N-OH-AF) and N-hydroxy-4-aminobiphenyl (N-OH-ABP) via O-acetylation. These results suggest that AcCoA level may influence differential rates of arylamine carcinogen metabolism catalyzed by NAT1 and NAT2 in human tissues. Affinity was higher for NAT2 than for NAT1 using N-OH-AF and N-OH-ABP as substrate consistent with a larger active site for NAT2. In conclusion, following recombinant expression in bacteria, yeast, and CHO cells, we report significant differences in affinity between human NAT1 and NAT2 for its required co-factor AcCoA, as well as for N-hydroxy-arylamines activated via O-acetylation. The findings provide important information to understand the relative contribution of human NAT1 vs NAT2 towards N-acetylation and O-acetylation reactions in human hepatic and extrahepatic tissues.
Collapse
|
20
|
Doll MA, Hein DW. 560G>A (rs4986782) (R187Q) Single Nucleotide Polymorphism in Arylamine N-Acetyltransferase 1 Increases Affinity for the Aromatic Amine Carcinogens 4-Aminobiphenyl and N-Hydroxy-4-Aminobiphenyl: Implications for Cancer Risk Assessment. Front Pharmacol 2022; 13:820082. [PMID: 35273499 PMCID: PMC8902414 DOI: 10.3389/fphar.2022.820082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Human arylamine N-acetyltransferase 1 (NAT1) catalyzes the N-acetylation of arylamine carcinogens such as 4-aminobiphenyl (ABP), and following N-hydroxylation, the O-acetylation of N-hydroxy-arylamine carcinogens such as N-hydroxy-ABP (N-OH-ABP). Genetic polymorphisms in NAT1 are linked to cancer susceptibility following exposures. The effects of individual single nucleotide polymorphisms (SNPs) in the NAT1 coding exon on Michaelis-Menten kinetic constants was assessed for ABP N-acetyltransferase and N-OH-ABP O-acetyltransferase activity following transfection of human NAT1 into COS-1 cells (SV40-transformed African green monkey kidney cells). NAT1 coding region SNPs 97C > T (rs56318881) (R33stop), 190C > T (rs56379106) (R64W), 559C > T (rs5030839) (R187stop) and 752A > T (rs56172717) (D251V) reduced ABP N- acetyltransferase and N-OH-ABP O-acetyltransferase activity below detection. 21T > G (rs4986992) (synonymous), 402T > C (rs146727732) (synonymous), 445G > A (rs4987076) (V149I), 613A > G (rs72554609) (M205V) and 640T > G (rs4986783) (S241A) did not significantly affect Vmax for ABP N-acetyltransferase or N-OH-ABP O-acetyltransferase. 781G > A (rs72554610) (E261K), and 787A > G (rs72554611) (I263V) slightly reduced ABP N-acetyltransferase and N-OH-ABP O-acetyltransferase activities whereas 560G > A (rs4986782) (R187Q) substantially and significantly reduced them. 560G > A (rs4986782) (R187Q) significantly reduced the apparent Km for ABP and N-OH-ABP a finding that was not observed with any of the other NAT1 SNPs tested. These findings suggest that the role of the 560G > A (rs4986782) (R187Q) SNP cancer risk assessment may be modified by exposure level to aromatic amine carcinogens such as ABP.
Collapse
Affiliation(s)
| | - David W. Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
21
|
Du Z, Hu A, Wang Q, Ai J, Zhang W, Liang Y, Cao M, Wu H, Wang D. Molecular composition and biotoxicity effects of dissolved organic matters in sludge-based carbon: Effects of pyrolysis temperature. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127346. [PMID: 34601409 DOI: 10.1016/j.jhazmat.2021.127346] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/11/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Sludge pyrolysis carbonization has shown potential to convert sludge biomass into multifunctional carbon materials. However, ecological risks of dissolved organic matters (DOMs) with obscure molecular characteristics retaining in sludge-based carbons (SBCs) have received little attention. This study investigated the impact of pyrolysis temperatures on the molecular conversion and biotoxicity effects of DOMs in SBCs. The results revealed that DOMs in SBCs300-400 were mainly derived from depolymerization of biopolymers and the polycondensation and cyclization of small intermediate molecules, which mainly consisted of aromatic CHON compounds with 1-3 N atoms, featuring high unsaturation and molecular weights. High-temperature pyrolysis (500-800 °C) promoted the decomposition and ring-opening of aromatic CHON compounds into saturated aliphatic CHO compounds with 2-4 O atoms in SBCs500-800. Noteworthily, SBCs300-400-derived DOMs showed relatively strong biotoxicity on the growth and development of wild-type zebrafish embryos, pakchoi seeds, and Vibrio qinghaiensis Q67, which was significantly related to aromatic amines, phenols, and heterocyclic-N compounds in DOMs of SBCs300-400. SBCs500-800-derived DOMs were mainly straight-chain fatty acids and showed no observable acute biotoxicity. This study highlights the negative impact of DOMs in SBCs on the ecological environment, and provides the theoretical basis for controlling toxic byproducts in sludge pyrolysis process.
Collapse
Affiliation(s)
- Zhengliang Du
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Aibin Hu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Qiandi Wang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China.
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, Hubei, China
| | - Mengxi Cao
- Institute of Environment and Health, Jianghan University, Wuhan 430056, Hubei, China
| | - Hanjun Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, Hubei, China
| | - Dongsheng Wang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
22
|
Kung RW, Takyi NA, Wetmore SD. Effects of a Second Local DNA Damage Event on the Toxicity of the Human Carcinogen 4-Aminobiphenyl: A Molecular Dynamics Study of a Damaged DNA Structure. Chem Res Toxicol 2022; 35:499-511. [PMID: 35147430 DOI: 10.1021/acs.chemrestox.1c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exposure of humans to carcinogenic aromatic amines (AAs) occurs daily. AAs are bioactivated in cells into products that attack DNA, primarily leading to N-linked C8-dG adducts. Previous work on DNA containing a single AA-derived adduct (monoadducted DNA) has shown a structure-function relationship between the damaged DNA conformation and cellular outcomes. However, relatively little is known about the conformation and biological outcomes of DNA containing two bulky adducts (diadducted DNA) in close proximity. To fill this current void in the literature, the present work uses quintuplet 0.5 μs MD simulations to understand the structural impact of DNA exposure to the potent bladder carcinogen 4-aminobiphenyl (ABP), which is found in cigarette smoke and select dyes, and results in the widely studied N-linked ABPdG adduct. Specifically, 18 unique DNA duplexes were investigated that contain one or two ABPdG adducts in the anti and/or syn glycosidic orientation(s) in all combinations of three G positions in the NarI mutation hotspot for AAs (5'-G1G2CG3CC). Monoadducted DNA displays sequence-dependent conformational heterogeneity, with the G1 site having the greatest anti preference, and highlights the range of helical structures associated with the syn lesion orientation [i.e., stacked (S), intercalated (I), and wedge (W) conformations]. Diadducted DNA results in interesting lesion separation effects on the conformational heterogeneity, including a greater anti preference for neighboring adducts (G1G2) and a greater syn preference for next-nearest neighbor damaged sites (G2G3) compared to monoadducted DNA. As a result, an increase in the number of ABPdG adducts changes the conformational heterogeneity of ABP-exposed DNA depending on the relative positions of the lesions and thereby could result in increased or decreased toxicity upon human exposure to elevated levels of ABP.
Collapse
Affiliation(s)
- Ryan W Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Nathania A Takyi
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
23
|
Lin HD, Tseng YK, Yuh CH, Chen SC. Low concentrations of 4-ABP promote liver carcinogenesis in human liver cells and a zebrafish model. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126954. [PMID: 34474361 DOI: 10.1016/j.jhazmat.2021.126954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
4-Aminobiphenyl (4-ABP) is a human bladder cancer carcinogen found in the manufacture of azo dyes and the composition of cigarette smoke in the environment. To determine whether low concentrations of 4-ABP induced or promote liver carcinogenesis and investigate the underlying mechanism, we have established the liver cell carcinogenesis model in human liver cell lines and zebrafish to evaluate liver cancer development associated with long-term exposure to low concentrations of 4-ABP. Results show that repeated 4-ABP exposure promoted cellular proliferation and migration via the involvement of ROS in Ras/MEK/ERK pathway in vitro. Also, 4-ABP (1, 10, and 100 nM) induces hepatocellular carcinoma (HCC) formation in HBx, Src (p53-/-) transgenic zebrafish at four months of age and in wild-type zebrafish at seven months of age. In addition, we observed a correlation between the Ras-ERK pathway and 4-ABP-induced HCC in vitro and in vivo. Our finding suggests low concentrations of 4-ABP repeated exposure is a potential risk factor for liver cancer. To our knowledge, this is the first report on the promotion of liver carcinogenesis in human liver cells and zebrafish following 4-ABP exposure.
Collapse
Affiliation(s)
- Heng-Dao Lin
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yi-Kuan Tseng
- Graduate Institute of Statistics, National Central University, Taoyuan City, Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan; Department of Biological Science & Technology, National Chiao Tung University, Hsinchu, Taiwan; Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
24
|
Leggett CS, Doll MA, Salazar-González RA, Habil MR, Trent JO, Hein DW. Identification and characterization of potent, selective, and efficacious inhibitors of human arylamine N-acetyltransferase 1. Arch Toxicol 2022; 96:511-524. [PMID: 34783865 PMCID: PMC8837702 DOI: 10.1007/s00204-021-03194-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Arylamine N-acetyltransferase 1 (NAT1) plays a pivotal role in the metabolism of carcinogens and is a drug target for cancer prevention and/or treatment. A protein-ligand virtual screening of 2 million chemicals was ranked for predicted binding affinity towards the inhibition of human NAT1. Sixty of the five hundred top-ranked compounds were tested experimentally for inhibition of recombinant human NAT1 and N-acetyltransferase 2 (NAT2). The most promising compound 9,10-dihydro-9,10-dioxo-1,2-anthracenediyl diethyl ester (compound 10) was found to be a potent and selective NAT1 inhibitor with an in vitro IC50 of 0.75 µM. Two structural analogs of this compound were selective but less potent for inhibition of NAT1 whereas a third structural analog 1,2-dihydroxyanthraquinone (a compound 10 hydrolysis product also known as Alizarin) showed comparable potency and efficacy for human NAT1 inhibition. Compound 10 inhibited N-acetylation of the arylamine carcinogen 4-aminobiphenyl (ABP) both in vitro and in DNA repair-deficient Chinese hamster ovary (CHO) cells in situ stably expressing human NAT1 and CYP1A1. Compound 10 and Alizarin effectively inhibited NAT1 in cryopreserved human hepatocytes whereas inhibition of NAT2 was not observed. Compound 10 caused concentration-dependent reductions in DNA adduct formation and DNA double-strand breaks following metabolism of aromatic amine carcinogens beta-naphthylamine and/or ABP in CHO cells. Compound 10 inhibited proliferation and invasion in human breast cancer cells and showed selectivity towards tumorigenic versus non-tumorigenic cells. In conclusion, our study identifies potent, selective, and efficacious inhibitors of human NAT1. Alizarin's ability to inhibit NAT1 could reduce breast cancer metastasis particularly to bone.
Collapse
Affiliation(s)
- Carmine S. Leggett
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA
| | - Mark A. Doll
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA
| | - Raúl A. Salazar-González
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA
| | - Mariam R. Habil
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA
| | - John O. Trent
- UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA,Department of Medicine, University of Louisville,
Louisville, KY USA
| | - David W. Hein
- Department of Pharmacology and Toxicology, University of
Louisville, Louisville, KY USA,UofL Health Brown Cancer Center, University of Louisville,
Louisville, KY USA,Department of Medicine, University of Louisville,
Louisville, KY USA,Corresponding author: David W. Hein, University of
Louisville Health Science Center, Kosair Charities Clinical and Translational
Research Building Room 303, 505 South Hancock Street, Louisville, KY USA
40202-1617. . Telephone:
502-852-6252
| |
Collapse
|
25
|
Kung RW, Deak TK, Griffith-Salik CA, Takyi NA, Wetmore SD. Impact of DNA Adduct Size, Number, and Relative Position on the Toxicity of Aromatic Amines: A Molecular Dynamics Case Study of ANdG- and APdG-Containing DNA Duplexes. J Chem Inf Model 2021; 61:2313-2327. [PMID: 33977716 DOI: 10.1021/acs.jcim.1c00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human exposure to aromatic amines (AAs) can result in carcinogenic DNA adducts. To complement previous work geared toward understanding the mutagenicity of AA-derived adducts, which has almost exclusively studied (monoadducted) DNA containing a single lesion, the present work provides the first in-depth comparison of the structure of monoadducted and diadducted DNA duplexes. Specifically, molecular dynamics (MD) simulations were initially performed on DNA containing the nonmutagenic single-ringed N-(deoxyguanosin-8-yl)-aniline (ANdG) or the mutagenic four-ringed N-(deoxyguanosin-8-yl)-1-aminopyrene (APdG) lesion at G1, G2, or G3 in the AA deletion hotspot (5'-G1G2CG3CC) in the anti or syn glycosidic orientation (B/S duplex conformation). Subsequently, diadducted strands were assessed that span each combination of damaged sites (G1G2 (nearest neighbors), G2G3 (next-nearest neighbors), and G1G3 (two intervening nucleotides)) and anti/syn lesion glycosidic orientations. Despite other N-linked C8-dG adducts exhibiting sequence dependence conformational heterogeneity, a single ANdG or APdG lesion induces helical conformational homogeneity that is exclusively controlled by aryl moiety size. However, the preferred damaged DNA conformation can change upon the addition of a second adduct depending on lesion separation, with neighboring lesions stabilizing a nonmutagenic conformation and next-nearest damaged sites stabilizing a promutagenic conformation regardless of adduct size. As a result, diadducted DNA is found to adopt conformations that are unfavored for the corresponding monoadducted system, pointing to differential replication and repair outcomes for diadducted DNA compared to those for monoadducted DNA. Thus, although the toxicity of monoadducted DNA is most significantly dictated by lesion size, the toxicity can increase or decrease upon a second damaging event depending on lesion size and relative position. Overall, our work adds the number of lesions and their spatial separation to the growing list of factors that determine the structure and biological outcomes of adducted DNA.
Collapse
Affiliation(s)
- Ryan W Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Trinity K Deak
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Cassidy A Griffith-Salik
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Nathania A Takyi
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
26
|
Aalami AH, Abdeahad H, Mesgari M, Sathyapalan T, Sahebkar A. Urinary Angiogenin as a Marker for Bladder Cancer: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5557309. [PMID: 33997007 PMCID: PMC8099530 DOI: 10.1155/2021/5557309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/27/2021] [Accepted: 04/16/2021] [Indexed: 01/20/2023]
Abstract
AIMS Bladder cancer (BCa) is a common cancer in North America and Europe that carries considerable morbidity and mortality. A reliable biomarker for early detection of the bladder is crucial for improving the prognosis of BCA. In this meta-analysis, we examine the diagnostic role of the angiogenin (ANG) protein in patients' urine with bladder neoplasm. METHODS We performed a systematic literature search using ScienceDirect, Web of Science, PubMed/MEDLINE, Scopus, Google Scholar, and Embase, up to 10th October 2020 databases. Meta-Disc V.1.4 and Comprehensive Meta-Analysis V.2.2 software calculated the pooled specificity, sensitivity, area under the curve (AUC), diagnostic odds ratio (DOR), positive likelihood ratio (LR+), negative likelihood ratio (LR-), Q ∗ index, and summary receiver-operating characteristic (SROC) for the role of ANG as a urinary biomarker for BCa patients. RESULTS Four case-control studies were included with 656 participants (417 cases and 239 controls) in this meta-analysis. The pooled sensitivity of 0.71 (95% CI: 0.66-0.75), specificity of 0.78 (95% CI: 0.73-0.81), LR+ of 3.34 (95% CI: 2.02-5.53), LR- of 0.37 (95% CI: 0.32-0.44), DOR of 9.99 (95% CI: 4.69-21.28), and AUC of 0.789 and Q ∗ index of 0.726 demonstrate acceptable diagnostic precision of ANG in identifying BCa. CONCLUSION This meta-analysis showed that ANG could be a fair biomarker for the diagnosis of BCa patients.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hossein Abdeahad
- Department of Nutrition and Integrative Physiology, Collogue of Health, University of Utah, Salt Lake City, UT, USA
| | - Mohammad Mesgari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Femina Carolin C, Kumar PS, Joshiba GJ, Madhesh P, Ramamurthy R. Sustainable strategy for the enhancement of hazardous aromatic amine degradation using lipopeptide biosurfactant isolated from Brevibacterium casei. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124943. [PMID: 33385730 DOI: 10.1016/j.jhazmat.2020.124943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
The application of biosurfactants for the degradation of various toxic compounds has received much attention among researchers worldwide. A stimulated degrading method was carried out in this research to determine the efficiency of surfactant on the biodegradation of aromatic amine 4-Aminobiphenyl (4-ABP). The biosurfactant mediated process is an alternative strategy for chemical surfactants because chemical surfactants are toxic and nonbiodegradable. The bacterium was isolated through the enrichment process and identified using 16S rRNA sequencing method. The molecular characterization showed that the isolate belongs to Brevibacterium casei-4AB. Biosurfactant produced in this study was examined through screening activities like oil spreading, emulsification activity and surface tension measurement. Instrumental characterization like Fourier Transform Infrared Spectrophotometer (FT-IR) results suggested that there is a presence of NH group, aliphatic hydrocarbons, ester groups, amide and alkenes and further Gas chromatography- Mass Spectrometry (GC-MS) results confirmed the presence of fatty acids such as Hexadecanoic and Octadecadienoic acid which showed that the produced surfactant is lipopeptide. Protein content and lipid content in the biosurfactant was found to be 18 ± 0.8% and 30 ± 0.1%. The degraded metabolites of 4-ABP were analyzed through the GC-MS process which revealed the presence of metabolites such as 5-Amino-2-methoxy phenol.
Collapse
Affiliation(s)
- C Femina Carolin
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India.
| | - G Janet Joshiba
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India
| | - Pavithra Madhesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India
| | - Racchana Ramamurthy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India; Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands
| |
Collapse
|
28
|
Hölzl-Armstrong L, Kucab JE, Zwart EP, Luijten M, Phillips DH, Arlt VM. Mutagenicity of N-hydroxy-4-aminobiphenyl in human TP53 knock-in (Hupki) mouse embryo fibroblasts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:252-264. [PMID: 33620775 DOI: 10.1002/em.22429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
TP53 harbors somatic mutations in more than half of human tumors with some showing characteristic mutation spectra that have been linked to environmental exposures. In bladder cancer, a unique distribution of mutations amongst several codons of TP53 has been hypothesized to be caused by environmental carcinogens including 4-aminobiphenyl (4-ABP). 4-ABP undergoes metabolic activation to N-hydroxy-4-aminobiphenyl (N-OH-4-ABP) and forms pre-mutagenic adducts in DNA, of which N-(deoxyguanosin-8-yl)-4-ABP (dG-C8-4-ABP) is the major one. Human TP53 knock-in mouse embryo fibroblasts (HUFs) are a useful model to study the influence of environmental carcinogens on TP53-mutagenesis. By performing the HUF immortalization assay (HIMA) TP53-mutant HUFs are generated and mutations can be identified by sequencing. Here we studied the induction of mutations in human TP53 after treatment of primary HUFs with N-OH-4-ABP. In addition, mutagenicity in the bacterial lacZ reporter gene and the formation of dG-C8-4-ABP, measured by 32 P-postlabelling analysis, were determined in N-OH-4-ABP-treated primary HUFs. A total of 6% TP53-mutants were identified after treatment with 40 μM N-OH-4-ABP for 24 hr (n = 150) with G>C/C>G transversion being the main mutation type. The mutation spectrum found in the TP53 gene of immortalized N-OH-4-ABP-treated HUFs was unlike the one found in human bladder cancer. DNA adduct formation (~40 adducts/108 nucleotides) was detected after 24 hr treatment with 40 μM N-OH-4-ABP, but lacZ mutagenicity was not observed. Adduct levels decreased substantially (sixfold) after a 24 hr recovery period indicating that primary HUFs can efficiently repair the dG-C8-4-ABP adduct possibly before mutations are fixed. In conclusion, the observed difference in the N-OH-4-ABP-induced TP53 mutation spectrum to that observed in human bladder tumors do not support a role of 4-ABP in human bladder cancer development.
Collapse
Affiliation(s)
- Lisa Hölzl-Armstrong
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Jill E Kucab
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Edwin P Zwart
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mirjam Luijten
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, UK
- Toxicology Department, GAB Consulting GmbH, Heidelberg, Germany
| |
Collapse
|
29
|
Leggett CS, Doll MA, States JC, Hein DW. Acetylation of putative arylamine and alkylaniline carcinogens in immortalized human fibroblasts transfected with rapid and slow acetylator N-acetyltransferase 2 haplotypes. Arch Toxicol 2021; 95:311-319. [PMID: 33136180 PMCID: PMC7855884 DOI: 10.1007/s00204-020-02901-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Exposure to alkylanilines found in tobacco smoke and indoor air is associated with risk of bladder cancer. Genetic factors significantly influence the metabolism of arylamine carcinogens and the toxicological outcomes that result from exposure. We utilized nucleotide excision repair (NER)-deficient immortalized human fibroblasts to examine the effects of human N-acetyltransferase 1 (NAT1), CYP1A2, and common rapid (NAT2*4) and slow (NAT2*5B or NAT2*7B) acetylator human N-acetyltransferase 2 (NAT2) haplotypes on environmental arylamine and alkylaniline metabolism. We constructed SV40-transformed human fibroblast cells that stably express human NAT2 alleles (NAT2*4, NAT2*5B, or NAT2*7B) and human CYP1A2. Human NAT1 and NAT2 apparent kinetic constants were determined following recombinant expression of human NAT1 and NAT2 in yeast for the arylamines benzidine, 4-aminobiphenyl (ABP), and 2-aminofluorene (2-AF), and the alkylanilines 2,5-dimethylaniline (DMA), 3,4-DMA, 3,5-DMA, 2-6-DMA, and 3-ethylaniline (EA) compared with those of the prototype NAT1-selective substrate p-aminobenzoic acid and NAT2-selective substrate sulfamethazine. Benzidine, 3,4-DMA, and 2-AF were preferential human NAT1 substrates, while 3,5-DMA, 2,5-DMA, 3-EA, and ABP were preferential human NAT2 substrates. Neither recombinant human NAT1 or NAT2 catalyzed the N-acetylation of 2,6-DMA. Among the alkylanilines, N-acetylation of 3,5-DMA was substantially higher in human fibroblasts stably expressing NAT2*4 versus NAT2*5B and NAT2*7B. The results provide important insight into the role of the NAT2 acetylator polymorphism (in the presence of competing NAT1 and CYP1A2-catalyzed N-acetylation and N-hydroxylation) on the metabolism of putative alkyaniline carcinogens. The N-acetylation of two alkylanilines associated with urinary bladder cancer (3-EA and 3,5-DMA) was modified by NAT2 acetylator polymorphism.
Collapse
Affiliation(s)
- Carmine S Leggett
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
- American Association for Cancer Research, Washington, DC, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - David W Hein
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
- University of Louisville Superfund Research Program, Louisville, KY, USA.
- University of Louisville Health Sciences Center, Kosair Charities CTR Room 303, 505 South Hancock Street, Louisville, KY, 40202, USA.
| |
Collapse
|
30
|
Dai Y, Li X, Wang L, Xu X. Highly efficient hydrogenation reduction of aromatic nitro compounds using MOF derivative Co–N/C catalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj04139h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique MOF derivative core–shell Co–N/C catalyst exhibits porous structure with high specific area, high cobalt content (23%) and high nitrogen content (3%), resulting in the excellent hydrogenation reduction of nitro compounds.
Collapse
Affiliation(s)
- Yuyu Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaoqing Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Likai Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiangsheng Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
31
|
N-acetyltransferase 2 acetylator genotype-dependent N-acetylation of 4-aminobiphenyl in cryopreserved human hepatocytes. Pharmacogenet Genomics 2020; 30:61-65. [PMID: 31895247 DOI: 10.1097/fpc.0000000000000394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arylamine N-acetyltransferases are xenobiotic-metabolizing enzymes responsible for detoxification of many drugs and carcinogens. Two N-acetyltransferase proteins (NAT1 and NAT2) are expressed in humans and they both N-acetylate aromatic amine carcinogens such as 4-aminobiphenyl. Arylamines such as 4-aminobiphenyl represent a large class of chemical carcinogens. Exposure to 4-aminobiphenyl occurs in the chemical, dye and rubber industries as well as in hair dyes, paints, and cigarette smoke. NAT2 is subject to a genetic polymorphism resulting in rapid, intermediate and slow acetylator phenotypes. We investigated the role of the NAT2 genetic polymorphisms on the N-acetylation of 4-aminobiphenyl in cryopreserved human hepatocytes in which NAT2 genotype and deduced phenotype were determined. Differences in sulfamethazine (selectively N-acetylated via NAT2) and 4-aminobiphenyl (N-acetylated by both NAT1 and NAT2) N-acetylation rates among rapid, intermediate, and slow NAT2 acetylator genotypes were tested for significance by one-way analysis of variance. In vitro 4-aminobiphenyl N-acetyltransferase activities differed significantly between rapid, intermediate and slow acetylators at 10 µM (P = 0.0102) or 100 µM (P = 0.0028). N-acetylation of 4-aminobiphenyl in situ also differed significantly between human hepatocytes from rapid, intermediate, and slow acetylators at 10 µM (P = 0.0015) and 100 µM (P = 0.0216). A gene dose-response relationship was exhibited as intermediate acetylators catalyzed 4-aminobiphenyl N-acetylation both in vitro and in situ at rates arithmetically between rapid and slow acetylators. In conclusion, N-acetylation of 4-aminobiphenyl is NAT2 genotype-dependent in human hepatocytes. These results suggest refinement of the exposure limit and safety for arylamine carcinogens according to NAT2 genotype.
Collapse
|
32
|
Cai G, Ge K, Ouyang X, Hu Y, Li G. Thin-layer chromatography combined with surface-enhanced Raman scattering for rapid detection of benzidine and 4-aminobiphenyl in migration from food contact materials based on gold nanoparticle doped metal-organic framework. J Sep Sci 2020; 43:2834-2841. [PMID: 32306540 DOI: 10.1002/jssc.202000145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
In this work, a rapid and sensitive thin-layer chromatography combined with surface-enhanced Raman spectroscopy method was established for rapid detection of benzidine and 4-aminobiphenyl in migration from food contact materials based on Au nanoparticle doped metal-organic framework. Benzidine and 4-aminobiphenyl were firstly separated by thin-layer chromatography to solve the limitation of their overlapping Raman peaks. Then the target molecules were monitored by adding AuNPs/MIL-101(Cr) on the sample spots. Under the optimum conditions, the concentration of benzidine and 4-aminobiphenyl can be quantitatively measured in the range of 2.0-20.0 and1.0-15.0 μg/L, respectively with good linear relationship, and the limits of detection were 0.21 and 0.23 μg/L, respectively. Furthermore, the developed method was applied to analyze benzidine and 4-aminobiphenyl in migration of different food contact materials. The recoveries of benzidine and 4-aminobiphenyl for migration of food contact materials, including paper cups, polypropylene food containers, and polyethylene glycol terephthalate bottles, were 80.6-116.0 and 80.7-118% with relative standard deviations of 1.1-9.1 and 3.1-9.9%, respectively. Surface-enhanced Raman scattering detection was performed conveniently in the on-plate mode without additional elution process. The method shows great potential in rapid monitoring of hazardous substances with overlapping characteristic Raman peaks in food contact materials.
Collapse
Affiliation(s)
- Guohui Cai
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Kun Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyan Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
33
|
Baldauf KJ, Salazar-González RA, Doll MA, Pierce WM, States JC, Hein DW. Role of Human N-Acetyltransferase 2 Genetic Polymorphism on Aromatic Amine Carcinogen-Induced DNA Damage and Mutagenicity in a Chinese Hamster Ovary Cell Mutation Assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:235-245. [PMID: 31490564 PMCID: PMC7017392 DOI: 10.1002/em.22331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 05/10/2023]
Abstract
Carcinogenic aromatic amines such as 4-aminobiphenyl (ABP) and 2-aminofluorene (AF) require metabolic activation to form electrophilic intermediates that mutate DNA leading to carcinogenesis. Bioactivation of these carcinogens includes N-hydroxylation catalyzed by CYP1A2 followed by O-acetylation catalyzed by arylamine N-acetyltransferase 2 (NAT2). To better understand the role of NAT2 genetic polymorphism in ABP- and AF-induced mutagenesis and DNA damage, nucleotide excision repair-deficient (UV5) Chinese hamster ovary (CHO) cells were stably transfected with human CYP1A2 and either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. ABP and AF both caused significantly (P < 0.001) greater mutagenesis measured at the hypoxanthine phosphoribosyl transferase (hprt) locus in the UV5/CYP1A2/NAT2*4 acetylator cell line compared to the UV5, UV5/CYP1A2, and UV5/CYP1A2/NAT2*5B cell lines. ABP- and AF-induced hprt mutant cDNAs were sequenced and over 80% of the single-base substitutions were at G:C base pairs. DNA damage also was quantified by γH2AX in-cell western assays and by identification and quantification of the two predominant DNA adducts, N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) and N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) by liquid chromatography-mass spectrometry. DNA damage and adduct levels were dose-dependent, correlated highly with levels of hprt mutants, and were significantly (P < 0.0001) greater in the UV5/CYP1A2/NAT2*4 rapid acetylator cell line following treatment with ABP or AF as compared to all other cell lines. Our findings provide further clarity on the importance of O-acetylation in CHO mutagenesis assays for aromatic amines. They provide evidence that NAT2 genetic polymorphism modifies aromatic amine-induced DNA damage and mutagenesis that should be considered in human risk assessments following aromatic amine exposures. Environ. Mol. Mutagen. 61:235-245, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | | | | | - David W. Hein
- Correspondence to: David W. Hein, Kosair Charities CTR-Room 303, 505 South Hancock Street, Louisville, Kentucky 40202.
| |
Collapse
|
34
|
Tölgyesi Á, Sharma VK. Quantification of aromatic amines derived from azo colorants in textile by ion-pairing liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1137:121957. [DOI: 10.1016/j.jchromb.2019.121957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
|
35
|
Zhang S, Hu P, Liu T, Li Z, Huang Y, Liao J, Hamid MR, Wen L, Wang T, Mo C, Alini M, Grad S, Wang T, Chen D, Zhou G. Kartogenin hydrolysis product 4-aminobiphenyl distributes to cartilage and mediates cartilage regeneration. Am J Cancer Res 2019; 9:7108-7121. [PMID: 31695756 PMCID: PMC6831301 DOI: 10.7150/thno.38182] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale The small molecule Kartogenin (KGN) promotes cartilage regeneration in osteoarthritis (OA) by activating stem cells differentiation, but its pharmacological mode-of-action remains unclear. KGN can be cleaved into 4-aminobiphenyl (4-ABP) and phthalic acid (PA) following enzymolysis of an amide bond. Therefore, this study investigated whether 4-ABP or PA exerted the same action as KGN. Methods KGN, 4-ABP and PA were analyzed in cartilage of mice after oral, intravenous or intra-articular administration of KGN by liquid chromatography-mass spectrometry method. Their effect on proliferation and chondrogenic differentiation of mesenchymal stem cells (MSC) was evaluated in vitro. Furthermore, their effect on cartilage preservation was tested in mice OA model induced by destabilization of medial meniscus. OA severity was quantified using OARSI histological scoring. Transcriptional analysis was used to find the possible targets of the chemicals, which were further validated. Results We demonstrated that while oral or intra-articular KGN delivery effectively ameliorated OA phenotypes in mice, only 4-ABP was detectable in cartilage. 4-ABP could induce chondrogenic differentiation and proliferation of MSC in vitro and promote cartilage repair in OA mouse models mainly by increasing the number of CD44+/CD105+ stem-cell and prevention of matrix loss. These effect of 4-ABP was stronger than that of KGN. Transcriptional profiling of 4-ABP-stimulated MSC suggested that RPS6KA2 and the PI3K-Akt pathway were 4-ABP targets; 4-ABP could activate the PI3K-Akt pathway to promote MSC proliferation and repair OA injury, which was blocked in RPS6KA2-knockdown MSC or RPS6KA2-deficient mice. Conclusion 4-ABP bio-distribution in cartilage promotes proliferation and chondrogenic differentiation of MSC, and repairs osteoarthritic lesions via PI3K-Akt pathway activation.
Collapse
|