1
|
Wang T, Jiang J, Zhang X, Ke X, Qu Y. Ubiquitin-like modification dependent proteasomal degradation and disease therapy. Trends Mol Med 2024; 30:1061-1075. [PMID: 38851992 DOI: 10.1016/j.molmed.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024]
Abstract
Although it is believed that ubiquitin (Ub) modification is required for protein degradation in the proteasome system (UPS), several proteins are subject to Ub-independent proteasome degradation, and in many cases ubiquitin-like (UBL) modifications, including neddylation, FAT10ylation, SUMOylation, ISGylation, and urmylation, are essential instead. In this Review, we focus on UBL-dependent proteasome degradation (UBLPD), on proteasome regulators especially shuttle factors and receptors, as well as potential competition and coordination with UPS. We propose that there is a distinct UBL-proteasome system (UBLPS) that might be underestimated in protein degradation. Finally, we investigate the association of UBLPD with muscle wasting and neurodegenerative diseases in which the proteasome is abnormally activated and impaired, respectively, and suggest strategies to modulate UBLPD for disease therapy.
Collapse
Affiliation(s)
- Tiantian Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Jiang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Huang ZN, Lee SY, Chen JM, Huang ZT, Her LS. Oleuropein enhances proteasomal activity and reduces mutant huntingtin-induced cytotoxicity. Front Pharmacol 2024; 15:1459909. [PMID: 39351099 PMCID: PMC11440197 DOI: 10.3389/fphar.2024.1459909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Huntington's disease (HD) is a hereditary neurodegenerative disorder that primarily affects the striatum, a brain region responsible for movement control. The disease is characterized by the mutant huntingtin (mHtt) proteins with an extended polyQ stretch, which are prone to aggregation. These mHtt aggregates accumulate in neurons and are the primary cause of the neuropathology associated with HD. To date, no effective cure for HD has been developed. Methods The immortalized STHdh Q111/Q111 striatal cell line, the mHtt-transfected wild-type STHdh Q7/Q7 striatal cell line, and N2a cells were used as Huntington's disease cell models. Flow cytometry was used to assess cellular reactive oxygen species and transfection efficiency. The CCK-8 assay was used to measure cell viability, while fluorescence microscopy was used to quantify aggregates. Immunoblotting analyses were used to evaluate the effects on protein expression. Results Polyphenols are natural antioxidants that offer neuroprotection in neurological disorders. In this study, we provide evidence that oleuropein, the primary polyphenol in olive leaves and olive oil, enhances cell viability in HD cell models, including. STHdh Q7/Q7 STHdh Q7/Q7 striatal cells, N2a cells ectopically expressing the truncated mHtt, and STHdh Q111/Q111 striatal cells expressing the full-length mHtt. Oleuropein effectively reduced both soluble and aggregated forms of mHtt protein in these HD model cells. Notably, the reduction of mHtt aggregates associated with oleuropein was linked to increased proteasome activity rather than changes in autophagic flux. Oleuropein seems to modulate proteasome activity through an unidentified pathway, as it did not affect the 20S proteasome catalytic β subunits, the proteasome regulator PA28γ, or multiple MAPK pathways. Discussion We demonstrated that oleuropein enhances the degradation of mHtt by increasing proteasomal protease activities and alleviates mHtt-induced cytotoxicity. Hence, we propose that oleuropein and potentially other polyphenols hold promise as a candidate for alleviating Huntington's disease.
Collapse
Affiliation(s)
- Zih-Ning Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Sin-Yi Lee
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jie-Mao Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Zih-Ting Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Lu-Shiun Her
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Yu D, Cheng T, Liu T, Xu W, Liu D, Dai J, Cai S, Guan Y, Ye T, Cheng X. Safety of proteasome inhibitor drugs for the treatment of multiple myeloma post-marketing: a pharmacovigilance investigation based on the FDA adverse event reporting system. Expert Opin Drug Saf 2024:1-8. [PMID: 39157912 DOI: 10.1080/14740338.2024.2393275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The use of proteasome inhibitors (PIs), namely Bortezomib and Carfilzomib, revolutionized multiple myeloma (MM) treatment. Understanding their distinct adverse event (AE) profiles aids in tailored treatment plans. RESEARCH DESIGN AND METHODS We analyzed FDA Adverse Event Reporting System (FAERS) data (Q1 2012-Q4 2023) for Bortezomib and Carfilzomib, utilizing reporting odds ratio (ROR), proportional reporting ratio (PRR), and Bayesian confidence propagation neural network (BCPNN). RESULTS FAERS yielded 19,720 Bortezomib and 12,252 Carfilzomib AE reports. Males aged 45-65 exhibited higher AE susceptibility. Common AE systems included Infections, Nervous System Disorders, Blood Disorders, General Disorders, Cardiac Disorders, and Renal Disorders. New Bortezomib signals were sepsis and colitis. Carfilzomib exhibited elevated cardiac and renal toxicity but reduced peripheral neuropathy and thrombocytopenia. CONCLUSIONS FAERS analysis revealed new AE signals (sepsis, colitis) for Bortezomib and highlighted Carfilzomib's heightened cardiac and renal risks compared to Bortezomib. Balancing PIs' benefits and risks is crucial for clinical decision-making.
Collapse
Affiliation(s)
- Dongdong Yu
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei City, Anhui province, China
| | - Ting Cheng
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong province, China
| | - Tong Liu
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui province, China
| | - Wenjun Xu
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei City, Anhui province, China
| | - Dawei Liu
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei City, Anhui province, China
| | - Jinzhi Dai
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei City, Anhui province, China
| | - Shanshan Cai
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei City, Anhui province, China
| | - Yuxiang Guan
- School of Nursing, Anhui University of Chinese Medicine, Hefei City, Anhui province, China
| | - Ting Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei City, Anhui province, China
| | - Xiaoyu Cheng
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei City, Anhui province, China
| |
Collapse
|
4
|
Liu X, Delgado E. A novel role of PSMB9 in endothelial cells and atherosclerosis: beyond its canonical function in immunoproteasome. Acta Pharmacol Sin 2024; 45:1530-1532. [PMID: 38570600 PMCID: PMC11192834 DOI: 10.1038/s41401-024-01267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Affiliation(s)
- Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| | - Esteban Delgado
- Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
5
|
VerPlank JJ, Gawron JM, Silvestri NJ, Wrabetz L, Feltri ML. Knockout of PA200 improves proteasomal degradation and myelination in a proteotoxic neuropathy. Life Sci Alliance 2024; 7:e202302349. [PMID: 38320810 PMCID: PMC10847332 DOI: 10.26508/lsa.202302349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The cellular response to a decrease in protein degradation by 26S proteasomes in chronic diseases is poorly understood. Pharmacological inhibition of proteasomes increases the expression of proteasome subunits and Proteasome Activator 200 (PA200), an alternative proteasome activator. In the S63del mouse model of the peripheral neuropathy Charcot Marie Tooth 1B (CMT1B), proteasomal protein degradation is decreased and proteasome gene expression is increased. Here, we show an increase in PA200 and PA200-bound proteasomes in the peripheral nerves of S63del mice. To test genetically whether the upregulation of PA200 was compensatory, we generated S63del//PA200-/- mice. Unexpectedly, in the sciatic nerves of these mice, there was greater proteasomal protein degradation than in S63del, less polyubiquitinated proteins and markers of the unfolded protein response, and a greater amount of assembled, active 26S proteasomes. These changes were not seen in PA200-/- controls and were therefore specific to the neuropathy. Furthermore, in S63del//PA200-/- mice, myelin thickness and nerve conduction were restored to WT levels. Thus, the upregulation of PA200 is maladaptive in S63del mice and its genetic ablation prevented neuropathy.
Collapse
Affiliation(s)
- Jordan Js VerPlank
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Joseph M Gawron
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Nicholas J Silvestri
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lawrence Wrabetz
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Maria Laura Feltri
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- IRCCS Neurological Institute "Carlo Besta," Milano, Italy
- Department of Medical Biotechnology and Translational Medicine, Universita' degli Studi di Milano, Milano, Italy
| |
Collapse
|
6
|
Cai J, Tao Y, Xing L, Zhang J, Wang Z, Zhu Z, Zhang W. Studying Antifatigue Mechanism of Tyr-Pro-Leu-Pro in Exercise Mice Using Label-Free Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2178-2192. [PMID: 38259150 DOI: 10.1021/acs.jafc.3c07642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In our previous study, yeast-derived peptide Tyr-Pro-Leu-Pro (YPLP) was found to prolong treadmill time and relieve muscle fatigue in ICR mice. The present study aimed to further investigate the antifatigue mechanism of YPLP. Three doses of YPLP (10, 25, and 50 mg/kg·d) were given to exercise mice for 4 weeks. Results showed that YPLP reduced the oxidative response via the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and promoted energy metabolism through the AMP-activated protein kinase (AMPK) pathway. Label-free proteomics results showed that 81 differential abundance proteins (DAPs) were regulated by high-dose YPLP. These DAPs belonged to proteasome, mitochondrial, and muscle proteins. YPLP was mainly involved in proteasome, aminoacyl-tRNA biosynthesis, focal adhesion, and MAPK signal pathways to enhance muscle endurance. Furthermore, real-time quantitative PCR and Western blotting results proved that YPLP upregulated Psmd14 expression and downregulated p38 MAPK expression. Overall, this study revealed the mechanism behind YPLP to alleviate exercise fatigue.
Collapse
Affiliation(s)
- Jiaming Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ye Tao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lujuan Xing
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jian Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zixu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zihan Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
7
|
Xiong J, Pang X, Song X, Yang L, Pang C. The coherence between PSMC6 and α-ring in the 26S proteasome is associated with Alzheimer's disease. Front Mol Neurosci 2024; 16:1330853. [PMID: 38357597 PMCID: PMC10864545 DOI: 10.3389/fnmol.2023.1330853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous age-dependent neurodegenerative disorder. Its hallmarks involve abnormal proteostasis, which triggers proteotoxicity and induces neuronal dysfunction. The 26S proteasome is an ATP-dependent proteolytic nanomachine of the ubiquitin-proteasome system (UPS) and contributes to eliminating these abnormal proteins. This study focused on the relationship between proteasome and AD, the hub genes of proteasome, PSMC6, and 7 genes of α-ring, are selected as targets to study. The following three characteristics were observed: 1. The total number of proteasomes decreased with AD progression because the proteotoxicity damaged the expression of proteasome proteins, as evidenced by the downregulation of hub genes. 2. The existing proteasomes exhibit increased activity and efficiency to counterbalance the decline in total proteasome numbers, as evidenced by enhanced global coordination and reduced systemic disorder of proteasomal subunits as AD advances. 3. The synergy of PSMC6 and α-ring subunits is associated with AD. Synergistic downregulation of PSMC6 and α-ring subunits reflects a high probability of AD risk. Regarding the above discovery, the following hypothesis is proposed: The aggregation of pathogenic proteins intensifies with AD progression, then proteasome becomes more active and facilitates the UPS selectively targets the degradation of abnormal proteins to maintain CNS proteostasis. In this paper, bioinformatics and support vector machine learning methods are applied and combined with multivariate statistical analysis of microarray data. Additionally, the concept of entropy was used to detect the disorder of proteasome system, it was discovered that entropy is down-regulated continually with AD progression against system chaos caused by AD. Another conception of the matrix determinant was used to detect the global coordination of proteasome, it was discovered that the coordination is enhanced to maintain the efficiency of degradation. The features of entropy and determinant suggest that active proteasomes resist the attack caused by AD like defenders, on the one hand, to protect themselves (entropy reduces), and on the other hand, to fight the enemy (determinant reduces). It is noted that these are results from biocomputing and need to be supported by further biological experiments.
Collapse
Affiliation(s)
- Jing Xiong
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Xinping Pang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xianghu Song
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Lin Yang
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Chaoyang Pang
- College of Computer Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
8
|
Tang G, Huang S, Luo J, Wu Y, Zheng S, Tong R, Zhong L, Shi J. Advances in research on potential inhibitors of multiple myeloma. Eur J Med Chem 2023; 262:115875. [PMID: 37879169 DOI: 10.1016/j.ejmech.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Multiple myeloma (MM) is a common hematological malignancy. Although recent clinical applications of immunomodulatory drugs, proteasome inhibitors and CD38-targeting antibodies have significantly improved the outcome of MM patient with increased survival, the incidence of drug resistance and severe treatment-related complications is gradually on the rise. This review article summarizes the characteristics and clinical investigations of several MM drugs in clinical trials, including their structures, mechanisms of action, structure-activity relationships, and clinical study progress. Furthermore, the application potentials of the drugs that have not yet entered clinical trials are also reviewed. The review also outlines the future directions of MM drug development.
Collapse
Affiliation(s)
- Guoyuan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Huang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Ji Luo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Yingmiao Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Shuai Zheng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Rongsheng Tong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610044, China.
| | - Jianyou Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
9
|
Cammann C, Kulla J, Wiebusch L, Walz C, Zhao F, Lowinus T, Topfstedt E, Mishra N, Henklein P, Bommhardt U, Bossaller L, Hagemeier C, Schadendorf D, Schmidt B, Paschen A, Seifert U. Proteasome inhibition potentiates Kv1.3 potassium channel expression as therapeutic target in drug-sensitive and -resistant human melanoma cells. Biomed Pharmacother 2023; 168:115635. [PMID: 37816303 DOI: 10.1016/j.biopha.2023.115635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Primary and acquired therapy resistance is a major problem in patients with BRAF-mutant melanomas being treated with BRAF and MEK inhibitors (BRAFI, MEKi). Therefore, development of alternative therapy regimes is still required. In this regard, new drug combinations targeting different pathways to induce apoptosis could offer promising alternative approaches. Here, we investigated the combination of proteasome and Kv1.3 potassium channel inhibition on chemo-resistant, BRAF inhibitor-resistant as well as sensitive human melanoma cells. Our experiments demonstrated that all analyzed melanoma cell lines were sensitive to proteasome inhibitor treatment at concentrations that are not toxic to primary human fibroblasts. To further reduce proteasome inhibitor-associated side effects, and to foster apoptosis, potassium channels, which are other targets to induce pro-apoptotic effects in cancer cells, were blocked. In support, combined exposure of melanoma cells to proteasome and Kv1.3 channel inhibitor resulted in synergistic effects and significantly reduced cell viability. On the molecular level, enhanced apoptosis correlated with an increase of intracellular Kv1.3 channels and pro-apoptotic proteins such as Noxa and Bak and a reduction of anti-apoptotic proteins. Thus, use of combined therapeutic strategies triggering different apoptotic pathways may efficiently prevent the outgrowth of drug-resistant and -sensitive BRAF-mutant melanoma cells. In addition, this could be the basis for an alternative approach to treat other tumors expressing mutated BRAF such as non-small-cell lung cancer.
Collapse
Affiliation(s)
- Clemens Cammann
- Friedrich Loeffler - Institute of Medical Microbiology - Virology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Jonas Kulla
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lüder Wiebusch
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Christian Walz
- Clemens Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Alarich Weiss-Straße 4-8, 64287 Darmstadt, Germany
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler - Institute of Medical Microbiology - Virology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Neha Mishra
- Section of Rheumatology, Clinic and Policlinic of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Petra Henklein
- Institute of Molecular Biology and Biochemistry, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lukas Bossaller
- Section of Rheumatology, Clinic and Policlinic of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Christian Hagemeier
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Boris Schmidt
- Clemens Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Alarich Weiss-Straße 4-8, 64287 Darmstadt, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Ulrike Seifert
- Friedrich Loeffler - Institute of Medical Microbiology - Virology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| |
Collapse
|
10
|
Wan R, Wang L, Duan Y, Zhu M, Li W, Zhao M, Yuan H, Xu K, Li Z, Zhang X, Yu G. ADRB2 inhibition combined with antioxidant treatment alleviates lung fibrosis by attenuating TGFβ/SMAD signaling in lung fibroblasts. Cell Death Discov 2023; 9:407. [PMID: 37923730 PMCID: PMC10624856 DOI: 10.1038/s41420-023-01702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and fatal interstitial lung disease with a poor prognosis and limited therapeutic options, which is characterized by aberrant myofibroblast activation and pathological remodeling of the extracellular matrix, while the mechanism remains elusive. In the present investigation, we observed a reduction in ADRB2 expression within both IPF and bleomycin-induced fibrotic lung samples, as well as in fibroblasts treated with TGF-β1. ADRB2 inhibition blunted bleomycin-induced lung fibrosis. Blockage of the ADRB2 suppressed proliferation, migration, and invasion and attenuated TGF-β1-induced fibroblast activation. Conversely, the enhancement of ADRB2 expression or functionality proved capable of inducing fibroblast-to-myofibroblast differentiation. Subsequent mechanistic investigation revealed that inhibition of ADRB2 suppressed the activation of SMAD2/3 in lung fibroblasts and increased phos-SMAD2/3 proteasome degradation, and vice versa. Finally, ADRB2 inhibition combined with antioxidants showed increased efficacy in the therapy of bleomycin-induced lung fibrosis. In short, these data indicate that ADRB2 is involved in lung fibroblast differentiation, and targeting ADRB2 could emerge as a promising and innovative therapeutic approach for pulmonary fibrosis.
Collapse
Grants
- This work was supported by Ministry of Science and Technology, PR China, 2019YFE0119500, State Innovation Base for Pulmonary Fibrosis (111 Project), and Henan Project of Science and Technology, 212102310894, 222102310711, 232102310067, and 232102521025, Xinxiang Major Project 21ZD002.
- This work was supported by Henan Project of Science and Technology, 212102310894, 222102310711, 232102310067, and 232102521025, Xinxiang Major Project 21ZD002.
Collapse
Affiliation(s)
- Ruyan Wan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yudi Duan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Miaomiao Zhu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Wenwen Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mengxia Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hongmei Yuan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhongzheng Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiao Zhang
- Zhengzhou 101 Middle School, Zhengzhou, Henan, 450000, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
11
|
Liu ZY, Li YH, Zhang QK, Li BW, Xin L. Development and validation of a ubiquitin-proteasome system gene signature for prognostic prediction and immune microenvironment evaluation in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:13363-13382. [PMID: 37490101 DOI: 10.1007/s00432-023-05189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND The ubiquitin proteasome has a major role in the development of many tumors. However, the prognostic importance of ubiquitin proteasome-system genes (UPSGs) in hepatocellular carcinoma (HCC) is not fully defined. METHODS The TCGA and ICGC datasets were utilized to obtain transcriptional profiling data as well as clinicopathological information about HCC. The 3-UPSGs signature for the TCGA cohort was developed via univariate and LASSO Cox regression analyses. Differential expression of genes was demonstrated by qRT-PCR and immunohistochemistry (IHC). Biological pathways were studied using GSVA and GSEA. Six algorithms were used to compare immune infiltration between the two risk groups. Furthermore, drug sensitivity was measured using the "pRRophetic" R package. The predictive capacity of the 3-UPSGs signature for sensitivity to immunotherapy was also explored. Moreover, we performed a pan-cancer analysis of the 3-UPSGs signature. RESULTS A risk model containing 3 UPSGs (DCAF13, CDC20 and PSMB5) was developed. IHC and qRT-PCR results showed that signature genes were significantly overexpressed in HCC tissues. The high-risk group had a worse prognosis, with a higher clinicopathological grade, higher levels of tumor mutation burden (TMB), elevated levels of immune checkpoint (IC) expression, as well as increased sensitivity to immunotherapy. The two risk groups also differ in their sensitivity to chemotherapeutic drugs. Furthermore, the three UPSGs may play crucial roles in the progression of multiple types of cancers. CONCLUSION We created a 3-UPSGs signature to estimate the prognosis of HCC and to assist in individualized treatment.
Collapse
Affiliation(s)
- Zhi-Yang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Yi-He Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing-Kun Zhang
- Department of Otorhinolaryngology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo-Wen Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
12
|
Wang Y, Bao X, Wang W, Xu X, Liu X, Li Z, Yang J, Yuan T. Exploration of anti-stress mechanisms in high temperature exposed juvenile golden cuttlefish ( Sepia esculenta) based on transcriptome profiling. Front Physiol 2023; 14:1189375. [PMID: 37234426 PMCID: PMC10206265 DOI: 10.3389/fphys.2023.1189375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Sepia esculenta is a cephalopod widely distributed in the Western Pacific Ocean, and there has been growing research interest due to its high economic and nutritional value. The limited anti-stress capacity of larvae renders challenges for their adaptation to high ambient temperatures. Exposure to high temperatures produces intense stress responses, thereby affecting survival, metabolism, immunity, and other life activities. Notably, the molecular mechanisms by which larval cuttlefish cope with high temperatures are not well understood. As such, in the present study, transcriptome sequencing of S. esculenta larvae was performed and 1,927 differentially expressed genes (DEGs) were identified. DEGs were subjected to functional enrichment analyses using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The top 20 terms of biological processes in GO and 20 high-temperature stress-related pathways in KEGG functional enrichment analysis were identified. A protein-protein interaction network was constructed to investigate the interaction between temperature stress-related genes. A total of 30 key genes with a high degree of participation in KEGG signaling pathways or protein-protein interactions were identified and subsequently validated using quantitative RT-PCR. Through a comprehensive analysis of the protein-protein interaction network and KEGG signaling pathway, the functions of three hub genes (HSP90AA1, PSMD6, and PSMA5), which belong to the heat shock protein family and proteasome, were explored. The present results can facilitate further understanding of the mechanism of high temperature resistance in invertebrates and provide a reference for the S. esculenta industry in the context of global warming.
Collapse
Affiliation(s)
- Yongjie Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| | - Tingzhu Yuan
- School of Agriculture, Ludong University, Yantai, China
- Marine Economy Promotion Center of Changdao County Marine Ecological Civilization Comprehensive Experimental Zone, Yantai, China
| |
Collapse
|
13
|
Atta H, Alzahaby N, Hamdy NM, Emam SH, Sonousi A, Ziko L. New trends in synthetic drugs and natural products targeting 20S proteasomes in cancers. Bioorg Chem 2023; 133:106427. [PMID: 36841046 DOI: 10.1016/j.bioorg.2023.106427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/15/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Cancer is a global health challenge that remains to be a field of extensive research aiming to find new anticancer therapeutics. The 20S proteasome complex is one of the targets of anticancerdrugs, as it is correlated with several cancer types. Herein, we aim to discuss the 20S proteasome subunits and investigatethe currently studied proteasome inhibitors targeting the catalytically active proteasome subunits. In this review, we summarize the proteindegradation mechanism of the 20S proteasome complex and compareit with the 26S proteasome complex. Afterwards, the localization of the 20S proteasome is summarized as well as its use as a diagnosticandprognostic marker. The FDA-approved proteasome inhibitors (PIs) under clinical trials are summarized and their current limited use in solid tumors is also reviewed in addition to the expression of theβ5 subunit in differentcell lines. The review discusses in-silico analysis of the active subunit of the 20S proteasome complex. For development of new proteasome inhibitor drugs, the natural products inhibiting the 20S proteasome are summarized, as well as novel methodologies and challenges for the natural product discovery and current information about the biosynthetic gene clusters encoding them. We herein briefly summarize some resistancemechanismsto the proteasomeinhibitors. Additionally, we focus on the three main classes of proteasome inhibitors: 1] boronic acid, 2] beta-lactone and 3] epoxide inhibitor classes, as well as other PI classes, and their IC50 values and their structure-activity relationship (SAR). Lastly,we summarize several future prospects of developing new proteasome inhibitors towards the treatment of tumors, especially solid tumors.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt
| | - Nouran Alzahaby
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr Sonousi
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Biology Department, School of Sciences and Engineering, American University in Cairo, Egypt.
| |
Collapse
|
14
|
Zeng G, Yu Q, Zhuang R, Zhu H, Shao J, Xi J, Zhang J. Recent Advances and Future Perspectives of Noncompetitive Proteasome Inhibitors. Bioorg Chem 2023; 135:106507. [PMID: 37030106 DOI: 10.1016/j.bioorg.2023.106507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The proteasome regulates intracellular processes, maintains biological homeostasis, and has shown great significance in the study of various diseases, such as neurodegenerative diseases, immune-related diseases, and cancer, especially in hematologic malignancies such as multiple myeloma (MM) and mantle cell lymphoma (MCL). All clinically used proteasome inhibitors bind to the active site of the proteasome and thus exhibit a competitive mechanism. The development of resistance and intolerance during treatment drives the search for inhibitors with different mechanisms of action. In this review, we provide an overview of noncompetitive proteasome inhibitors, including their mechanisms of action, function, possible applications, and their advantages and disadvantages compared with competitive inhibitors.
Collapse
|
15
|
Hölzen L, Syré K, Mitschke J, Brummer T, Miething C, Reinheckel T. Degradome-focused RNA interference screens to identify proteases important for breast cancer cell growth. Front Oncol 2022; 12:960109. [PMID: 36313646 PMCID: PMC9598039 DOI: 10.3389/fonc.2022.960109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Proteases are known to promote or impair breast cancer progression and metastasis. However, while a small number of the 588 human and 672 murine protease genes have been extensively studied, others were neglected. For an unbiased functional analysis of all genome-encoded proteases, i.e., the degradome, in breast cancer cell growth, we applied an inducible RNA interference library for protease-focused genetic screens. Importantly, these functional screens were performed in two phenotypically different murine breast cancer cell lines, including one stem cell-like cell line that showed phenotypic plasticity under changed nutrient and oxygen availability. Our unbiased genetic screens identified 252 protease genes involved in breast cancer cell growth that were further restricted to 100 hits by a selection process. Many of those hits were supported by literature, but some proteases were novel in their functional link to breast cancer. Interestingly, we discovered that the environmental conditions influence the degree of breast cancer cell dependency on certain proteases. For example, breast cancer stem cell-like cells were less susceptible to depletion of several mitochondrial proteases in hypoxic conditions. From the 100 hits, nine proteases were functionally validated in murine breast cancer cell lines using individual knockdown constructs, highlighting the high reliability of our screens. Specifically, we focused on mitochondrial processing peptidase (MPP) subunits alpha (Pmpca) and beta (Pmpcb) and discovered that MPP depletion led to a disadvantage in cell growth, which was linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lena Hölzen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Kerstin Syré
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Mitschke
- Center for Translational Cell Research, Department of Internal Medicine I - Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Center for Biological Signaling Studies BIOSS, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), University Medical Center, University of Freiburg, Freiburg, Germany
| | - Cornelius Miething
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Center for Translational Cell Research, Department of Internal Medicine I - Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), University Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Center for Biological Signaling Studies BIOSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
PKR Protects the Major Catalytic Subunit of PKA Cpk1 from FgBlm10-Mediated Proteasome Degradation in Fusarium graminearum. Int J Mol Sci 2022; 23:ijms231810208. [PMID: 36142119 PMCID: PMC9499325 DOI: 10.3390/ijms231810208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
For optimal proteolytic function, the proteasome core (CP or 20S) must associate with activators. The cAMP-PKA pathway is reported to affect the activity of the proteasome in humans. However, the relationship between the proteasome and PKA is not well characterized. Our results showed that the major catalytic subunit Cpk1 was degraded without the protection of Pkr. Eleven (out of 67) pkr suppressors had FgBlm10 C-terminal truncation, one suppressor had an amino acid change mutation in the PRE6 ortholog (FGRRES_07282), and one in the PRE5 ortholog (FGRRES_05222). These mutations rescued the defects in growth and conidial morphology, Cpk1 stability, and PKA activities in the pkr mutant. The interaction of FgBlm10 with FgPre5 and FgPre6 were detected by co-immunoprecipitation, and the essential elements for their interaction were characterized, including the FgBlm10 C-terminus, amino acid D82 of FgPre6 and K62 of FgPre5. Additional FgBlm10-interacting proteins were identified in the wild type and pkr mutant, suggesting that PKA regulates the preference of FgBlm10-mediated proteasome assembly. In addition, PKA indirectly affected the phosphorylation of FgBlm10, and its localization in the nucleus. The truncation of the FgBlm10 C terminus also enhanced nuclear import and bleomycin resistance, suggesting its role in proteasome assembly at DNA damage sites. Collectively, our data demonstrated that regulation between PKA and proteasome degradation is critical for the vegetative growth of F. graminearum.
Collapse
|
17
|
Schlesser C, Meul T, Stathopoulos G, Meiners S. Metformin Induces Resistance of Cancer Cells to the Proteasome Inhibitor Bortezomib. Biomolecules 2022; 12:biom12060756. [PMID: 35740881 PMCID: PMC9221333 DOI: 10.3390/biom12060756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
The anti-diabetic drug metformin is currently tested for the treatment of hematological and solid cancers. Proteasome inhibitors, e.g., Bortezomib, are approved for the treatment of multiple myeloma and mantle cell lymphoma but are also studied for lung cancer therapy. We here analyzed the interaction of the two drugs in two cell lines, namely the mantle cell lymphoma Jeko-1 and the non-small-cell lung cancer (NSCLC) H1299 cells, using proliferation and survival assays, native-gel analysis for proteasome activity and assembly, and expression analysis of proteasome assembly factors. Our results demonstrate that metformin treatment induces resistance of cancer cells to the proteasome inhibitor Bortezomib by impairing the activity and assembly of the 26S proteasome complexes. These effects of metformin on proteasome inhibitor sensitivity in cancer cells are of potential relevance for patients that receive proteasome inhibitor therapy.
Collapse
Affiliation(s)
- Camille Schlesser
- Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Ludwig-Maximilians University, Max-Lebsche Platz 31, 81377 Munich, Germany; (C.S.); (T.M.); (G.S.)
| | - Thomas Meul
- Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Ludwig-Maximilians University, Max-Lebsche Platz 31, 81377 Munich, Germany; (C.S.); (T.M.); (G.S.)
| | - Georgios Stathopoulos
- Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Ludwig-Maximilians University, Max-Lebsche Platz 31, 81377 Munich, Germany; (C.S.); (T.M.); (G.S.)
- Member of the German Center for Lung Research (DZL), 35392 Gießen, Germany
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Ludwig-Maximilians University, Max-Lebsche Platz 31, 81377 Munich, Germany; (C.S.); (T.M.); (G.S.)
- Research Center Borstel/Leibniz Lung Center, Parkallee 1-40, 23845 Borstel, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Sülfeld, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, 24118 Kiel, Germany
- Correspondence: ; Tel.: +0049-4537-188-5846
| |
Collapse
|
18
|
Yu Z, Wei X, Liu L, Sun H, Fang T, Wang L, Li Y, Sui W, Wang K, He Y, Zhao Y, Huang W, An G, Meng F, Huang C, Yu T, Anderson KC, Cheng T, Qiu L, Hao M. Indirubin-3'-monoxime acts as proteasome inhibitor: Therapeutic application in multiple myeloma. EBioMedicine 2022; 78:103950. [PMID: 35344764 PMCID: PMC8958548 DOI: 10.1016/j.ebiom.2022.103950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is still an incurable malignancy of plasma cells. Proteasome inhibitors (PIs) work as the backbone agent and have greatly improved the outcome in majority of newly diagnosed patients with myeloma. However, drug resistance remains the major obstacle causing treatment failure in clinical practice. Here, we investigated the effects of Indirubin-3'-monoxime (I3MO), one of the derivatives of Indirubin, in the treatment of MM. METHODS MM patient primary samples and human cell lines were examined. I3MO effects on myeloma treatment and the underling molecular mechanisms were investigated via in vivo and in vitro study. FINDINGS Our results demonstrated the anti-MM activity of I3MO in both drug- sensitive and -resistance MM cells. I3MO sensitizes MM cells to bortezomib-induced apoptosis. Mechanistically, I3MO acts as a multifaceted regulator of cell death, which induced DNA damage, cell cycle arrest, and abrogates NF-κB activation. I3MO efficiently down-regulated USP7 expression, promoted NEK2 degradation, and suppressed NF-κB signaling in MM. Our study reported that I3MO directly bound with and caused the down-regulation of PA28γ (PSME3), and PA200 (PSME4), the proteasome activators. Knockdown of PSME3 or PSME4 caused the inhibition of proteasome capacity and the overload of paraprotein, which sensitizes MM cells to bortezomib-mediated growth arrest. Clinical data demonstrated that PSME3 and PSME4 are over-expressed in relapsed/refractory MM (RRMM) and associated with inferior outcome. INTERPRETATION Altogether, our study indicates that I3MO is agent triggering proteasome inhibition and represents a promising therapeutic strategy to improve patient outcome in MM. FUNDINGS A full list of funding can be found in the acknowledgements.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kefei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yaozhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Changjiang Huang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Tengteng Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| |
Collapse
|
19
|
Ishii K, Fusegi M, Mori T, Teshima K, Ninomiya N, Kohno K, Sato A, Ishida T, Miyakoshi Y, Yano T. A Redox-Silent Analogue of Tocotrienol May Break the Homeostasis of Proteasomes in Human Malignant Mesothelioma Cells by Inhibiting STAT3 and NRF1. Int J Mol Sci 2022; 23:ijms23052655. [PMID: 35269802 PMCID: PMC8910454 DOI: 10.3390/ijms23052655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
6-O-Carboxypropyl-alpha-tocotrienol (α-T3E) is a multi-target redox-silent analogue of tocotrienol that exhibits cytotoxicity against many cancer cells, including malignant mesothelioma (MM) cells. α-T3E has several molecular targets to effectively induce cytotoxicity against MM cells; however, the mechanisms underlying this cytotoxicity remain unclear. In the present study, we demonstrated that the α-T3E-dependent disruption of the homeostasis of proteasomes strongly induced endoplasmic reticulum (ER) stress, which resulted in effective cytotoxicity against MM cells. The α-T3E-dependent disruption of the homeostasis of proteasomes depended on decreases in proteasome subunits via the inactivation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor erythroid 2 related factor-1 (NRF1), which inhibited protease activity, such as chymotrypsin-like activity, in proteasomes. The α-T3E-dependent inhibition of this activity also induced severe ER stress and ultimately resulted in effective cytotoxicity against MM cells with chemoresistance. The present results indicate that α-T3E acts as an effective anti-mesothelioma agent by disrupting the homeostasis of proteasomes through the simultaneous inactivation of STAT3 and NRF1.
Collapse
Affiliation(s)
- Kyota Ishii
- Laboratory of Molecular Bromacology, Graduate School of Food and Nutritional Sciences, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.I.); (M.F.)
| | - Momoka Fusegi
- Laboratory of Molecular Bromacology, Graduate School of Food and Nutritional Sciences, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.I.); (M.F.)
| | - Tatsuki Mori
- Department of Food and Life Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (T.M.); (K.T.); (N.N.)
| | - Kosuke Teshima
- Department of Food and Life Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (T.M.); (K.T.); (N.N.)
| | - Nanako Ninomiya
- Department of Food and Life Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (T.M.); (K.T.); (N.N.)
| | - Kakeru Kohno
- Research Institute of Life Innovation, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.K.); (A.S.); (T.I.); (Y.M.)
| | - Ayami Sato
- Research Institute of Life Innovation, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.K.); (A.S.); (T.I.); (Y.M.)
| | - Tatsuya Ishida
- Research Institute of Life Innovation, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.K.); (A.S.); (T.I.); (Y.M.)
| | - Yuichi Miyakoshi
- Research Institute of Life Innovation, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.K.); (A.S.); (T.I.); (Y.M.)
| | - Tomohiro Yano
- Research Institute of Life Innovation, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.K.); (A.S.); (T.I.); (Y.M.)
- Correspondence: ; Tel./Fax: +81-276-82-9143
| |
Collapse
|
20
|
Liu J, Shao J, Zhang C, Qin G, Liu J, Li M, Wu P, Zhao X, Zhang Y. Immuno-oncological role of 20S proteasome alpha-subunit 3 in aggravating the progression of esophageal squamous cell carcinoma. Eur J Immunol 2021; 52:338-351. [PMID: 34755333 DOI: 10.1002/eji.202149441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 11/05/2022]
Abstract
PSMA3, a member of the proteasome subunit, has been shown to play a major player in protein degradation. Reportedly, PSMA3 functions as a negative regulator in various cancers including colon, pancreatic and gastric cancers. However, the contributions of PSMA3 to the progression of esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remain unclear. Therefore, in this study, we investigated whether PSMA3 is involved in ESCC progression and the potential underlying mechanism. The results revealed that PSMA3 was highly expressed in the ESCC tumor tissues and functioned as a negative indicator according to the data from The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) datasets and clinical patients' samples. Pathway enrichment analysis showed that PSMA3 was closely correlated with ESCC cancer stemness and the inflammatory response; however, this correlation was absent after knockdown of PSMA3 in vitro. We further demonstrated that PSMA3 suppressed CD8+ T-cells infiltration depending on the C-C motif chemokine ligand 3 (CCL3)/C-C motif chemokine receptor 5 (CCR5) axis. Collectively, these results demonstrate the role of PSMA3 in ESCC cancer stemness and the negative regulation of CD8 T-cells infiltration mediated by PSMA3. The results of this study may provide a potential target for the immuno-oncology effect of PSMA3 in ESCC therapy.
Collapse
Affiliation(s)
- Jinyan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingwen Shao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jiayin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Miaomiao Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Peng Wu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xuan Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China.,Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, P. R. China
| |
Collapse
|
21
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
22
|
Kammerl IE, Hardy S, Flexeder C, Urmann A, Peierl J, Wang Y, Vosyka O, Frankenberger M, Milger K, Behr J, Koch A, Merl-Pham J, Hauck SM, Pilette C, Schulz H, Meiners S. Activation of immune cell proteasomes in peripheral blood of smokers and COPD patients - implications for therapy. Eur Respir J 2021; 59:13993003.01798-2021. [PMID: 34561290 PMCID: PMC8891681 DOI: 10.1183/13993003.01798-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/19/2021] [Indexed: 11/05/2022]
Abstract
Immune cells contain a specialised type of proteasome, i.e. the immunoproteasome, which is required for intracellular protein degradation. Immunoproteasomes are key regulators of immune cell differentiation, inflammatory activation and autoimmunity. Immunoproteasome function in peripheral immune cells might be altered by smoking and in COPD thereby affecting immune cell responses.We here analysed the expression and activity of proteasome complexes in peripheral blood mononuclear cells (PBMC) isolated from healthy male young smokers as well as from patients with severe COPD and compared them to matching controls. Proteasome expression was upregulated in COPD patients as assessed by RT-qPCR and mass spectrometry-based proteomics analysis. Proteasome activity was quantified using activity-based probes and native gel analysis. We observed distinct activation of immunoproteasomes in the peripheral blood cells of young male smokers and severely ill COPD patients. Native gel analysis and linear regression modeling confirmed robust activation and elevated assembly of 20S proteasomes, which correlated significantly with reduced lung function parameters in COPD patients. The immunoproteasome was distinctly activated in COPD patients upon inflammatory cytokine stimulation of PBMCs in vitro Inhibition of the immunoproteasome reduced proinflammatory cytokine expression in COPD-derived blood immune cells.Given the crucial role of chronic inflammatory signalling and the emerging involvement of autoimmune responses in COPD, therapeutic targeting of the immunoproteasome might represent a novel therapeutic concept for COPD.
Collapse
Affiliation(s)
- Ilona E Kammerl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sophie Hardy
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Cliniques universitaires Saint-Luc, department of pulmonology, and Institute of Experimental and Clinical Research (IREC), Pole of pulmonology, ENT and dermatology, Université catholique de Louvain, Brussels, Belgium
| | - Claudia Flexeder
- Institute of Epidemiology, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Andrea Urmann
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Julia Peierl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yuqin Wang
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Vosyka
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marion Frankenberger
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Katrin Milger
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Medicine V, University Hospital, LMU, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jürgen Behr
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Medicine V, University Hospital, LMU, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andrea Koch
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Dept. of Pneumology, Teaching Hospital Pyhrn-Eisenwurzen Klinikum Steyr, Austria
| | - Juliane Merl-Pham
- Research Unit Protein Science, Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Charles Pilette
- Cliniques universitaires Saint-Luc, department of pulmonology, and Institute of Experimental and Clinical Research (IREC), Pole of pulmonology, ENT and dermatology, Université catholique de Louvain, Brussels, Belgium
| | - Holger Schulz
- Institute of Epidemiology, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
23
|
Niclou SP, Golebiewska A. Turning strength into weakness: protein degradation and autophagy as therapeutic targets in glioblastoma? Neuro Oncol 2021; 23:1041-1043. [PMID: 33864093 DOI: 10.1093/neuonc/noab099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
24
|
Mitochondrial Regulation of the 26S Proteasome. Cell Rep 2021; 32:108059. [PMID: 32846138 DOI: 10.1016/j.celrep.2020.108059] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
The proteasome is the main proteolytic system for targeted protein degradation in the cell and is fine-tuned according to cellular needs. Here, we demonstrate that mitochondrial dysfunction and concomitant metabolic reprogramming of the tricarboxylic acid (TCA) cycle reduce the assembly and activity of the 26S proteasome. Both mitochondrial mutations in respiratory complex I and treatment with the anti-diabetic drug metformin impair 26S proteasome activity. Defective 26S assembly is reversible and can be overcome by supplementation of aspartate or pyruvate. This metabolic regulation of 26S activity involves specific regulation of proteasome assembly factors via the mTORC1 pathway. Of note, reducing 26S activity by metformin confers increased resistance toward the proteasome inhibitor bortezomib, which is reversible upon pyruvate supplementation. Our study uncovers unexpected consequences of defective mitochondrial metabolism for proteasomal protein degradation in the cell, which has important pathophysiological and therapeutic implications.
Collapse
|
25
|
Yazgili AS, Meul T, Welk V, Semren N, Kammerl IE, Meiners S. In-gel proteasome assay to determine the activity, amount, and composition of proteasome complexes from mammalian cells or tissues. STAR Protoc 2021; 2:100526. [PMID: 34027484 PMCID: PMC8121766 DOI: 10.1016/j.xpro.2021.100526] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This protocol describes an easy and reliable in-gel proteasome assay to quantify the activity and composition of different proteasome complexes in cells and tissues. The assay works well with limited amounts of total cell protein lysates. Although this assay is optimized specifically for the proteasome chymotrypsin-like activity, it can be expanded to other proteasome activities as well. Using antibodies that detect distinct proteasome subunits or regulators, we can determine the composition and relative quantity of active proteasome complexes. For complete details on the use and execution of this protocol, please refer to Meul et al. (2020). Maintain the activity of proteasome complexes by nondenaturing conditions Quantify the specific activities of each proteasome complex Determine the subunits and the bound regulators of proteasome complexes Analyze the relative distribution of proteasome complexes upon treatments
Collapse
Affiliation(s)
- Ayse Seda Yazgili
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Max-Lebsche Platz 31, 81377 Munich, Germany
| | - Thomas Meul
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Max-Lebsche Platz 31, 81377 Munich, Germany
| | - Vanessa Welk
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Max-Lebsche Platz 31, 81377 Munich, Germany
| | - Nora Semren
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Max-Lebsche Platz 31, 81377 Munich, Germany
| | - Ilona E Kammerl
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Max-Lebsche Platz 31, 81377 Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Max-Lebsche Platz 31, 81377 Munich, Germany
| |
Collapse
|
26
|
Cao Y, Lu X, Dai Y, Li Y, Liu F, Zhou W, Li J, Zheng B. Proteomic analysis of body wall and coelomic fluid in Sipunculus nudus. FISH & SHELLFISH IMMUNOLOGY 2021; 111:16-24. [PMID: 33460719 DOI: 10.1016/j.fsi.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
In order to make clear the protein compositions of Sipunculus nudus and investigate its immune-related proteins, proteomic analysis was performed on body wall and coelomic fluid of Sipunculus nudus. A total of 1659 proteins were identified, and 539 proteins were differentially expressed in the coelomic fluid compared to those in the body wall, of which 415 proteins were up-regulated while 124 proteins were down-regulated. Gene Ontology (GO) analysis showed that the GO terms involved in the two parts of Sipunculus nudus were similar, with metabolic processes, catalytic activity and cell occupying the top categories of biological process, molecular function and cellular component, respectively. KEGG pathway analysis showed that 49 pathways in body wall and 48 in coelomic fluid were mapped respectively, and these pathways were mainly related to cellular processes, environmental information processing, genetic information processing and metabolism. The COG analysis showed that 757 proteins from body wall and 889 from coelomic fluid were classified into 26 COG categories, respectively. Pfam annotation revealed the mainly immune-related proteins contained in Sipunculus nudus, such as insulin-like growth factor binding protein, catalase, basement membrane proteoglycan, titin. Our research provides the first proteomic information of Sipunculus nudus, which contributes to the study of functional proteins in Sipunculus nudus and is of great significance for the application of Sipunculus nudus in functional foods and medicines.
Collapse
Affiliation(s)
- Yupo Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China; Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China
| | - Xuli Lu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, 524001, Guangdong, China
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, 524001, Guangdong, China
| | - Yahui Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, 524001, Guangdong, China
| | - Fei Liu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, 524001, Guangdong, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, 524001, Guangdong, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, 524001, Guangdong, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
27
|
Antitumor Effect of Inula viscosa Extracts on DMBA-Induced Skin Carcinoma Are Mediated by Proteasome Inhibition. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6687589. [PMID: 33855081 PMCID: PMC8019636 DOI: 10.1155/2021/6687589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 12/29/2022]
Abstract
The aim of this work is to evaluate the antitumor effect mediated by the proteasome inhibitors of Inula viscosa extracts on skin carcinogenesis. Female Swiss albino mice were divided into five groups depending on the combination of skin cancer-inducing 7,12-dimethylbenz(a)anthracene (DMBA) and extract of Inula viscosa treatments. Histology of the affected skin and measurement of proteasome activity were performed to demonstrate the effect of Inula viscosa on mice. The identification of the molecules responsible for this inhibitory activity was carried out through the docking studies. The results showed that Inula viscosa extracts inhibit the development of papilloma in mice. Therefore, the best chemopreventive action of Inula viscosa was observed on mice in which extract treatment was performed before and after the induction of skin carcinogenesis. It was revealed that the ingestion of extracts Inula viscosa delays the formation of skin papillomas in animals and simultaneously decreases the size and number of papillomas, which is also reflected on the skin histology of the mice treated. Structure-activity relationship information obtained from component of Inula viscosa particularly tomentosin, inuviscolide, and isocosticacid demonstrated that distinct bonding modes in β 1, β 2, and β 5 subunits determine its selectivity and potent inhibition for β 5 subunit.
Collapse
|