1
|
Li Y, Jia Z, Kong X, Zhao H, Liu X, Cui G, Luo J. Effect of 5-Aza-2'-deoxycytidine on T-cell acute lymphoblastic leukemia cell biological behaviors and PTEN expression. Cytojournal 2024; 21:36. [PMID: 39563669 PMCID: PMC11574681 DOI: 10.25259/cytojournal_31_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 11/21/2024] Open
Abstract
Objective We currently face a sharp increase of T-cell acute lymphoblastic leukemia (T-ALL) incidence and a challenge of unmasking its complex etiology. The deoxycytidine analog 5-Aza-2'-deoxycytidine (5-Aza-dC) is currently the most common nucleoside methyltransferase inhibitor. The objective of this study was to clarify the role of 5-Aza-dC in T-ALL cell biological behaviors and phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression. Material and Methods T-ALL cell lines were divided into the experimental group with 5-Aza-dC solution treatment, and the control group without treatment. PTEN methylation was detected using methylation-specific polymerase chain reaction (MS-PCR). Following the measurement of cell proliferation, viability, apoptosis, invasion, migration, etc., quantitative reverse transcription-polymerase chain reaction (PCR) was conducted to detect PTEN, DNA methyl-transferases (DNMT1), DNMT3a, MBD2, and MeCP2 expressions; Western blot to detect PTEN, PI3K, AKT, and mTOR protein expressions. In addition, rescue experiments to inhibit and restore the expression of PTEN in different groups were performed for further identification of the results in the former parts. Results MS-PCR results showed that in Jurkat cells, the target band was amplified using methylated primers for the PTEN gene promoter region; moreover, at 10 μmol/L of 5-Aza-dC for 24 h, PTEN methylation was completely removed without any un-methylated band observed. The experimental group had significantly lower cell proliferation and viability rates, higher apoptosis rates, decreased cell proportion in S phase, reduced invasion and migration; increased PTEN expression, decreased DNMT1, DNMT3a, MBD2, and MeCP2 mRNA expressions; and decreased PI3K, AKT, and mTOR protein expressions than those in the control group (all P < 0.05). Furthermore, according to the rescue experiment, silenced PTEN expression weakened the beneficial roles of 5-Aza-dC treatment, and resulted in significantly higher cell proliferation and viability rates, lower apoptosis rates, increased cell proportion in S phase, increased cell invasion and migration; decreased PTEN expression, elevated DNMT1, DNMT3a, MBD2, and MeCP2 mRNA expressions, and higher PI3K, AKT, and mTOR protein expressions (all P < 0.05). While restored PTEN expression enhanced functions of 5-Aza-dC treatment, leading to obviously lower cell proliferation and viability rates, higher apoptosis rates, increased cell proportion in G1 phase, and reduced cell invasion and migration; as well as increased PTEN expression, decreased DNMT1, DNMT3a, MBD2, and MeCP2 mRNA expressions, and lower PI3K, AKT, and mTOR protein expressions (all P < 0.05). Conclusion Demethylation treatment with 5-Aza-dC can inhibit T-ALL cell malignant biological behaviors and enhance the sensitivity to chemotherapy agents possibly, which may be related to the inhibited expressions of DNMT1, DNMT3a, MBD2, and MeCP2, and restored expression activity of PTEN to negatively regulate the PI3K/AKT signal transduction. Our silencing and restoration of PTEN expressions further support our findings, highlighting that demethylation with 5-Aza-dC to restore the anti-tumor activity of the tumor suppressor gene PTEN may be a promising therapeutic option for treating T-ALL.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Zhenwei Jia
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Xiaoyang Kong
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Hongbo Zhao
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Xiaoyan Liu
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Guirong Cui
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Jianmin Luo
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| |
Collapse
|
2
|
Thi YVN, Vu TD, Huong NTL, Chu DT. Epigenetic contribution to the relationship between obesity and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:195-213. [PMID: 39179347 DOI: 10.1016/bs.ircmb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Obesity and cancer are two major health issues all around the world due to their elevated prevalence. Several experimental and epidemiological studies have demonstrated the relationship between obesity and cancer, in which obesity is considered a risk factor for cancer development. The ultimate goal of knowing the epigenetic contribution to the relationship between obesity and cancer is to find the method of intervention or treatment of obesity and cancer. Therefore, providing the most general perspective on epigenetic contribution to the relationship between obesity and cancer is necessary. Obesity is closely related to some common cancers that are currently encountered, including breast, esophagus, liver, kidney, uterus, colorectal, pancreatic, and gallbladder. Obesity has a significant impact that increases the risk of cancer deaths and thereby indirectly affects the choice of treatment. It is estimated that about 4-8% of cancer cases are caused by obesity. In particular, the basic mechanism to understand the relationship between cancer is very complicated and has not been fully understood. This work is aimed at summarizing the current knowledge of the role of epigenetic regulation in the relationship between obesity, and potential applications.
Collapse
Affiliation(s)
- Yen-Vy Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Thuy-Duong Vu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | | | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
3
|
Tang Q, Wang S, Li H, Liu J, Hu X, Zhao D, Di M. Integrated multi-omics analyses reveal the TM4SF family genes with prognostic and therapeutic relevance in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:593-616. [PMID: 38206300 PMCID: PMC10817404 DOI: 10.18632/aging.205398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/16/2023] [Indexed: 01/12/2024]
Abstract
TM4SF family members (TM4SFs) have been shown to be aberrantly expressed in multiple types of cancer. However, a comprehensive investigation of the TM4SFs has yet to be performed in LIHC. The study comprehensively investigated the expression and prognostic value of TM4SFs. Then, a TM4SFs-based risk model and nomogram were constructed for prognostic prediction. Finally, functional loss of TM4SFs was performed to verify the potential role of TM4SFs in LIHC. We found that TM4SFs were significantly up-regulated in LIHC. High expression and hypomethylation of TM4SFs were associated with poor prognosis of LIHC patients. Then, a TM4SFs-based risk model was constructed that could effectively classify LIHC patients into high and low-risk groups. In addition, we constructed a prognostic nomogram that could predict the long-term survival of LIHC patients. Based on immune infiltration analysis, high-risk patients had a relatively higher immune status than low-risk patients. Moreover, the prediction module could predict patient responses to immunotherapy and chemotherapy. Finally, loss-of-function studies showed that TM4SF4 knockdown could substantially suppress the growth, migratory, and invasive abilities of LIHC cells. Targeting TM4SFs will contribute to effective immunotherapy strategies and improve the prognosis of liver cancer patients.
Collapse
Affiliation(s)
- Qiang Tang
- Department of Gastrointestinal Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Hubei Province, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shurui Wang
- School of Nursing, Peking Union Medical College, Beijing, China
| | - Huimin Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Junzhi Liu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xin Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Maojun Di
- Department of Gastrointestinal Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Hubei Province, China
| |
Collapse
|
4
|
Mourtada J, Thibaudeau C, Wasylyk B, Jung AC. The Multifaceted Role of Human Dickkopf-3 (DKK-3) in Development, Immune Modulation and Cancer. Cells 2023; 13:75. [PMID: 38201279 PMCID: PMC10778571 DOI: 10.3390/cells13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The human Dickkopf (DKK) family includes four main secreted proteins, DKK-1, DKK-2, DKK-3, and DKK-4, as well as the DKK-3 related protein soggy (Sgy-1 or DKKL1). These glycoproteins play crucial roles in various biological processes, and especially modulation of the Wnt signaling pathway. DKK-3 is distinct, with its multifaceted roles in development, stem cell differentiation and tissue homeostasis. Intriguingly, DKK-3 appears to have immunomodulatory functions and a complex role in cancer, acting as either a tumor suppressor or an oncogene, depending on the context. DKK-3 is a promising diagnostic and therapeutic target that can be modulated by epigenetic reactivation, gene therapy and DKK-3-blocking agents. However, further research is needed to optimize DKK-3-based therapies. In this review, we comprehensively describe the known functions of DKK-3 and highlight the importance of context in understanding and exploiting its roles in health and disease.
Collapse
Affiliation(s)
- Jana Mourtada
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France; (J.M.); (C.T.)
- Laboratoire STREINTH (Stress Response and Innovative Therapies), INSERM U1113 IRFAC, Université de Strasbourg, 67200 Strasbourg, France
| | - Chloé Thibaudeau
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France; (J.M.); (C.T.)
- Laboratoire STREINTH (Stress Response and Innovative Therapies), INSERM U1113 IRFAC, Université de Strasbourg, 67200 Strasbourg, France
| | - Bohdan Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Graffenstaden, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, 67404 Illkirch Graffenstaden, France
- Centre Nationale de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch Graffenstaden, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Alain C. Jung
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France; (J.M.); (C.T.)
- Laboratoire STREINTH (Stress Response and Innovative Therapies), INSERM U1113 IRFAC, Université de Strasbourg, 67200 Strasbourg, France
| |
Collapse
|
5
|
Hu X, Wang Y, Zhang X, Li C, Zhang X, Yang D, Liu Y, Li L. DNA methylation of HOX genes and its clinical implications in cancer. Exp Mol Pathol 2023; 134:104871. [PMID: 37696326 DOI: 10.1016/j.yexmp.2023.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Homeobox (HOX) genes encode highly conserved transcription factors that play vital roles in embryonic development. DNA methylation is a pivotal regulatory epigenetic signaling mark responsible for regulating gene expression. Abnormal DNA methylation is largely associated with the aberrant expression of HOX genes, which is implicated in a broad range of human diseases, including cancer. Numerous studies have clarified the mechanisms of DNA methylation in both physiological and pathological processes. In this review, we focus on how DNA methylation regulates HOX genes and briefly discuss drug development approaches targeting these mechanisms.
Collapse
Affiliation(s)
- Xin Hu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yong Wang
- Shandong Xinchuang Biotechnology Co., LTD, Jinan 250102, Shandong, China; Laboratory of Precision Medicine, Zhangqiu District People's Hospital of Jinan, Jinan 250200, Shandong, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Chensheng Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xikun Zhang
- Department of Minimally Invasive Interventional, The Third Affiliated Hospital of Shandong First Medical University, Jinan 250031, Shandong, China
| | - Dongxia Yang
- Shandong Xinchuang Biotechnology Co., LTD, Jinan 250102, Shandong, China
| | - Yuanyuan Liu
- Shandong Xinchuang Biotechnology Co., LTD, Jinan 250102, Shandong, China
| | - Lianlian Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
6
|
Halušková J, Holečková B, Schwarzbacherová V, Galdíková M, Sedláková S, Bučan J. Evaluation of GSTP1, GSTA4 and AChE Gene Methylation in Bovine Lymphocytes Cultured In Vitro with Miconazole Alone and in Combination with Mospilan 20SP. Genes (Basel) 2023; 14:1791. [PMID: 37761931 PMCID: PMC10531219 DOI: 10.3390/genes14091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
5-methylcytosine (5mC) is one of the most important epigenetic modifications. Its increased occurrence in regulatory sequences of genes, such as promoters and enhancers, is associated with the inhibition of their expression. Methylation patterns are not stable but are sensitive to factors such as the environment, diet, and age. In the present study, we investigated the effects of fungicide miconazole, both alone and in combination with the insecticide Mospilan 20SP, on the methylation status of bovine GSTP1, GSTA4, and AChE genes in bovine lymphocytes cultured in vitro. The methylation-specific PCR technique was used for the objectives of this study. We found that miconazole alone at concentrations of 1.25, 2.5, 5, 10, 25, and 50 µg/mL after 24 h exposure probably did not induce changes in methylation for all three genes analysed. The same results were found for the combination of pesticides at 24 h exposure and the following concentrations for each of them: 0.625, 1.25, 2.5, 5, and 12.5 µg/mL. Thus, we can conclude that the fungicide miconazole alone, as well as in combination with the insecticide Mospilan 20SP, was unlikely to cause changes to the methylation of bovine GSTP1, GSTA4, and AChE genes.
Collapse
Affiliation(s)
- Jana Halušková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia
| | | | | | | | | | | |
Collapse
|
7
|
Gallimore F, Fandy TE. Therapeutic Applications of Azanucleoside Analogs as DNA Demethylating Agents. EPIGENOMES 2023; 7:12. [PMID: 37489400 PMCID: PMC10366911 DOI: 10.3390/epigenomes7030012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/26/2023] Open
Abstract
Azanucleosides, such as 5-azacytidine and decitabine, are DNA demethylating agents used in the treatment of acute myeloid leukemia and myelodysplastic syndromes. Researchers continue to explore their utility in the treatment of other hematologic and solid tumors. Based on the capacity of the compounds to inhibit DNA methyltransferase enzymes and the important role of DNA methylation in health and disease, it is essential to understand the molecular changes that azanucleosides induce and how these changes may improve treatment outcomes in subsets of patients. This review summarizes the molecular and therapeutic actions of azanucleosides and discusses recent clinical trials of these compounds as single agents or in combination therapy for the treatment of cancer and related conditions.
Collapse
Affiliation(s)
- Fallon Gallimore
- Department of Pharmaceutical & Administrative Sciences, School of Pharmacy, University of Charleston, Charleston, WV 25304, USA
| | - Tamer E Fandy
- Department of Pharmaceutical & Administrative Sciences, School of Pharmacy, University of Charleston, Charleston, WV 25304, USA
| |
Collapse
|
8
|
Appiah CO, Singh M, May L, Bakshi I, Vaidyanathan A, Dent P, Ginder G, Grant S, Bear H, Landry J. The epigenetic regulation of cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Adv Cancer Res 2023; 158:337-385. [PMID: 36990536 DOI: 10.1016/bs.acr.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of cancer therapy is the elimination of disease from patients. Most directly, this occurs through therapy-induced cell death. Therapy-induced growth arrest can also be a desirable outcome, if prolonged. Unfortunately, therapy-induced growth arrest is rarely durable and the recovering cell population can contribute to cancer recurrence. Consequently, therapeutic strategies that eliminate residual cancer cells reduce opportunities for recurrence. Recovery can occur through diverse mechanisms including quiescence or diapause, exit from senescence, suppression of apoptosis, cytoprotective autophagy, and reductive divisions resulting from polyploidy. Epigenetic regulation of the genome represents a fundamental regulatory mechanism integral to cancer-specific biology, including the recovery from therapy. Epigenetic pathways are particularly attractive therapeutic targets because they are reversible, without changes in DNA, and are catalyzed by druggable enzymes. Previous use of epigenetic-targeting therapies in combination with cancer therapeutics has not been widely successful because of either unacceptable toxicity or limited efficacy. The use of epigenetic-targeting therapies after a significant interval following initial cancer therapy could potentially reduce the toxicity of combination strategies, and possibly exploit essential epigenetic states following therapy exposure. This review examines the feasibility of targeting epigenetic mechanisms using a sequential approach to eliminate residual therapy-arrested populations, that might possibly prevent recovery and disease recurrence.
Collapse
Affiliation(s)
- Christiana O Appiah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Manjulata Singh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ishita Bakshi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ashish Vaidyanathan
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Gordon Ginder
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven Grant
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Harry Bear
- Department of Surgery, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
9
|
Al Shareef Z, Ershaid MNA, Mudhafar R, Soliman SSM, Kypta RM. Dickkopf-3: An Update on a Potential Regulator of the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14235822. [PMID: 36497305 PMCID: PMC9738550 DOI: 10.3390/cancers14235822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Dickkopf-3 (Dkk-3) is a member of the Dickkopf family protein of secreted Wingless-related integration site (Wnt) antagonists that appears to modulate regulators of the host microenvironment. In contrast to the clear anti-tumorigenic effects of Dkk-3-based gene therapies, the role of endogenous Dkk-3 in cancer is context-dependent, with elevated expression associated with tumor promotion and suppression in different settings. The receptors and effectors that mediate the diverse effects of Dkk-3 have not been characterized in detail, contributing to an ongoing mystery of its mechanism of action. This review compares the various functions of Dkk-3 in the tumor microenvironment, where Dkk-3 has been found to be expressed by subpopulations of fibroblasts, endothelial, and immune cells, in addition to epithelial cells. We also discuss how the activation or inhibition of Dkk-3, depending on tumor type and context, might be used to treat different types of cancers.
Collapse
Affiliation(s)
- Zainab Al Shareef
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7250
| | - Mai Nidal Asad Ershaid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rula Mudhafar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Robert M. Kypta
- CIC BioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| |
Collapse
|
10
|
Lerario AM, Mohan DR, Hammer GD. Update on Biology and Genomics of Adrenocortical Carcinomas: Rationale for Emerging Therapies. Endocr Rev 2022; 43:1051-1073. [PMID: 35551369 PMCID: PMC9695111 DOI: 10.1210/endrev/bnac012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal glands are paired endocrine organs that produce steroid hormones and catecholamines required for life. Adrenocortical carcinoma (ACC) is a rare and often fatal cancer of the peripheral domain of the gland, the adrenal cortex. Recent research in adrenal development, homeostasis, and disease have refined our understanding of the cellular and molecular programs controlling cortical growth and renewal, uncovering crucial clues into how physiologic programs are hijacked in early and late stages of malignant neoplasia. Alongside these studies, genome-wide approaches to examine adrenocortical tumors have transformed our understanding of ACC biology, and revealed that ACC is composed of distinct molecular subtypes associated with favorable, intermediate, and dismal clinical outcomes. The homogeneous transcriptional and epigenetic programs prevailing in each ACC subtype suggest likely susceptibility to any of a plethora of existing and novel targeted agents, with the caveat that therapeutic response may ultimately be limited by cancer cell plasticity. Despite enormous biomedical research advances in the last decade, the only potentially curative therapy for ACC to date is primary surgical resection, and up to 75% of patients will develop metastatic disease refractory to standard-of-care adjuvant mitotane and cytotoxic chemotherapy. A comprehensive, integrated, and current bench-to-bedside understanding of our field's investigations into adrenocortical physiology and neoplasia is crucial to developing novel clinical tools and approaches to equip the one-in-a-million patient fighting this devastating disease.
Collapse
Affiliation(s)
- Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Dipika R Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
11
|
Barciszewska AM, Belter A, Gawrońska I, Giel-Pietraszuk M, Naskręt-Barciszewska MZ. Cross-reactivity between histone demethylase inhibitor valproic acid and DNA methylation in glioblastoma cell lines. Front Oncol 2022; 12:1033035. [PMID: 36465345 PMCID: PMC9709419 DOI: 10.3389/fonc.2022.1033035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 08/22/2023] Open
Abstract
Currently, valproic acid (VPA) is known as an inhibitor of histone deacetylase (epigenetic drug) and is used for the clinical treatment of epileptic events in the course of glioblastoma multiforme (GBM). Which improves the clinical outcome of those patients. We analyzed the level of 5-methylcytosine, a DNA epigenetic modulator, and 8-oxodeoxyguanosine, an cellular oxidative damage marker, affected with VPA administration, alone and in combination with temozolomide (TMZ), of glioma (T98G, U118, U138), other cancer (HeLa), and normal (HaCaT) cell lines. We observed the VPA dose-dependent changes in the total DNA methylation in neoplastic cell lines and the lack of such an effect in a normal cell line. VPA at high concentrations (250-500 μM) induced hypermethylation of DNA in a short time frame. However, the exposition of GBM cells to the combination of VPA and TMZ resulted in DNA hypomethylation. At the same time, we observed an increase of genomic 8-oxo-dG, which as a hydroxyl radical reaction product with guanosine residue in DNA suggests a red-ox imbalance in the cancer cells and radical damage of DNA. Our data show that VPA as an HDAC inhibitor does not induce changes only in histone acetylation, but also changes in the state of DNA modification. It shows cross-reactivity between chromatin remodeling due to histone acetylation and DNA methylation. Finally, total DNA cytosine methylation and guanosine oxidation changes in glioma cell lines under VPA treatment suggest a new epigenetic mechanism of that drug action.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Intraoperative Imaging Unit, Chair and Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
- Department of Neurosurgery and Neurotraumatology, Heliodor Swiecicki Clinical Hospital, Poznan, Poland
| | - Agnieszka Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Iwona Gawrońska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | |
Collapse
|
12
|
Chen HM, Nikolic A, Singhal D, Gallo M. Roles of Chromatin Remodelling and Molecular Heterogeneity in Therapy Resistance in Glioblastoma. Cancers (Basel) 2022; 14:4942. [PMID: 36230865 PMCID: PMC9563350 DOI: 10.3390/cancers14194942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells (CSCs) represent a therapy-resistant reservoir in glioblastoma (GBM). It is now becoming clear that epigenetic and chromatin remodelling programs link the stemlike behaviour of CSCs to their treatment resistance. New evidence indicates that the epigenome of GBM cells is shaped by intrinsic and extrinsic factors, including their genetic makeup, their interactions and communication with other neoplastic and non-neoplastic cells, including immune cells, and their metabolic niche. In this review, we explore how all these factors contribute to epigenomic heterogeneity in a tumour and the selection of therapy-resistant cells. Lastly, we discuss current and emerging experimental platforms aimed at precisely understanding the epigenetic mechanisms of therapy resistance that ultimately lead to tumour relapse. Given the growing arsenal of drugs that target epigenetic enzymes, our review addresses promising preclinical and clinical applications of epidrugs to treat GBM, and possible mechanisms of resistance that need to be overcome.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ana Nikolic
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Divya Singhal
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
13
|
Targeted demethylation at ZNF154 promotor upregulates ZNF154 expression and inhibits the proliferation and migration of Esophageal Squamous Carcinoma cells. Oncogene 2022; 41:4537-4546. [PMID: 36064578 PMCID: PMC9525237 DOI: 10.1038/s41388-022-02366-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/07/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
Zinc finger protein 154 (ZNF154) is hypermethylated at the promoter in many epithelial-derived solid tumors. However, its methylation status and function in esophageal squamous carcinoma (ESCC) are poorly understood. We found that the ZNF154 promoter is hypermethylated in ESCC and portends poor prognosis. In addition, ZNF154 functions as a tumor suppressor gene (TSG) in ESCC, and is downregulated by promoter hypermethylation. We established a targeted demethylation strategy based on CRISPR/dCas9 technology and found that the hypermethylation of ZNF154 promoter repressed ZNF154 induction, which in turn promoted the proliferation and migration of ESCC cells in vitro and in vivo. Finally, high-throughput CUT&Tag analysis, GEPIA software and qPCR were used to revealed the role of ZNF154 as a transcription factor to upregulate the expression of ESCC-associated tumor suppressor genes. Taken together, hypermethylation of the ZNF154 promoter plays an important role in the development of ESCC, and epigenetic editing is a promising tool for inhibiting ESCC cells with aberrant DNA methylation.
Collapse
|
14
|
Jin R, Cao X, Lu M, Gao Q, Ma T. The intersection molecule MDA5 in Cancer and COVID-19. Front Immunol 2022; 13:963051. [PMID: 36119095 PMCID: PMC9471860 DOI: 10.3389/fimmu.2022.963051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The connections between pattern recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs) constitutes the crucial signaling pathways in the innate immune system. Cytoplasmic nucleic acid sensor melanoma differentiation-associated gene 5 (MDA5) serves as an important pattern recognition receptor in the innate immune system by recognizing viral RNA. MDA5 also plays a role in identifying the cytoplasmic RNA from damaged, dead cancer cells or autoimmune diseases. MDA5’s recognition of RNA triggers innate immune responses, induces interferon (IFN) response and a series of subsequent signaling pathways to produce immunomodulatory factors and inflammatory cytokines. Here we review the latest progress of MDA5 functions in triggering anti-tumor immunity by sensing cytoplasmic dsRNA, and recognizing SARS-CoV-2 virus infection for antiviral response, in which the virus utilizes multiple ways to evade the host defense mechanism.
Collapse
Affiliation(s)
- Renjing Jin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoqing Cao
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Teng Ma,
| |
Collapse
|
15
|
Gu D, Dong K, Jiang A, Jiang S, Fu Z, Bao Y, Huang F, Yang C, Wang L. PBRM1 Deficiency Sensitizes Renal Cancer Cells to DNMT Inhibitor 5-Fluoro-2'-Deoxycytidine. Front Oncol 2022; 12:870229. [PMID: 35719970 PMCID: PMC9204009 DOI: 10.3389/fonc.2022.870229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
PBRM1 is a tumor suppressor frequently mutated in clear cell renal cell carcinoma. However, no effective targeted therapies exist for ccRCC with PBRM1 loss. To identify novel therapeutic approaches to targeting PBRM1-deficient renal cancers, we employed a synthetic lethality compound screening in isogenic PBRM1+/+ and PBRM1-/- 786-O renal tumor cells and found that a DNMT inhibitor 5-Fluoro-2’-deoxycytidine (Fdcyd) selectively inhibit PBRM1-deficient tumor growth. RCC cells lacking PBRM1 show enhanced DNA damage response, which leads to sensitivity to DNA toxic drugs. Fdcyd treatment not only induces DNA damage, but also re-activated a pro-apoptotic factor XAF1 and further promotes the genotoxic stress-induced PBRM1-deficient cell death. This study shows a novel synthetic lethality interaction between PBRM1 loss and Fdcyd treatment and indicates that DNMT inhibitor represents a novel strategy for treating ccRCC with PBRM1 loss-of-function mutations.
Collapse
Affiliation(s)
- Di Gu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Kai Dong
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shaoqin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Urology, Fujian Union Hospital, Fujian Medical University, Fuzhou, China
| | - Zhibin Fu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yewei Bao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fuzhao Huang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
16
|
Barrero MJ, Cejas P, Long HW, Ramirez de Molina A. Nutritional Epigenetics in Cancer. Adv Nutr 2022; 13:1748-1761. [PMID: 35421212 PMCID: PMC9526851 DOI: 10.1093/advances/nmac039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 01/28/2023] Open
Abstract
Alterations in the epigenome are well known to affect cancer development and progression. Epigenetics is highly influenced by the environment, including diet, which is a source of metabolic substrates that influence the synthesis of cofactors or substrates for chromatin and RNA modifying enzymes. In addition, plants are a common source of bioactives that can directly modify the activity of these enzymes. Here, we review and discuss the impact of diet on epigenetic mechanisms, including chromatin and RNA regulation, and its potential implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA,Translational Oncology Laboratory, Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
17
|
Yan Q, Sun YS, An R, Liu F, Fang Q, Wang Z, Xu T, Chen L, Du J. Application and progress of the detection technologies in hepatocellular carcinoma. Genes Dis 2022. [PMID: 37492708 PMCID: PMC10363596 DOI: 10.1016/j.gendis.2022.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a very high incidence and fatality rate, and in most cases, it is already at an advanced stage when diagnosed. Therefore, early prevention and detection of HCC are two of the most effective strategies. However, the methods recommended in the practice guidelines for the detection of HCC cannot guarantee high sensitivity and specificity except for the liver biopsy, which is known as the "gold standard". In this review, we divided the detection of HCC into pre-treatment diagnosis and post-treatment monitoring, and found that in addition to the traditional imaging detection and liver biopsy, alpha fetoprotein (AFP), lens culinaris-agglutinin-reactive fraction of AFP (AFP-L3), protein induced by vitamin K absence or antagonist-II (PIVKA-II) and other biomarkers are excellent biomarkers for HCC, especially when they are combined together. Most notably, the emerging liquid biopsy shows great promise in detecting HCC. In addition, lactic dehydrogenase (LDH), suppressor of cytokine signaling (SOCS) and other relevant biomarkers may become promising biomarkers for HCC post-treatment monitoring. Through the detailed introduction of the diagnostic technology of HCC, we can have a detailed understanding of its development process and then obtain some enlightenment from the diagnosis, to improve the diagnostic rate of HCC and reduce its mortality.
Collapse
|
18
|
Frazzi R, Cusenza VY, Pistoni M, Canovi L, Cascione L, Bertoni F, Merli F. KLF4, DAPK1 and SPG20 promoter methylation is not affected by DNMT1 silencing and hypomethylating drugs in lymphoma cells. Oncol Rep 2021; 47:10. [PMID: 34751409 PMCID: PMC8600396 DOI: 10.3892/or.2021.8221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/11/2021] [Indexed: 11/05/2022] Open
Abstract
Promoter methylation represents one of the major epigenetic mechanisms responsible for the regulation of gene expression. Hypomethylating drugs are currently approved for the treatment of myelodysplastic syndromes and acute myeloid leukemia, and some studies have recently been carried out on diffuse large B cell lymphoma (DLBCL). DLBCL is a type of Non-Hodgkin lymphoma. The aim of the present study was to assess the role of DNA methyltransferase (DNMT)1 in mediating the epigenetic regulation of some key targets previously emerged as hypermethylated in Non-Hodgkin lymphoma. Reverse transcription-quantitative PCR, genome-wide arrays and methylation-specific PCR were used to determine the level of methylation of specific targets. Gene silencing, gene expression and immunoblotting were used to investigate the role of DNMT1 and DNMT3a in lymphoma cells. The present study showed that lymphoma cell lines displayed a completely different methylation profile on selected targets compared with primary B lymphocytes and peripheral blood mononuclear cells. 5′-aza-cytidine (5AZA) and 5′-aza-2-deoxycitidine (decitabine) exerted their activity through, at least in part, mechanisms independent of DNMT1 downregulation. Despite a global hypomethylating effect of 5AZA and decitabine, DNMT1 was not found to be necessary to maintain the hypermethylation of Krüppel-like factor 4 (KLF4), death associated protein 1 (DAPK1) and spastic paraplegia 20 (SPG20). SPG20 was found to be a completely methylated target in all the tested cell lines, but not in peripheral blood mononuclear cells, suggesting its association with malignancy. The highest methylation was clustered upstream of the transcription starting site in a panel of 28 DLBCL cell lines and the results were unaffected by the silencing of DNMT1 expression. These data demonstrated the epigenetic regulation of SPG20 in lymphoid cells and identified a number of novel markers associated with lymphomas that deserve further investigation.
Collapse
Affiliation(s)
- Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Laura Canovi
- Immunohematology and Transfusional Medicine Division, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, University of Italian Switzerland, 6501 Bellinzona, Ticino, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, University of Italian Switzerland, 6501 Bellinzona, Ticino, Switzerland
| | - Francesco Merli
- Hematology Division, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| |
Collapse
|
19
|
Lambrou GI, Poulou M, Giannikou K, Themistocleous M, Zaravinos A, Braoudaki M. Differential and Common Signatures of miRNA Expression and Methylation in Childhood Central Nervous System Malignancies: An Experimental and Computational Approach. Cancers (Basel) 2021; 13:cancers13215491. [PMID: 34771655 PMCID: PMC8583574 DOI: 10.3390/cancers13215491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are considered of utmost significance for tumor ontogenesis and progression. Especially, it has been found that miRNA expression, as well as DNA methylation plays a significant role in central nervous system tumors during childhood. A total of 49 resected brain tumors from children were used for further analysis. DNA methylation was identified with methylation-specific MLPA and, in particular, for the tumor suppressor genes CASP8, RASSF1, MGMT, MSH6, GATA5, ATM1, TP53, and CADM1. miRNAs were identified with microarray screening, as well as selected samples, were tested for their mRNA expression levels. CASP8, RASSF1 were the most frequently methylated genes in all tumor samples. Simultaneous methylation of genes manifested significant results with respect to tumor staging, tumor type, and the differentiation of tumor and control samples. There was no significant dependence observed with the methylation of one gene promoter, rather with the simultaneous presence of all detected methylated genes' promoters. miRNA expression was found to be correlated to gene methylation. Epigenetic regulation appears to be of major importance in tumor progression and pathophysiology, making it an imperative field of study.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Myrto Poulou
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Marios Themistocleous
- Department of Neurosurgery, “Aghia Sofia” Children’s Hospital, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Group, European University Cyprus, Nicosia 1516, Cyprus
- Correspondence: (A.Z.); (M.B.)
| | - Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, UK
- Correspondence: (A.Z.); (M.B.)
| |
Collapse
|
20
|
Xiao S, Guo S, Han J, Sun Y, Wang M, Chen Y, Fang X, Yang F, Mu Y, Zhang L, Ding Y, Zhang N, Jiang H, Chen K, Zhao K, Luo C, Chen S. High-Throughput-Methyl-Reading (HTMR) assay: a solution based on nucleotide methyl-binding proteins enables large-scale screening for DNA/RNA methyltransferases and demethylases. Nucleic Acids Res 2021; 50:e9. [PMID: 34718755 PMCID: PMC8789064 DOI: 10.1093/nar/gkab989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/26/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic therapy has significant potential for cancer treatment. However, few small potent molecules have been identified against DNA or RNA modification regulatory proteins. Current approaches for activity detection of DNA/RNA methyltransferases and demethylases are time-consuming and labor-intensive, making it difficult to subject them to high-throughput screening. Here, we developed a fluorescence polarization-based ‘High-Throughput Methyl Reading’ (HTMR) assay to implement large-scale compound screening for DNA/RNA methyltransferases and demethylases-DNMTs, TETs, ALKBH5 and METTL3/METTL14. This assay is simple to perform in a mix-and-read manner by adding the methyl-binding proteins MBD1 or YTHDF1. The proteins can be used to distinguish FAM-labelled substrates or product oligonucleotides with different methylation statuses catalyzed by enzymes. Therefore, the extent of the enzymatic reactions can be coupled with the variation of FP binding signals. Furthermore, this assay can be effectively used to conduct a cofactor competition study. Based on the assay, we identified two natural products as candidate compounds for DNMT1 and ALKBH5. In summary, this study outlines a powerful homogeneous approach for high-throughput screening and evaluating enzymatic activity for DNA/RNA methyltransferases and demethylases that is cheap, easy, quick, and highly sensitive.
Collapse
Affiliation(s)
- Senhao Xiao
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Siqi Guo
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jie Han
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanli Sun
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Mingchen Wang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yantao Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xueyu Fang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Feng Yang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yajuan Mu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yiluan Ding
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Naixia Zhang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Kaixian Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Cheng Luo
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Shijie Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
21
|
Mehdipour P, Chen R, De Carvalho DD. The next generation of DNMT inhibitors. NATURE CANCER 2021; 2:1000-1001. [PMID: 35121882 DOI: 10.1038/s43018-021-00271-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Parinaz Mehdipour
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Raymond Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Cao Y, Zhan Y, Qiu S, Chen Z, Gong K, Ni S, Duan Y. Integrative analysis of genome-wide DNA methylation and single-nucleotide polymorphism identified ACSM5 as a suppressor of lumbar ligamentum flavum hypertrophy. Arthritis Res Ther 2021; 23:251. [PMID: 34593020 PMCID: PMC8482693 DOI: 10.1186/s13075-021-02625-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/12/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hypertrophy of ligamentum flavum (HLF) is a common lumbar degeneration disease (LDD) with typical symptoms of low back pain and limb numbness owing to an abnormal pressure on spinal nerves. Previous studies revealed HLF might be caused by fibrosis, inflammatory, and other bio-pathways. However, a global analysis of HLF is needed severely. METHODS A genome-wide DNA methylation and single-nucleotide polymorphism analysis were performed from five LDD patients with HLF and five LDD patients without HLF. Comprehensive integrated analysis was performed using bioinformatics analysis and the validated experiments including Sanger sequencing, methylation-specific PCR, qPCR and ROC analysis. Furthermore, the function of novel genes in ligamentum flavum cells (LFCs) was detected to explore the molecular mechanism in HLF through knock down experiment, overexpression experiment, CCK8 assay, apoptosis assay, and so on. RESULTS We identified 69 SNP genes and 735 661 differentially methylated sites that were enriched in extracellular matrix, inflammatory, and cell proliferation. A comprehensive analysis demonstrated key genes in regulating the development of HLF including ACSM5. Furthermore, the hypermethylation of ACSM5 that was mediated by DNMT1 led to downregulation of ACSM5 expression, promoted the proliferation and fibrosis, and inhibited the apoptosis of LFCs. CONCLUSION This study revealed that DNMT1/ACSM5 signaling could enhance HLF properties in vitro as a potential therapeutic strategy for HLF.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yenan Zhan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhong Chen
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Kaiqin Gong
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
23
|
Epigenetic-Based Therapy-A Prospective Chance for Medulloblastoma Patients' Recovery. Int J Mol Sci 2021; 22:ijms22094925. [PMID: 34066495 PMCID: PMC8124462 DOI: 10.3390/ijms22094925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Medulloblastoma (MB) is one of the most frequent and malignant brain tumors in children. The prognosis depends on the advancement of the disease and the patient's age. Current therapies, which include surgery, chemotherapy, and irradiation, despite being quite effective, cause significant side effects that influence the central nervous system's function and cause neurocognitive deficits. Therefore, they substantially lower the quality of life, which is especially severe in a developing organism. Thus, there is a need for new therapies that are less toxic and even more effective. Recently, knowledge about the epigenetic mechanisms that are responsible for medulloblastoma development has increased. Epigenetics is a phenomenon that influences gene expression but can be easily modified by external factors. The best known epigenetic mechanisms are histone modifications, DNA methylation, or noncoding RNAs actions. Epigenetic mechanisms comprehensively explain the complex phenomena of carcinogenesis. At the same time, they seem to be a potential key to treating medulloblastoma with fewer complications than past therapies. This review presents the currently known epigenetic mechanisms that are involved in medulloblastoma pathogenesis and the potential therapies that use epigenetic traits to cure medulloblastoma while maintaining a good quality of life and ensuring a higher median overall survival rate.
Collapse
|
24
|
Chen YC, Tsai YH, Wang CC, Liu SF, Chen TW, Fang WF, Lee CP, Hsu PY, Chao TY, Wu CC, Wei YF, Chang HC, Tsen CC, Chang YP, Lin MC. Epigenome-wide association study on asthma and chronic obstructive pulmonary disease overlap reveals aberrant DNA methylations related to clinical phenotypes. Sci Rep 2021; 11:5022. [PMID: 33658578 PMCID: PMC7930096 DOI: 10.1038/s41598-021-83185-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
We hypothesized that epigenetics is a link between smoking/allergen exposures and the development of Asthma and chronic obstructive pulmonary disease (ACO). A total of 75 of 228 COPD patients were identified as ACO, which was independently associated with increased exacerbations. Microarray analysis identified 404 differentially methylated loci (DML) in ACO patients, and 6575 DML in those with rapid lung function decline in a discovery cohort. In the validation cohort, ACO patients had hypermethylated PDE9A (+ 30,088)/ZNF323 (− 296), and hypomethylated SEPT8 (− 47) genes as compared with either pure COPD patients or healthy non-smokers. Hypermethylated TIGIT (− 173) gene and hypomethylated CYSLTR1 (+ 348)/CCDC88C (+ 125,722)/ADORA2B (+ 1339) were associated with severe airflow limitation, while hypomethylated IFRD1 (− 515) gene with frequent exacerbation in all the COPD patients. Hypermethylated ZNF323 (− 296) / MPV17L (+ 194) and hypomethylated PTPRN2 (+ 10,000) genes were associated with rapid lung function decline. In vitro cigarette smoke extract and ovalbumin concurrent exposure resulted in specific DNA methylation changes of the MPV17L / ZNF323 genes, while 5-aza-2′-deoxycytidine treatment reversed promoter hypermethylation-mediated MPV17L under-expression accompanied with reduced apoptosis and decreased generation of reactive oxygen species. Aberrant DNA methylations may constitute a determinant for ACO, and provide a biomarker of airflow limitation, exacerbation, and lung function decline.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan. .,Medical Department, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Ying-Huang Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Chin-Chou Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan.,Chang Gung University of Science and Technology, Chia-Yi, Taiwan
| | - Shih-Feng Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan.,Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Bioinformatics Center, Chang Gung University, Taoyuan, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Wen-Feng Fang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan.,Chang Gung University of Science and Technology, Chia-Yi, Taiwan
| | - Chiu-Ping Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Tung-Ying Chao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Yu-Feng Wei
- Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Huang-Chih Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Chia-Cheng Tsen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan. .,Medical Department, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | | |
Collapse
|
25
|
MacDonald KM, Benguerfi S, Harding SM. Alerting the immune system to DNA damage: micronuclei as mediators. Essays Biochem 2020; 64:753-764. [PMID: 32844183 PMCID: PMC7588664 DOI: 10.1042/ebc20200016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/01/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022]
Abstract
Healthy cells experience thousands of DNA lesions per day during normal cellular metabolism, and ionizing radiation and chemotherapeutic drugs rely on DNA damage to kill cancer cells. In response to such lesions, the DNA damage response (DDR) activates cell-cycle checkpoints, initiates DNA repair mechanisms, or promotes the clearance of irreparable cells. Work over the past decade has revealed broader influences of the DDR, involving inflammatory gene expression following unresolved DNA damage, and immune surveillance of damaged or mutated cells. Subcellular structures called micronuclei, containing broken fragments of DNA or whole chromosomes that have been isolated away from the rest of the genome, are now recognized as one mediator of DDR-associated immune recognition. Micronuclei can initiate pro-inflammatory signaling cascades, or massively degrade to invoke distinct forms of genomic instability. In this mini-review, we aim to provide an overview of the current evidence linking the DDR to activation of the immune response through micronuclei formation, identifying key areas of interest, open questions, and emerging implications.
Collapse
Affiliation(s)
- Kate M MacDonald
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Soraya Benguerfi
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Shane M Harding
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology and Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|