1
|
Lei R, Yang C, Zhu T, Zhu X, Zhu Z, Cui H, Pei H, Li J, Mao Y, Lan C. Multifunctional cyclic biomimetic peptides: Self-assembling nanotubes for effective treatment of sepsis. Int J Biol Macromol 2024; 288:138522. [PMID: 39672431 DOI: 10.1016/j.ijbiomac.2024.138522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Antibiotic abuse has led to an increasingly serious risk of antimicrobial resistance, developing alternative antimicrobials to combat this alarming issue is urgently needed. Rhesus theta defensin-1 (RTD-1) is a theta-defensin contributing to broad-spectrum bactericidal activity via the mechanisms of membrane perturbation. Intriguingly, human defensin-6 (HD6), an enteric defensin secreted by Paneth cells without direct bactericidal effect, could self-assembled into fibrous networks to trap enteric pathogens for assistance of innate immunity. The direct bactericidal action of RTD-1 and the bacterial trapping of HD6 inspire a promising antimicrobial paradigm for unique antibacterial strategies. In this study, we utilized the principle of alternating arrangement of D- and L-amino acids in cyclic peptides, which endows them with the potential to self-assemble into nanotubes, mimic the antimicrobial processes of RTD-1 and HD6. We designed and synthesized five cyclic biomimetic peptides (CBPs), among these biomimetics, CBP-4, which possessed a nanotube-like structure, demonstrated the ability to directly and rapidly disrupt the cell membranes of Gram-positive S. aureus and MRSA, while also targeting the surfaces of Gram-negative E. coil using its nanofibrous network to capture bacteria, preventing invasion and migration, and indirectly killing the bacteria. Moreover, CBP-4 eliminated pathogens, inhibited excessive inflammatory responses caused by infections, and maintained immune system homeostasis in septic mice. By fully emulating the antimicrobial mechanisms of both RTD-1 and HD6, CBP-4 showed promising potential for anti-infectious therapies.
Collapse
Affiliation(s)
- Ruyi Lei
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Chujun Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xingqiang Zhu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhiqiang Zhu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Cui
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui Pei
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiye Li
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yujing Mao
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chao Lan
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Garg VK, Joshi H, Sharma AK, Yadav K, Yadav V. Host defense peptides at the crossroad of endothelial cell physiology: Insight into mechanistic and pharmacological implications. Peptides 2024; 182:171320. [PMID: 39547414 DOI: 10.1016/j.peptides.2024.171320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Antimicrobial peptides (AMPs), particularly host defense peptides (HDPs), have gained recognition for their role in host defense mechanisms, but they have also shown potential as a promising anticancer, antiviral, antiparasitic, antifungal and immunomodulatory agent. Research studies in recent years have shown HDPs play a crucial role in endothelial cell function and biology. The function of endothelial cells is impacted by HDPs' complex interplay between cytoprotective and cytotoxic actions as they are known to modulate barrier integrity, inflammatory response and angiogenesis. This biphasic response varies and depends on the peptide structure, its concentration, and the microenvironment. These effects are mediated through key signaling pathways, including MAPK, NF-κB, and PI3K/Akt, which controls responses such as cell proliferation, apoptosis, and migration. In the present review, we have discussed the significance of the intriguing relationship between HDPs and endothelial cell physiology which suggests it potential as a therapeutic agents for the treating wounds, cardiovascular diseases, and inflammation-related endothelial damage.
Collapse
Affiliation(s)
- Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Allied Health Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94107, USA
| | - Amarish Kumar Sharma
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Kiran Yadav
- Faculty of Pharmaceutical Sciences, The ICFAI University, Himachal Pradesh, India
| | - Vikas Yadav
- Department of Clinical Sciences, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö SE-20213, Sweden.
| |
Collapse
|
3
|
Cuellar-Gaviria TZ, Rincon-Benavides MA, Halipci Topsakal HN, Salazar-Puerta AI, Jaramillo-Garrido S, Kordowski M, Vasquez-Martinez CA, Nguyen KT, Rima XY, Rana PSJB, Combita-Heredia O, Deng B, Dathathreya K, McComb DW, Reategui E, Wozniak D, Higuita-Castro N, Gallego-Perez D. Tissue nano-transfection of antimicrobial genes drives bacterial biofilm killing in wounds and is potentially mediated by extracellular vesicles. J Control Release 2024; 376:1300-1315. [PMID: 39491627 DOI: 10.1016/j.jconrel.2024.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/06/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The emergence of bacteria that are resistant to antibiotics is on track to become a major global health crisis. Therefore, there is an urgent need for new treatment options. Here, we studied the implementation of tissue-nanotransfection (TNT) to treat Staphylococcus aureus-infected wounds by delivering gene cargos that boost the levels of naturally produced antimicrobial peptides. The Cathelicidin Antimicrobial Peptide gene (CAMP), which produces the antimicrobial peptide LL-37, was used as model gene cargo. In vitro evaluation showed successful transfection and an increase in the transcription and translation of CAMP-coding plasmid in mouse primary epithelial cells. Moreover, we found that the extracellular vesicles (EVs) derived from the transfected cells (in vitro and in vivo) carried significantly higher concentrations of CAMP transcripts and LL-37 peptide compared to control EVs, possibly mediating the trafficking of the antimicrobial contents to other neighboring cells. The TNT platform was then used in vivo on an excisional wound model in mice to nanotransfect the CAMP-coding plasmid on the edge of infected wounds. After 4 days of daily treatment, we observed a significant decrease in the bacterial load in the CAMP-treated group compared to the sham group. Moreover, histological analysis and bacterial load quantification also revealed that TNT of CAMP on S. aureus-infected wounds was effective in treating biofilm progression by reducing the bacterial load. Lastly, we observed a significant increase in macrophage recruitment to the infected tissue, a robust increase in vascularization, as well as and an increased expression of IL10 and Fli1. Our results demonstrate that TNT-based delivery of gene cargos coding for antimicrobial compounds to the wound is a promising approach for combating biofilm infections in wounds.
Collapse
Affiliation(s)
- Tatiana Z Cuellar-Gaviria
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Gene Therapy Institute, The Ohio State University, Columbus, OH 43210, USA; Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Maria Angelica Rincon-Benavides
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hatice Nur Halipci Topsakal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Istanbul Atlas University, Istanbul 34408, Turkiye
| | | | | | - Mia Kordowski
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Carlos A Vasquez-Martinez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; CONACYT - Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca 68020, Mexico
| | - Kim Truc Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Xilal Y Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Pranav S J B Rana
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | | | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH 43210, USA
| | - Kavya Dathathreya
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH 43210, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Eduardo Reategui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Wozniak
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Gene Therapy Institute, The Ohio State University, Columbus, OH 43210, USA; Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA; Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Gene Therapy Institute, The Ohio State University, Columbus, OH 43210, USA; Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA; Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
de Oliveira KBS, Leite ML, Melo NTM, Lima LF, Barbosa TCQ, Carmo NL, Melo DAB, Paes HC, Franco OL. Antimicrobial Peptide Delivery Systems as Promising Tools Against Resistant Bacterial Infections. Antibiotics (Basel) 2024; 13:1042. [PMID: 39596736 PMCID: PMC11591436 DOI: 10.3390/antibiotics13111042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The extensive use of antibiotics during recent years has led to antimicrobial resistance development, a significant threat to global public health. It is estimated that around 1.27 million people died worldwide in 2019 due to infectious diseases caused by antibiotic-resistant microorganisms, according to the WHO. It is estimated that 700,000 people die each year worldwide, which is expected to rise to 10 million by 2050. Therefore, new and efficient antimicrobials against resistant pathogenic bacteria are urgently needed. Antimicrobial peptides (AMPs) present a broad spectrum of antibacterial effects and are considered potential tools for developing novel therapies to combat resistant infections. However, their clinical application is currently limited due to instability, low selectivity, toxicity, and limited bioavailability, resulting in a narrow therapeutic window. Here we describe an overview of the clinical application of AMPs against resistant bacterial infections through nanoformulation. It evaluates metal, polymeric, and lipid AMP delivery systems as promising for the treatment of resistant bacterial infections, offering a potential solution to the aforementioned limitations.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Campus Darcy Ribeiro, Bloco K, Universidade de Brasília, Federal District, Brasilia 70790-900, Brazil;
| | - Nadielle Tamires Moreira Melo
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Letícia Ferreira Lima
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Talita Cristina Queiroz Barbosa
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Nathalia Lira Carmo
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Douglas Afonso Bittencourt Melo
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Hugo Costa Paes
- Grupo de Engenharia de Biocatalisadores, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília, Federal District, Brasilia 70790-900, Brazil;
- Divisão de Clínica Médica, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília, Federal District, Brasilia 70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
- Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Universidade de Brasília, Brasilia 70790-900, Brazil
| |
Collapse
|
5
|
Rezende SB, Chan LY, Oshiro KGN, Buccini DF, Leal APF, Ribeiro CF, Souza CM, Brandão ALO, Gonçalves RM, Cândido ES, Macedo MLR, Craik DJ, Franco OL, Cardoso MH. Peptide PaDBS1R6 has potent antibacterial activity on clinical bacterial isolates and integrates an immunomodulatory peptide fragment within its sequence. Biochim Biophys Acta Gen Subj 2024; 1868:130693. [PMID: 39147109 DOI: 10.1016/j.bbagen.2024.130693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges. MAJOR CONCLUSIONS Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L-1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties. GENERAL SIGNIFICANCE This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.
Collapse
Affiliation(s)
- Samilla B Rezende
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil
| | - Danieli F Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Ana Paula Ferreira Leal
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Camila F Ribeiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Carolina M Souza
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Amanda L O Brandão
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Regina M Gonçalves
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Elizabete S Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070900, Mato Grosso do Sul, Brazil
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Marlon H Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil.
| |
Collapse
|
6
|
Halawa M, Newman PM, Aderibigbe T, Carabetta VJ. Conjugated therapeutic proteins as a treatment for bacteria which trigger cancer development. iScience 2024; 27:111029. [PMID: 39635133 PMCID: PMC11615139 DOI: 10.1016/j.isci.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
In recent years, an increasing amount of research has focused on the intricate and complex correlation between bacterial infections and the development of cancer. Some studies even identified specific bacterial species as potential culprits in the initiation of carcinogenesis, which generated a great deal of interest in the creation of innovative therapeutic strategies aimed at addressing both the infection and the subsequent risk of cancer. Among these strategies, there has been a recent emergence of the use of conjugated therapeutic proteins, which represent a highly promising avenue in the field of cancer therapeutics. These proteins offer a dual-targeting approach that seeks to effectively combat both the bacterial infection and the resulting malignancies that may arise because of such infections. This review delves into the landscape of conjugated therapeutic proteins that have been intricately designed with the purpose of specifically targeting bacteria that have been implicated in the induction of cancer.
Collapse
Affiliation(s)
- Mohamed Halawa
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Precious M. Newman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Tope Aderibigbe
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
7
|
Mitra S, Chen MT, Stedman F, Hernandez J, Kumble G, Kang X, Zhang C, Tang G, Daugherty I, Liu W, Ocloo J, Klucznik KR, Li AA, Heinrich F, Deslouches B, Tristram-Nagle S. How Unnatural Amino Acids in Antimicrobial Peptides Change Interactions with Lipid Model Membranes. J Phys Chem B 2024; 128:9772-9784. [PMID: 39328031 PMCID: PMC11472314 DOI: 10.1021/acs.jpcb.4c04152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
This study investigates the potential of antimicrobial peptides (AMPs) as alternatives to combat antibiotic resistance, with a focus on two AMPs containing unnatural amino acids (UAAs), E2-53R (16 AAs) and LE-54R (14 AAs). In both peptides, valine is replaced by norvaline (Nva), and tryptophan is replaced by 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic). Microbiological studies reveal their potent activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria without any toxicity to eukaryotic cells at test concentrations up to 32 μM. Circular dichroism (CD) spectroscopy indicates that these peptides maintain α-helical structures when interacting with G(-) and G(+) lipid model membranes (LMMs), a feature linked to their efficacy. X-ray diffuse scattering (XDS) demonstrates a softening of G(-), G(+) and eukaryotic (Euk33) LMMs and a nonmonotonic decrease in chain order as a potential determinant for bacterial membrane destabilization. Additionally, XDS finds a significant link between both peptides' interfacial location in G(-) and G(+) LMMs and their efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Lack of toxicity in eukaryotic cells may be related to their loss of α-helicity and their hydrocarbon location in Euk33 LMMs. Both AMPs with UAAs offer a novel strategy to wipe out antibiotic-resistant strains while maintaining human cells. These findings are compared with previously published data on E2-35, which consists of the natural amino acids arginine, tryptophan, and valine.
Collapse
Affiliation(s)
- Saheli Mitra
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mei-Tung Chen
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Francisca Stedman
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jedidiah Hernandez
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grace Kumble
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xi Kang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Churan Zhang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grace Tang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ian Daugherty
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wanqing Liu
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jeremy Ocloo
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kevin Raphael Klucznik
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Anzhi Li
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Frank Heinrich
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Berthony Deslouches
- Department
of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Stephanie Tristram-Nagle
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Cai Y, Lv Z, Chen X, Jin K, Mou X. Recent advances in biomaterials based near-infrared mild photothermal therapy for biomedical application: A review. Int J Biol Macromol 2024; 278:134746. [PMID: 39147342 DOI: 10.1016/j.ijbiomac.2024.134746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Mild photothermal therapy (MPTT) generates heat therapeutic effect at the temperature below 45 °C under near-infrared (NIR) irradiation, which has the advantages of controllable treatment efficacy, lower hyperthermia temperatures, reduced dosage, and minimized damage to surrounding tissues. Despite significant progress has been achieved in MPTT, it remains primarily in the stage of basic and clinical research and has not yet seen widespread clinical adoption. Herein, a comprehensive overview of the recent NIR MPTT development was provided, aiming to emphasize the mechanism and obstacles, summarize the used photothermal agents, and introduce various biomedical applications such as anti-tumor, wound healing, and vascular disease treatment. The challenges of MPTT were proposed with potential solutions, and the future development direction in MPTT was outlooked to enhance the prospects for clinical translation.
Collapse
Affiliation(s)
- Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Zhenye Lv
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaoyi Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
9
|
Ratrey P, Bhattacharya S, Coffey L, Thompson D, Hudson SP. Solid lipid nanoparticle formulation maximizes membrane-damaging efficiency of antimicrobial nisin Z peptide. Colloids Surf B Biointerfaces 2024; 245:114255. [PMID: 39303385 DOI: 10.1016/j.colsurfb.2024.114255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Solid lipid nanoparticles (SLNs) can protect and deliver naturally derived or synthetic biologically active products to target sites in vivo. Here, an SLN formulation produces a measured four-fold reduction in inhibitory concentration of an antimicrobial peptide nisin Z against S. aureus as compared to the free peptide, indicating the successful delivery and enhanced effectiveness of the SLN-encapsulated bacteriocin. Spherical SLNs of size 79.47 ± 2.01 nm and zeta potential of -9.8 ± 0.3 mV were synthesised. The lipid formulation maximizes the membrane-damaging mode of action of the free peptide with more and larger-sized pores formed on bacterial membranes treated with nisin Z SLNs as measured from scanning electron microscopy and transmission electron microscopy. Flow cytometry measurements precisely quantified an enhanced dye leakage from pre-labeled bacterial cells when treated with nisin Z-loaded SLNs compared to free peptide. The lipid formulation accelerated cell death by killing all the cells within half an hour compared to the equivalent concentration of free peptide which was not bactericidal. Molecular dynamics simulations revealed a mechanism of SLN facilitated binding to the lipid II bacterial cell wall precursor via enhanced adsorption of nisin Z at the inner bacterial cell membrane bilayer. These findings confirmed the potential of SLN formulations for the effective delivery of therapeutic peptides for next-generation antibiotics that are active at low concentrations with the potential to mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Poonam Ratrey
- Department of Chemical Sciences, SSPC the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Shayon Bhattacharya
- Department of Physics, SSPC the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Laura Coffey
- Department of Chemical Sciences, SSPC the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Damien Thompson
- Department of Physics, SSPC the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Sarah P Hudson
- Department of Chemical Sciences, SSPC the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
10
|
Andrés CMC, Pérez de la Lastra JM, Munguira EB, Andrés Juan C, Pérez-Lebeña E. Dual-Action Therapeutics: DNA Alkylation and Antimicrobial Peptides for Cancer Therapy. Cancers (Basel) 2024; 16:3123. [PMID: 39335095 PMCID: PMC11429518 DOI: 10.3390/cancers16183123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains one of the most difficult diseases to treat, requiring continuous research into innovative therapeutic strategies. Conventional treatments such as chemotherapy and radiotherapy are effective to a certain extent but often have significant side effects and carry the risk of resistance. In recent years, the concept of dual-acting therapeutics has attracted considerable attention, particularly the combination of DNA alkylating agents and antimicrobial peptides. DNA alkylation, a well-known mechanism in cancer therapy, involves the attachment of alkyl groups to DNA, leading to DNA damage and subsequent cell death. Antimicrobial peptides, on the other hand, have been shown to be effective anticancer agents due to their ability to selectively disrupt cancer cell membranes and modulate immune responses. This review aims to explore the synergistic potential of these two therapeutic modalities. It examines their mechanisms of action, current research findings, and the promise they offer to improve the efficacy and specificity of cancer treatments. By combining the cytotoxic power of DNA alkylation with the unique properties of antimicrobial peptides, dual-action therapeutics may offer a new and more effective approach to fighting cancer.
Collapse
Affiliation(s)
- Celia María Curieses Andrés
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Elena Bustamante Munguira
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | | |
Collapse
|
11
|
Subbarayudu S, Namasivayam SKR, Arockiaraj J. Immunomodulation in Non-traditional Therapies for Methicillin-resistant Staphylococcus aureus (MRSA) Management. Curr Microbiol 2024; 81:346. [PMID: 39240286 DOI: 10.1007/s00284-024-03875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The rise of methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge in clinical settings due to its ability to evade conventional antibiotic treatments. This overview explores the potential of immunomodulatory strategies as alternative therapeutic approaches to combat MRSA infections. Traditional antibiotics are becoming less effective, necessitating innovative solutions that harness the body's immune system to enhance pathogen clearance. Recent advancements in immunotherapy, including the use of antimicrobial peptides, phage therapy, and mechanisms of immune cells, demonstrate promise in enhancing the body's ability to clear MRSA infections. However, the exact interactions between these therapies and immunomodulation are not fully understood, underscoring the need for further research. Hence, this review aims to provide a broad overview of the current understanding of non-traditional therapeutics and their impact on immune responses, which could lead to more effective MRSA treatment strategies. Additionally, combining immunomodulatory agents with existing antibiotics may improve outcomes, particularly for immunocompromised patients or those with chronic infections. As the landscape of antibiotic resistance evolves, the development of effective immunotherapeutic strategies could play a vital role in managing MRSA infections and reducing reliance on traditional antibiotics. Future research must focus on optimizing these approaches and validating their efficacy in diverse clinical populations to address the urgent need for effective MRSA management strategies.
Collapse
Affiliation(s)
- Suthi Subbarayudu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
12
|
Anurag Anand A, Amod A, Anwar S, Sahoo AK, Sethi G, Samanta SK. A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria. Crit Rev Microbiol 2024; 50:859-878. [PMID: 38102871 DOI: 10.1080/1040841x.2023.2293019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Lately, antimicrobial resistance (AMR) is increasing at an exponential rate making it important to search alternatives to antibiotics in order to combat multi-drug resistant (MDR) bacterial infections. Out of the several antibacterial and antibiofilm strategies being tested, antimicrobial peptides (AMPs) have shown to give better hopes in terms of a long-lasting solution to the problem. To select a desired AMP, it is important to make right use of available tools and databases that aid in identification, classification, and analysis of the physiochemical properties of AMPs. To identify the targets of these AMPs, it becomes crucial to understand their mode-of-action. AMPs can also be used in combination with other antibacterial and antibiofilm agents so as to achieve enhanced efficacy against bacteria and their biofilms. Due to concerns regarding toxicity, stability, and bioavailability, strategizing drug formulation at an early-stage becomes crucial. Although there are few concerns regarding development of bacterial resistance to AMPs, the evolution of resistance to AMPs occurs extremely slowly. This comprehensive review gives a deep insight into the selection of the right AMP, deciding the right target and combination strategy along with the type of formulation needed, and the possible resistance that bacteria can develop to these AMPs.
Collapse
Affiliation(s)
- Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Sarfraz Anwar
- Department of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| |
Collapse
|
13
|
Changsan N, Atipairin A, Sakdiset P, Muenraya P, Balekar N, Srichana T, Sritharadol R, Phanapithakkun S, Sawatdee S. BrSPR-20-P1 peptide isolated from Brevibacillus sp. developed into liposomal hydrogel as a potential topical antimicrobial agent. RSC Adv 2024; 14:27394-27411. [PMID: 39205932 PMCID: PMC11351071 DOI: 10.1039/d4ra03722g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
A novel BrSPR-20-P1 antimicrobial peptide (P1-AMP; NH2-VVVNVLVKVLPPPVV-COOH) isolated from Brevibacillus sp. SPR-20 was encapsulated in a liposome containing varying proportions of l-α-phosphatidylcholine (PC) and cholesterol (CH). P1-AMP liposomes were incorporated into a chitosan hydrogel to achieve a peptide concentration of 0.02%. P1-AMP has been tested for its antibacterial and in vitro wound healing activities. The physicochemical characteristics of liposomes and hydrogel were investigated, including in vitro drug release, permeability, cell toxicity, antimicrobial activities, and stability studies. P1-AMP showed higher antimicrobial and wound-healing activities than the negative control. A toxicity test of P1-AMP in keratinocyte cell lines revealed cell viability of 100% at a concentration range of 1.96-1000 μg mL-1. The empty liposomes exhibited an average particle size ranging from 324.5 ± 8.6 to 1823.7 ± 288.2 nm. The size range of P1-AMP liposomes was 378.6 ± 14.0 to 2363.0 ± 255.6 nm. The zeta potential of the blank liposome ranged from -40.43 ± 2.51 to -60.17 ± 0.93 mV and it decreased to -57.33 ± 0.72 to -70.33 ± 0.15 mV of the liposome loaded with peptide. SEM images showed liposomes were ovoid spheres with smooth surfaces. The chosen formulation, composed of PC to CH in an 18 : 1 ratio (formulation F3), had the highest entrapment effectiveness with small particle size and possessed an acceptable zeta potential. The developed P1-AMP liposome-loaded hydrogels exhibited a yellowish-clear appearance with a viscosity of 758.0 ± 149.8 cPs. The P1-AMP was rapidly released from the P1-AMP-loaded liposome hydrogel formulation. The P1-AMP-loaded liposome showed high permeability compared to P1-AMP alone or P1-AMP in hydrogel without the incorporation of liposomes. The minimum inhibitory concentration (MIC) against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) of P1-AMP-loaded liposome hydrogel was 2 μg mL-1, equivalent to P1-AMP. It completely killed S. aureus at 10× and 5× MIC after 6 and 12 h of incubation, respectively. The formulation did not induce cytotoxicity to the tested keratinocyte cell and remained stable for at least 6 months under the studied conditions.
Collapse
Affiliation(s)
- Narumon Changsan
- College of Pharmacy, Rangsit University Pathumtani 12000 Thailand
| | - Apichart Atipairin
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Drug and Cosmetics Excellence Center, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Pajaree Sakdiset
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Drug and Cosmetics Excellence Center, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Poowadon Muenraya
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Drug and Cosmetics Excellence Center, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Neelam Balekar
- College of Pharmacy, IPS Academy Indore Madhya Pradesh 452012 India
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai Songkhla 90112 Thailand
| | - Rutthapol Sritharadol
- Faculty of Pharmaceutical Sciences, Chulalongkorn University Phaya Thai Road, Pathum Wan Bangkok 10330 Thailand
| | - Suranate Phanapithakkun
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Drug and Cosmetics Excellence Center, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Somchai Sawatdee
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Drug and Cosmetics Excellence Center, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| |
Collapse
|
14
|
Drzewiecka B, Wessely-Szponder J, Świeca M, Espinal P, Fusté E, Fernández-De La Cruz E. Bioactive Peptides and Other Immunomodulators of Mushroom Origin. Biomedicines 2024; 12:1483. [PMID: 39062056 PMCID: PMC11274834 DOI: 10.3390/biomedicines12071483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
For centuries, humans have used mushrooms as both food and pro-health supplements. Mushrooms, especially those related to the functions of the human immune system, are rich in dietary fiber, minerals, essential amino acids, and various bioactive compounds and have significant health-promoting properties. Immunoregulatory compounds in mushrooms include lectins, terpenes, terpenoids, polysaccharides, and fungal immunomodulatory proteins (FIPs). The distribution of these compounds varies from one species of mushroom to another, and their immunomodulatory activities depend on the core structures and chemical modifications in the composition of the fractions. In this review, we describe active compounds from medical mushrooms. We summarize potential mechanisms for their in vitro and in vivo activities and detail approaches used in developing and applying bioactive compounds from mushrooms. Finally, we discuss applications of fungal peptides and highlight areas that require improvement before the widespread use of those compounds as therapeutic agents and explore the status of clinical studies on the immunomodulatory activities of mushrooms and their products, as well as the prospect of clinical application of AMPs as 'drug-like' compounds with great potential for treatment of non-healing chronic wounds and multiresistant infections.
Collapse
Affiliation(s)
- Beata Drzewiecka
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland;
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland;
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland;
| | - Paula Espinal
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (P.E.); (E.F.); (E.F.-D.L.C.)
| | - Ester Fusté
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (P.E.); (E.F.); (E.F.-D.L.C.)
- Department Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona, 08907 Barcelona, Spain
| | - Eric Fernández-De La Cruz
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (P.E.); (E.F.); (E.F.-D.L.C.)
| |
Collapse
|
15
|
Liu X, Peng S, Pei Y, Huo Y, Zong Y, Ren J, Zhao J. Facile fabrication of chitosan/hyaluronic acid hydrogel-based wound closure material Co-loaded with gold nanoparticles and fibroblast growth factor to improve anti-microbial and healing efficiency in diabetic wound healing and nursing care. Regen Ther 2024; 26:1018-1029. [PMID: 39553541 PMCID: PMC11565426 DOI: 10.1016/j.reth.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Generally, diabetic wounds heal very slowly and inefficiently with an increasing risk of infections. Recent nanotechnology and biomaterial advances elaborate developed multi-functional hydrogels and nanoparticles offer promising solutions to accelerate wound healing for diabetic patients. This research work demonstrates to use of solvent diffusion method to develop hydrogel nanocomposites composed of chitosan (CS), hyaluronic acid (HA), gold (Au), and fibroblast growth factors (FGF). The biological analysis of nanocomposites exhibited enhanced wound healing efficiency by incorporating bioactive molecules like FGF and bioactive Au nanoparticles. In vitro, cell compatibility analysis (MTT assay) of prepared hydrogel nanocomposites was studied on fibroblast cell lines NIH-3T3-L1 and L929 and exhibited greater cell survival ability (>90 %), cell proliferation and migration ability, which demonstrated the suitability of nanocomposite for wound healing treatment. In vitro, anti-bacterial analyses established that FGF-Au@CS/HA has strong antibacterial effectiveness against gram-positive and gram-negative pathogens. The observation of the present research revealed that prepared FGF-Au@CS/HA hydrogel composites could be a suitable biomaterial for diabetic wound care, potentially improving its antibacterial and healing efficacies.
Collapse
Affiliation(s)
- Xin Liu
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Shengwei Peng
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yongju Pei
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yuanyuan Huo
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yadi Zong
- Department of Pediatric Surgery, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jianwei Ren
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jing Zhao
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| |
Collapse
|
16
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
17
|
Wang H, Yang Y, Wang S, Badawy S, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Antimicrobial sensitisers: Gatekeepers to avoid the development of multidrug-resistant bacteria. J Control Release 2024; 369:25-38. [PMID: 38508527 DOI: 10.1016/j.jconrel.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The resistance of multidrug-resistant bacteria to existing antibiotics forces the continued development of new antibiotics and antibacterial agents, but the high costs and long timeframe involved in the development of new agents renders the hope that existing antibiotics may again play a part. The "antibiotic adjuvant" is an indirect antibacterial strategy, but its vague concept has, in the past, limited the development speed of related drugs. In this review article, we put forward an accurate concept of a "non-self-antimicrobial sensitisers (NSAS)", to distinguish it from an "antibiotic adjuvant", and then discuss several scientific methods to restore bacterial sensitivity to antibiotics, and the sources and action mechanism of existing NSAS, in order to guide the development and further research of NSAS.
Collapse
Affiliation(s)
- Hanfei Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Simeng Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sara Badawy
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
18
|
Qi C, Sun Q, Xiao D, Zhang M, Gao S, Guo B, Lin Y. Tetrahedral framework nucleic acids/hyaluronic acid-methacrylic anhydride hybrid hydrogel with antimicrobial and anti-inflammatory properties for infected wound healing. Int J Oral Sci 2024; 16:30. [PMID: 38622128 PMCID: PMC11018755 DOI: 10.1038/s41368-024-00290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/17/2024] Open
Abstract
Bacterial resistance and excessive inflammation are common issues that hinder wound healing. Antimicrobial peptides (AMPs) offer a promising and versatile antibacterial option compared to traditional antibiotics, with additional anti-inflammatory properties. However, the applications of AMPs are limited by their antimicrobial effects and stability against bacterial degradation. TFNAs are regarded as a promising drug delivery platform that could enhance the antibacterial properties and stability of nanodrugs. Therefore, in this study, a composite hydrogel (HAMA/t-GL13K) was prepared via the photocross-linking method, in which tFNAs carry GL13K. The hydrogel was injectable, biocompatible, and could be instantly photocured. It exhibited broad-spectrum antibacterial and anti-inflammatory properties by inhibiting the expression of inflammatory factors and scavenging ROS. Thereby, the hydrogel inhibited bacterial infection, shortened the wound healing time of skin defects in infected skin full-thickness defect wound models and reduced scarring. The constructed HAMA/tFNA-AMPs hydrogels exhibit the potential for clinical use in treating microbial infections and promoting wound healing.
Collapse
Affiliation(s)
- Cai Qi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Guo
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, China.
| |
Collapse
|
19
|
Ahmad A, Khan JM, Bandy A. A Systematic Review of the Design and Applications of Antimicrobial Peptides in Wound Healing. Cureus 2024; 16:e58178. [PMID: 38741875 PMCID: PMC11089580 DOI: 10.7759/cureus.58178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/16/2024] Open
Abstract
The sources of antimicrobial peptides (AMPs), also known as peptide-based antibiotics, are diverse, such as plants, animals, microorganisms including human leukocytes, saliva, human defense peptides, and human sweat. These natural sources provide a rich variety of AMPs with unique characteristics and potential therapeutic applications, including wound-healing and antimicrobial properties. AMPs derived from these sources have shown promise in combating a wide range of pathogens, making them valuable targets for further research and potential clinical applications. The design of AMPs for wound healing involves a meticulous process of structurally optimizing peptides to possess a unique combination of antibacterial and wound-healing characteristics. This systematic review was produced to show the design and applications of AMPs in wound healing. The terms "antimicrobial peptides AND wound healing" were used to search for articles published between September 2023 and January 2010. In the search, we found a total of 12958 articles, of which 12898 were excluded, and the remaining 60 articles were chosen for further study. This systematic review underscores the potential of AMPs as valuable tools in infection control and wound healing, showcasing their versatility and effectiveness in combating a wide range of pathogens. Overall, AMPs in wound healing display a diverse mechanism of action, influencing the inflammatory response, encouraging tissue regeneration, and aiding tissue remodeling, along with strong antibacterial activity. Furthermore, this systematic review addresses AMP toxicity studies, which include rigorous in vitro and in vivo examinations to determine potential cytotoxic effects, systemic toxicity, and any adverse responses connected with its usage in wound-healing applications.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Department of Medical Biochemistry, College of Medicine, Shaqra University, Shaqra, SAU
| | - Javed M Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, SAU
| | - Altaf Bandy
- Department of Community Medicine, College of Medicine, Shaqra University, Shaqra, SAU
| |
Collapse
|
20
|
Gao S, Rao Y, Wang X, Zhang Q, Zhang Z, Wang Y, Guo J, Yan F. Chlorella-Loaded Antibacterial Microneedles for Microacupuncture Oxygen Therapy of Diabetic Bacterial Infected Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307585. [PMID: 38307004 DOI: 10.1002/adma.202307585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Hypoxia and infection are urgent clinical problems in chronic diabetic wounds. Herein, living Chlorella-loaded poly(ionic liquid)-based microneedles (PILMN-Chl) are constructed for microacupuncture oxygen and antibacterial therapy against methicillin-resistant Staphylococcus aureus (MRSA)-infected chronic diabetic wounds. The PILMN-Chl can stably and continuously produce oxygen for more than 30 h due to the photosynthesis of the loaded self-supported Chlorella. By combining the barrier penetration capabilities of microneedles, the continuous and sufficient oxygen supply of Chlorella, and the sterilization activities of PIL, the PILMN-Chl can accelerate chronic diabetic wounds in vivo by topical targeted sterilization and hypoxia relief in deep parts of wounds. Thus, the self-oxygen produced microneedles modality may provide a promising and facile therapeutic strategy for treating chronic, hypoxic, and infected diabetic wounds.
Collapse
Affiliation(s)
- Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yu Rao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qiuyang Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zijun Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuxuan Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
21
|
De los Santos L, Beckman RL, DeBarro C, Keener JE, Torres MD, de la Fuente-Nunez C, Brodbelt JS, Fleeman RM. Polyproline peptide targets Klebsiella pneumoniae polysaccharides to collapse biofilms. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101869. [PMID: 38605913 PMCID: PMC11008256 DOI: 10.1016/j.xcrp.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Hypervirulent Klebsiella pneumoniae is known for its increased extracellular polysaccharide production. Biofilm matrices of hypervirulent K. pneumoniae have increased polysaccharide abundance and are uniquely susceptible to disruption by peptide bactenecin 7 (bac7 (1-35)). Here, using confocal microscopy, we show that polysaccharides within the biofilm matrix collapse following bac7 (1-35) treatment. This collapse led to the release of cells from the biofilm, which were then killed by the peptide. Characterization of truncated peptide analogs revealed that their interactions with polysaccharide were responsible for the biofilm matrix changes that accompany bac7 (1-35) treatment. Ultraviolet photodissociation mass spectrometry with the parental peptide or a truncated analog bac7 (10-35) reveal the important regions for bac7 (1-35) complexing with polysaccharides. Finally, we tested bac7 (1-35) using a murine skin abscess model and observed a significant decrease in the bacterial burden. These findings unveil the potential of bac7 (1-35) polysaccharide interactions to collapse K. pneumoniae biofilms.
Collapse
Affiliation(s)
- Laura De los Santos
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Robert L. Beckman
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Christina DeBarro
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - James E. Keener
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Marcelo D.T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Renee M. Fleeman
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- X (formerly Twitter): @FleemanLab
- Lead contact
| |
Collapse
|
22
|
Wan X, Wang W, Zhou Y, Ma X, Guan M, Liu F, Chen S, Fan JX, Yan GP. Self-Delivery Nanoplatform Based on Amphiphilic Apoptosis Peptide for Precise Mitochondria-Targeting Photothermal Therapy. Mol Pharm 2024; 21:1537-1547. [PMID: 38356224 DOI: 10.1021/acs.molpharmaceut.3c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Mitochondria-targeting photothermal therapy could significantly enhance the tumor cell killing effect. However, since therapeutic reagents need to overcome a series of physiological obstacles to arrive at mitochondria accurately, precise mitochondria-targeting photothermal therapy still faces great challenges. In this study, we developed a self-delivery nanoplatform that specifically targeted the mitochondria of tumor cells for precise photothermal therapy. Photothermal agent IR780 was encapsulated by amphiphilic apoptotic peptide KLA with mitochondria-targeting ability to form nanomicelle KI by self-assembly through hydrophilic and hydrophobic interactions. Subsequently, negatively charged tumor-targeting polymer HA was coated on the surface of KI through electrostatic interactions, to obtain tumor mitochondria-targeting self-delivery nanoplatform HKI. Through CD44 receptor-mediated recognition, HKI was internalizated by tumor cells and then disassembled in an acidic environment with hyaluronidase in endosomes, resulting in the release of apoptotic peptide KLA and photothermal agent IR780 with mitochondria anchoring capacity, which achieved precise mitochondria guidance and destruction. This tumor mitochondria-targeting self-delivery nanoplatform was able to effectively deliver photothermal agents and apoptotic peptides to tumor cell mitochondria, resulting in precise destruction to mitochondria and enhancing tumor cell inhibition at the subcellular organelle level.
Collapse
Affiliation(s)
- Xin Wan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wensong Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yutian Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaoyu Ma
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Meng Guan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fan Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Si Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guo-Ping Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
23
|
Wang D, Yue Y, Liu H, Zhang T, Haney EF, Hancock REW, Yu J, Shen Y. Antibiofilm peptides enhance the corrosion resistance of titanium in the presence of Streptococcus mutans. Front Bioeng Biotechnol 2024; 11:1339912. [PMID: 38274010 PMCID: PMC10809395 DOI: 10.3389/fbioe.2023.1339912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Titanium alloys have gained popularity in implant dentistry for the restoration of missing teeth and related hard tissues because of their biocompatibility and enhanced strength. However, titanium corrosion and infection caused by microbial biofilms remains a significant clinical challenge leading to implant failure. This study aimed to evaluate the effectiveness of antibiofilm peptides 1018 and DJK-5 on the corrosion resistance of titanium in the presence of Streptococcus mutans. Commercially pure titanium disks were prepared and used to form biofilms. The disks were randomly assigned to different treatment groups (exposed to S. mutans supplied with sucrose) including a positive control with untreated biofilms, peptides 1018 or DJK-5 at concentrations of 5 μg/mL or 10 μg/mL, and a negative control with no S. mutans. Dynamic biofilm growth and pH variation of all disks were measured after one or two treatment periods of 48 h. After incubation, the dead bacterial proportion, surface morphology, and electrochemical behaviors of the disks were determined. The results showed that peptides 1018 and DJK-5 exhibited significantly higher dead bacterial proportions than the positive control group in a concentration dependent manner (p < 0.01), as well as far less defects in microstructure. DJK-5 at 10 μg/mL killed 84.82% of biofilms and inhibited biofilm growth, preventing acidification due to S. mutans and maintaining a neutral pH. Potential polarization and electrochemical impedance spectroscopy data revealed that both peptides significantly reduced the corrosion and passive currents on titanium compared to titanium surfaces with untreated biofilms, and increased the resistance of the passive film (p < 0.05), with 10 μg/mL of DJK-5 achieving the greatest effect. These findings demonstrated that antibiofilm peptides are effective in promoting corrosion resistance of titanium against S. mutans, suggesting a promising strategy to enhance the stability of dental implants by endowing them with antibiofilm and anticorrosion properties.
Collapse
Affiliation(s)
- Dan Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Yingying Yue
- Liaoning Institute of Science and Technology, Benxi, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Tian Zhang
- School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Evan F. Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Jian Yu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Zhu C, Bai Y, Zhao X, Liu S, Xia X, Zhang S, Wang Y, Zhang H, Xu Y, Chen S, Jiang J, Wu Y, Wu X, Zhang G, Zhang X, Hu J, Wang L, Zhao Y, Bai Y. Antimicrobial Peptide MPX with Broad-Spectrum Bactericidal Activity Promotes Proper Abscess Formation and Relieves Skin Inflammation. Probiotics Antimicrob Proteins 2023; 15:1608-1625. [PMID: 36626016 DOI: 10.1007/s12602-022-10035-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
Bacteria have developed antibiotic resistance during the large-scale use of antibiotics, and multidrug-resistant strains are common. The development of new antibiotics or antibiotic substitutes has become an important challenge for humankind. MPX is a 14 amino acid peptide belonging to the MP antimicrobial peptide family. In this study, the antibacterial spectrum of the antimicrobial peptide MPX was first tested. The antimicrobial peptide MPX was tested for antimicrobial activity against the gram-positive bacterium S. aureus ATCC 25923, the gram-negative bacteria E. coli ATCC 25922 and Salmonella enterica serovar Typhimurium CVCC541, and the fungus Candida albicans ATCC 90029. The results showed that MPX had good antibacterial activity against the above four strains, especially against E. coli, for which the MIC was as low as 15.625 μg/mL. The study on the bactericidal mechanism of the antimicrobial peptide revealed that MPX can destroy the integrity of the cell membrane, increase membrane permeability, and change the electromotive force of the membrane, thereby allowing the contents to leak out and mediating bacterial death. A mouse acute infection model was used to evaluate the therapeutic effect of MPX after acute infection of subcutaneous tissue by S. aureus. The study showed that MPX could promote tissue repair in S. aureus infection and alleviate lung damage caused by S. aureus. In addition, skin H&E staining showed that MPX treatment facilitated the formation of appropriate abscesses at the subcutaneous infection site and facilitated the clearance of bacteria by the skin immune system. The above results show that MPX has good antibacterial activity and broad-spectrum antibacterial potential and can effectively prevent the invasion of subcutaneous tissue by S. aureus, providing new ideas and directions for the immunotherapy of bacterial infections.
Collapse
Affiliation(s)
- Chunling Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
- College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xueqin Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shouping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yimin Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shijun Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yundi Wu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Xilong Wu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, China.
| | - Yaya Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
25
|
Antropenko A, Caruso F, Fernandez-Trillo P. Stimuli-Responsive Delivery of Antimicrobial Peptides Using Polyelectrolyte Complexes. Macromol Biosci 2023; 23:e2300123. [PMID: 37449448 DOI: 10.1002/mabi.202300123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Antimicrobial peptides (AMPs) are antibiotics with the potential to address antimicrobial resistance. However, their translation to the clinic is hampered by issues such as off-target toxicity and low stability in biological media. Stimuli-responsive delivery from polyelectrolyte complexes offers a simple avenue to address these limitations, wherein delivery is triggered by changes occurring during microbial infection. The review first provides an overview of pH-responsive delivery, which exploits the intrinsic pH-responsive nature of polyelectrolytes as a mechanism to deliver these antimicrobials. The examples included illustrate the challenges faced when developing these systems, in particular balancing antimicrobial efficacy and stability, and the potential of this approach to prepare switchable surfaces or nanoparticles for intracellular delivery. The review subsequently highlights the use of other stimuli associated with microbial infection, such as the expression of degrading enzymes or changes in temperature. Polyelectrolyte complexes with dual stimuli-response based on pH and temperature are also discussed. Finally, the review presents a summary and an outlook of the challenges and opportunities faced by this field. This review is expected to encourage researchers to develop stimuli-responsive polyelectrolyte complexes that increase the stability of AMPs while providing targeted delivery, and thereby facilitate the translation of these antimicrobials.
Collapse
Affiliation(s)
- Alexander Antropenko
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paco Fernandez-Trillo
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Departamento de Química, Facultade de Ciencias and Centro de Investigacións Cientı́ficas Avanzadas (CICA), Universidade da Coruña, A Coruña, 15071, Spain
| |
Collapse
|
26
|
Zhang Y, Jiang Y, Zhao J, Mo Q, Wang C, Wang D, Li M. Weizmannia coagulans Extracellular Proteins Reduce Skin Acne by Inhibiting Pathogenic Bacteria and Regulating TLR2/TRAF6-Mediated NF-κB and MAPKs Signaling Pathways. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10175-2. [PMID: 37870674 DOI: 10.1007/s12602-023-10175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
As a probiotic, Weizmannia coagulans (W. coagulans) is often used in food and medicine to regulate intestinal flora and exert anti-inflammatory effects. In this study, the anti-acne efficacy and mechanism of extracellular proteins (YTCY-EPs) from W. coagulans YTCY strain are analyzed. The main components of YTCY-EPs, extracted and separated from the fermentation broth, are peptides ranging from 1.51 to 11.44 kDa, accounting for about 80%. Among the peptides identified by LC/MS-MS, YTCY_A-F possess the properties of antimicrobial peptides, while YTCY_1-4 possess antioxidative properties. These peptides have a strong effect on Cutibacterium acnes (C. acnes) and significantly inhibit Staphylococcus aureus. The inhibition rate of biofilm adhesion of YT-EPs to C. acnes reached 50% under the MIC. It was found that YTCY-EPs possess strong antioxidant and anti-inflammatory properties. It can effectively reduce active oxygen nearly 3 times and can reduce the downstream TLR2/NF-κB and MAPKs/AP-1 pathways by regulating the nuclear translocation of NF-κB and AP-1 in vitro. The transcriptional expression of inflammatory cytokines, inflammatory chemokines, and matrix metalloproteinase genes is also regulated, thereby slowing the recruitment of inflammatory cells and the development of inflammation, and increasing keratinocyte mobility. In addition, the expression levels of inflammatory factors and matrix metalloproteinases in the rabbit ears with acne problems that were tested with YTCY-EPs were significantly reduced, and it was obviously observed that the rabbit ear inflammation, acne, and keratinization problems were repaired. The results of this study prove that YTCY-EPs can be used as a potential anti-acne raw material in cosmetics.
Collapse
Affiliation(s)
- Yongtao Zhang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Yanbing Jiang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Jingsha Zhao
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Qiuting Mo
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Changtao Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Dongdong Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Meng Li
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
27
|
Tahmasebi E, Mohammadi M, Yazdanian M, Alam M, Abbasi K, Hosseini HM, Tavakolizadeh M, Khayatan D, Hassani Z, Tebyaniyan H. Antimicrobial properties of green synthesized novel TiO 2 nanoparticles using Iranian propolis extracts. J Basic Microbiol 2023; 63:1030-1048. [PMID: 37442766 DOI: 10.1002/jobm.202300221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
The oral antimicrobial and cytotoxic properties of green synthesized novel titanium dioxide nanoparticles (TiO2 NPs) using Iranian propolis extracts were investigated on oral bacteria and fibroblast cells. In this study, propolis was sampled, and alcoholic extracts were prepared. The TiO2 NPs were biosynthesized using propolis extracts. The synthesized TiO2 NPs were characterized by scanning electron microscope (SEM), X-ray diffraction analysis, energy-dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering, ultraviolet-visible (UV-Vis), transmission electron microscope, Brunauer-Emmett-Teller, and zeta potential. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), minimal inhibitory concentration, minimum bactericidal concentration, minimum fungicidal concentration, biofilm formation, and degradation tests were studied to clarify the oral antimicrobial properties of green synthesized TiO2 NPs. According to the FTIR analysis, the propolis extract contained flavonoids and phenolic compounds in addition to TiO2 NPs. Additionally, UV-Vis revealed that intense bands had formed NPs. EDX spectra and SEM images revealed that the stabilizing agent was in perfect quasi-spherical shapes around 21 nm. An EDX spectrum was used to verify the presence of titanium and oxygen. There were no significant cytotoxicity effects. The antibacterial results showed that Pro1TiO2 (Khalkhal sample) had better effects than Pro2TiO2 (Gilan sample) and TiO2 NPs. The present study presents a new process for synthesizing TiO2 NPs from propolis extracts with less toxic effects and user-friendly, eco-friendly, and economical materials. Pro1TiO2 NPs may be considered the best candidate for clinical application.
Collapse
Affiliation(s)
- Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- School of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Tavakolizadeh
- Department of Chemistry, Polymer Research Laboratory, Sharif University of Technology, Tehran, Iran
| | - Danial Khayatan
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Hassani
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
28
|
Drzewiecka B, Przekora A, Dobko D, Kozera A, Krać K, Nguyen Ngoc D, Fernández-De la Cruz E, Wessely-Szponder J. Analysis of In Vitro Leukocyte Responses to Biomaterials in the Presence of Antimicrobial Porcine Neutrophil Extract (AMPNE). MATERIALS (BASEL, SWITZERLAND) 2023; 16:5691. [PMID: 37629982 PMCID: PMC10456664 DOI: 10.3390/ma16165691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Implant insertion can evoke excessive inflammation which disrupts the healing process and potentially leads to complications such as implant rejection. Neutrophils and macrophages play a vital role in the early inflammatory phase of tissue repair, necessitating the study of cellular responses in host-implant interactions. In order to deepen the knowledge about these interactions, the response of neutrophils and macrophages to contact with selected biomaterials was examined in vitro on the basis of secretory response as well as reactive oxygen species/reactive nitrogen species (ROS/RNS) generation. Porcine neutrophils exposed to hydroxyapatite (HA) released more enzymes and generated higher levels of ROS/RNS compared to the control group. The addition of AMPNE diminished these responses. Although the results from porcine cells can provide valuable preliminary data, further validation using human cells or clinical studies would be necessary to fully extrapolate the findings to human medicine. Our study revealed that human neutrophils after contact of with HA increased the production of nitric oxide (NO) (10.00 ± 0.08 vs. control group 3.0 ± 0.11 µM, p < 0.05), while HAP or FAP did not elicit a significant response. Human macrophages cultured with HA produced more superoxide and NO, while HAP or FAP had a minimal effect, and curdlan reduced ROS/RNS generation. The addition of AMPNE to cultures with all biomaterials, except curdlan, reduced neutrophil activity, regardless of the peptides' origin. These results highlight the potential of antimicrobial peptides in modulating excessive biomaterial/host cell reactions involving neutrophils and macrophages, enhancing our understanding of immune reactions, and suggesting that AMPNE could regulate leukocyte response during implantation.
Collapse
Affiliation(s)
- Beata Drzewiecka
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (B.D.); (D.N.N.)
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Dominika Dobko
- Students Research Group of Veterinary Analysts, Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.D.); (A.K.); (K.K.)
| | - Aleksandra Kozera
- Students Research Group of Veterinary Analysts, Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.D.); (A.K.); (K.K.)
| | - Katarzyna Krać
- Students Research Group of Veterinary Analysts, Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.D.); (A.K.); (K.K.)
| | - Dominika Nguyen Ngoc
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (B.D.); (D.N.N.)
| | - Eric Fernández-De la Cruz
- Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (B.D.); (D.N.N.)
| |
Collapse
|
29
|
Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist Updat 2023; 68:100954. [PMID: 36905712 DOI: 10.1016/j.drup.2023.100954] [Citation(s) in RCA: 115] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
The problem of drug resistance due to long-term use of antibiotics has been a concern for years. As this problem grows worse, infections caused by multiple bacteria are expanding rapidly and are extremely detrimental to human health. Antimicrobial peptides (AMPs) are a good alternative to current antimicrobials with potent antimicrobial activity and unique antimicrobial mechanisms, which have advantages over traditional antibiotics in fighting against drug-resistant bacterial infections. Currently, researchers have conducted clinical investigations on AMPs for drug-resistant bacterial infections while integrating new technologies in the development of AMPs, such as changing amino acid structure of AMPs and using different delivery methods for AMPs. This article introduces the basic properties of AMPs, deliberates the mechanism of drug resistance in bacteria and the therapeutic mechanism of AMPs. The current disadvantages and advances of AMPs in combating drug-resistant bacterial infections are also discussed. This article provides important insights into the research and clinical application of new AMPs for drug-resistant bacterial infections.
Collapse
|
30
|
Synthesis of adenine-based cationic and anionic amphiphiles. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
31
|
Imperlini E, Massaro F, Buonocore F. Antimicrobial Peptides against Bacterial Pathogens: Innovative Delivery Nanosystems for Pharmaceutical Applications. Antibiotics (Basel) 2023; 12:antibiotics12010184. [PMID: 36671385 PMCID: PMC9854484 DOI: 10.3390/antibiotics12010184] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The introduction of antibiotics has revolutionized the treatment and prevention of microbial infections. However, the global spread of pathogens resistant to available antibiotics is a major concern. Recently, the WHO has updated the priority list of multidrug-resistant (MDR) species for which the discovery of new therapeutics is urgently needed. In this scenario, antimicrobial peptides (AMPs) are a new potential alternative to conventional antibiotics, as they show a low risk of developing antimicrobial resistance, thus preventing MDR bacterial infections. However, there are limitations and challenges related to the clinical impact of AMPs, as well as great scientific efforts to find solutions aimed at improving their biological activity, in vivo stability, and bioavailability by reducing the eventual toxicity. To overcome some of these issues, different types of nanoparticles (NPs) have been developed for AMP delivery over the last decades. In this review, we provide an update on recent nanosystems applied to AMPs, with special attention on their potential pharmaceutical applications for the treatment of bacterial infections. Among lipid nanomaterials, solid lipid NPs and lipid nanocapsules have been employed to enhance AMP solubility and protect peptides from proteolytic degradation. In addition, polymeric NPs, particularly nanogels, are able to help in reducing AMP toxicity and also increasing AMP loading. To boost AMP activity instead, mesoporous silica or gold NPs can be selected due to their easy surface functionalization. They have been also used as nanocarriers for different AMP combinations, thus synergistically potentiating their action against pathogens.
Collapse
|
32
|
Haidari H, Melguizo-Rodríguez L, Cowin AJ, Kopecki Z. Therapeutic potential of antimicrobial peptides for treatment of wound infection. Am J Physiol Cell Physiol 2023; 324:C29-C38. [PMID: 36409176 DOI: 10.1152/ajpcell.00080.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Healing of cutaneous wounds is a fundamental process required to re-establish tissue integrity, repair skin barrier function, and restore skin homeostasis. Chronic wound infection, exacerbated by the growing development of resistance to conventional therapies, hinders the skin repair process and is a serious clinical problem affecting millions of people worldwide. In the past decade, the use of antimicrobial peptides (AMPs) has attracted increasing attention as a potential novel strategy for the treatment of chronic wound infections due to their unique multifaceted mechanisms of action, and AMPs have been demonstrated to function as potent host-defense molecules that can control microbial proliferation, modulate host-immune responses, and act as endogenous mediators of wound healing. To date over 3,200 AMPs have been discovered either from living organisms or through synthetic derivation, some of which have progressed to clinical trials for the treatment of burn and wound injuries. However, progress to routine clinical use has been hindered due to AMPs' susceptibility to wound and environmental factors including changes in pH, proteolysis, hydrolysis, oxidation, and photolysis. This review will discuss the latest research focused on the development and applications of AMPs for wound infections using the latest nanotechnological approaches to improve AMP delivery, and stability to present effective combinatorial treatment for clinical applications.
Collapse
Affiliation(s)
- Hanif Haidari
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Allison J Cowin
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Shen X, Zhang Y, Mao Q, Huang Z, Yan T, Lin T, Chen W, Wang Y, Cai X, Liang Y. Peptide–Polymer Conjugates: A Promising Therapeutic Solution for Drug-Resistant Bacteria. INT J POLYM SCI 2022; 2022:1-18. [DOI: 10.1155/2022/7610951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
By 2050, it is estimated that 10 million people will die of drug-resistant bacterial infection caused by antibiotic abuse. Antimicrobial peptide (AMP) is widely used to prevent such circumstances, for the positively charged AMPs can kill drug-resistant bacteria by destroying negatively charged bacterial cell membrane, and has excellent antibacterial efficiency and low drug resistance. However, due to the defects in low in vivo stability, easy degradation, and certain cytotoxicity, its practical clinical application is limited. The emergence of peptide–polymer conjugates (PPC) helps AMPs overcome these shortcomings. By combining with functional polymers, the positive charge of AMPs is partially shielded, and its stability and water solubility are improved, so as to prolong the in vivo circulation time of AMPs and reduce its cytotoxicity. At the same time, the self-assembly ability of PPC enables it to assemble into different nanostructures to undertake specific antibacterial tasks. At present, PPC is mainly used in wound dressing, bone tissue repair, antibacterial coating of medical devices, nerve repair, tumor treatment, and oral health maintenance. In this study, we summarize the structure, synthesis methods, and the clinical applications of PPC, so as to present the current challenges and discuss the future prospects of antibacterial therapeutic materials.
Collapse
Affiliation(s)
- Xuqiu Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Tianyu Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wenchao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
34
|
Roque-Borda CA, Bento da Silva P, Rodrigues MC, Di Filippo LD, Duarte JL, Chorilli M, Vicente EF, Garrido SS, Rogério Pavan F. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem 2022; 241:114640. [PMID: 35970075 DOI: 10.1016/j.ejmech.2022.114640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil; Universidad Católica de Santa María, Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Brazil
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, CEP 17602-496, Brazil
| | - Saulo Santesso Garrido
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, CEP 14801-902, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil.
| |
Collapse
|
35
|
Talapko J, Meštrović T, Juzbašić M, Tomas M, Erić S, Horvat Aleksijević L, Bekić S, Schwarz D, Matić S, Neuberg M, Škrlec I. Antimicrobial Peptides-Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics (Basel) 2022; 11:antibiotics11101417. [PMID: 36290075 PMCID: PMC9598582 DOI: 10.3390/antibiotics11101417] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
The growing emergence of antimicrobial resistance represents a global problem that not only influences healthcare systems but also has grave implications for political and economic processes. As the discovery of novel antimicrobial agents is lagging, one of the solutions is innovative therapeutic options that would expand our armamentarium against this hazard. Compounds of interest in many such studies are antimicrobial peptides (AMPs), which actually represent the host's first line of defense against pathogens and are involved in innate immunity. They have a broad range of antimicrobial activity against Gram-negative and Gram-positive bacteria, fungi, and viruses, with specific mechanisms of action utilized by different AMPs. Coupled with a lower propensity for resistance development, it is becoming clear that AMPs can be seen as emerging and very promising candidates for more pervasive usage in the treatment of infectious diseases. However, their use in quotidian clinical practice is not without challenges. In this review, we aimed to summarize state-of-the-art evidence on the structure and mechanisms of action of AMPs, as well as to provide detailed information on their antimicrobial activity. We also aimed to present contemporary evidence of clinical trials and application of AMPs and highlight their use beyond infectious diseases and potential challenges that may arise with their increasing availability.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (J.T.); (I.Š.)
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation, University of Washington, 3980 15th Ave. NE, Seattle, WA 98195, USA
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Lorena Horvat Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Dragan Schwarz
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Marijana Neuberg
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (J.T.); (I.Š.)
| |
Collapse
|
36
|
Construction strategies and the development trend of antibacterial surfaces. Biointerphases 2022; 17:050801. [DOI: 10.1116/6.0002147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The construction of antibacterial surfaces is an efficient way to respond to the problem of microbial contamination. In this review, we first describe the formation process and characteristics of microbial contamination and the current research status of antibacterial surfaces. Then, the passive antiadhesion, active killing, and combination construction strategies of the antibacterial surface are discussed in detail. Based on different antibacterial mechanisms and existing problems of current antibacterial strategies, we then discuss the future development trends of the next generation of antibacterial surfaces.
Collapse
|
37
|
Ngoepe MP, Battison A, Mufamadi S. Nano-Enabled Chronic Wound Healing Strategies: Burn and Diabetic Ulcer Wounds. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human skin serves as the body’s first line of defense against the environment. Diabetes mellitus (DM) and 2nd–4th degree burns, on the other hand, affect the skin’s protective barrier features. Burn wounds, hypermetabolic state, and hyperglycemia compromise the
immune system leading to chronic wound healing. Unlike acute wound healing processes, chronic wounds are affected by reinfections which can lead to limb amputation or death. The conventional wound dressing techniques used to protect the wound and provide an optimal environment for repair have
their limitations. Various nanomaterials have been produced that exhibit distinct features to tackle issues affecting wound repair mechanisms. This review discusses the emerging technologies that have been designed to improve wound care upon skin injury. To ensure rapid healing and possibly
prevent scarring, different nanomaterials can be applied at different stages of healing (hemostasis, inflammation, proliferation, remodeling).
Collapse
Affiliation(s)
- Mpho Phehello Ngoepe
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| | - Aidan Battison
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| | - Steven Mufamadi
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| |
Collapse
|
38
|
Maximiano MR, Rios TB, Campos ML, Prado GS, Dias SC, Franco OL. Nanoparticles in association with antimicrobial peptides (NanoAMPs) as a promising combination for agriculture development. Front Mol Biosci 2022; 9:890654. [PMID: 36081849 PMCID: PMC9447862 DOI: 10.3389/fmolb.2022.890654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides are small molecules, up to 10 kDa, present in all kingdoms of life, including in plants. Several studies report that these molecules have a broad spectrum of activity, including antibacterial, antifungal, antiviral, and insecticidal activity. Thus, they can be employed in agriculture as alternative tools for phytopathogen and pest control. However, the application of peptides in agriculture can present challenges, such as loss of activity due to degradation of these molecules, off-target effects, and others. In this context, nanotechnology can offer versatile structures, including metallic nanoparticles, liposomes, polymeric nanoparticles, nanofibers, and others, which might act both in protection and in release of AMPs. Several polymers and biomaterials can be employed for the development of nanostructures, such as inorganic metals, natural or synthetic lipids, synthetic and hybrid polymers, and others. This review addresses the versatility of NanoAMPs (Nanoparticles in association with antimicrobial peptides), and their potential applications in agribusiness, as an alternative for the control of phytopathogens in crops.
Collapse
Affiliation(s)
- Mariana Rocha Maximiano
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Thuanny Borba Rios
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Marcelo Lattarulo Campos
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de MT, Cuiabá, Brazil
| | | | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Pós-graduação em Biologia Animal, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- *Correspondence: Octávio Luiz Franco,
| |
Collapse
|
39
|
Apostolopoulos V, Bojarska J, Feehan J, Matsoukas J, Wolf W. Smart therapies against global pandemics: A potential of short peptides. Front Pharmacol 2022; 13:914467. [PMID: 36046832 PMCID: PMC9420997 DOI: 10.3389/fphar.2022.914467] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Joanna Bojarska
- Technical University of Lodz, Department of Chemistry, Institute of General and Ecological Chemistry, Lodz, Poland
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- NewDrug, Patras Science Park, Patras, Greece
| | - Wojciech Wolf
- Technical University of Lodz, Department of Chemistry, Institute of General and Ecological Chemistry, Lodz, Poland
| |
Collapse
|
40
|
Getahun YA, Ali DA, Taye BW, Alemayehu YA. Multidrug-Resistant Microbial Therapy Using Antimicrobial Peptides and the CRISPR/Cas9 System. Vet Med (Auckl) 2022; 13:173-190. [PMID: 35983086 PMCID: PMC9379109 DOI: 10.2147/vmrr.s366533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
Abstract
The emergence and spread of multidrug-resistant microbes become a serious threat to animal and human health globally because of their less responsiveness to conventional antimicrobial therapy. Multidrug-resistant microbial infection poses higher morbidity and mortality rate with significant economic losses. Currently, antimicrobial peptides and the CRISPR/Cas9 system are explored as alternative therapy to circumvent the challenges of multidrug-resistant organisms. Antimicrobial peptides are small molecular weight, cationic peptides extracted from all living organisms. It is a promising drug candidate for the treatment of multidrug-resistant microbes by direct microbial killing or indirectly modulating the innate immune system. The CRISPR/Cas9 system is another novel antimicrobial alternative used to manage multidrug-resistant microbial infection. It is a versatile gene-editing tool that uses engineered single guide RNA for targeted gene recognition and the Cas9 enzyme for the destruction of target nucleic acids. Both the CRISPR/Cas9 system and antimicrobial peptides were used to successfully treat nosocomial infections caused by ESKAPE pathogens, which developed resistance to various antimicrobials. Despite, their valuable roles in multidrug-resistant microbial treatments, both the antimicrobial peptides and the CRISPR/Cas systems have various limitations like toxicity, instability, and incurring high manufacturing costs. Thus, this review paper gives detailed explanations of the roles of the CRISPR/Cas9 system and antimicrobial peptides in circumventing the challenges of multidrug-resistant microbial infections, its limitation and prospects in clinical applications.
Collapse
Affiliation(s)
- Yared Abate Getahun
- Livestock and Fishery Research Center, College of Agriculture, Arba Minch University, Arba Minch, Southern Nation Nationalities and Peoples Regional State, Ethiopia
- Correspondence: Yared Abate Getahun, Email
| | - Destaw Asfaw Ali
- Department of Paraclinical Studies, College of Veterinary Medicine, Gondar University, Gondar City, Amhara Regional State, Ethiopia
| | - Bihonegn Wodajnew Taye
- Faculty of Veterinary Medicine, College of Agriculture, Assosa University, Assosa City, Benshangul Gumez Regional State, Ethiopia
| | - Yismaw Alemie Alemayehu
- Department of Animal Science, College of Agriculture, Wollega University, Nekemtie City, Oromia Regional State, Ethiopia
| |
Collapse
|
41
|
Song J, Hu L, Liu B, Jiang N, Huang H, Luo J, Wang L, Zeng J, Huang F, Huang M, Cai L, Tang L, Chen S, Chen Y, Wu A, Zheng S, Chen Q. The Emerging Role of Immune Cells and Targeted Therapeutic Strategies in Diabetic Wounds Healing. J Inflamm Res 2022; 15:4119-4138. [PMID: 35898820 PMCID: PMC9309318 DOI: 10.2147/jir.s371939] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Poor wound healing in individuals with diabetes has long plagued clinicians, and immune cells play key roles in the inflammation, proliferation and remodeling that occur in wound healing. When skin integrity is damaged, immune cells migrate to the wound bed through the actions of chemokines and jointly restore tissue homeostasis and barrier function by exerting their respective biological functions. An imbalance of immune cells often leads to ineffective and disordered inflammatory responses. Due to the maladjusted microenvironment, the wound is unable to smoothly transition to the proliferation and remodeling stage, causing it to develop into a chronic refractory wound. However, chronic refractory wounds consistently lead to negative outcomes, such as long treatment cycles, high hospitalization rates, high medical costs, high disability rates, high mortality rates, and many adverse consequences. Therefore, strategies that promote the rational distribution and coordinated development of immune cells during wound healing are very important for the treatment of diabetic wounds (DW). Here, we explored the following aspects by performing a literature review: 1) the current situation of DW and an introduction to the biological functions of immune cells; 2) the role of immune cells in DW; and 3) existing (or undeveloped) therapies targeting immune cells to promote wound healing to provide new ideas for basic research, clinical treatment and nursing of DW.
Collapse
Affiliation(s)
- Jianying Song
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Lixin Hu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bo Liu
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Nan Jiang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Houqiang Huang
- Department of Nursing, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - JieSi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jing Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Min Huang
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Luyao Cai
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Lingyu Tang
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Shunli Chen
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yinyi Chen
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Silin Zheng
- Department of Nursing, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qi Chen
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
42
|
In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022; 218:135-156. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) attracted attention as potential source of novel antimicrobials. Multi-drug resistant (MDR) infections have emerged as a global threat to public health in recent years. Furthermore, due to rapid emergence of new diseases, there is pressing need for development of efficient antimicrobials. AMPs are essential part of the innate immunity in most living organisms, acting as the primary line of defense against foreign invasions. AMPs kill a wide range of microorganisms by primarily targeting cell membranes or intracellular components through a variety of ways. AMPs can be broadly categorized based on their physico-chemical properties, structure, function, target and source of origin. The synthetic analogues produced either with suitable chemical modifications or with the use of suitable delivery systems are projected to eliminate the constraints of toxicity and poor stability commonly linked with natural AMPs. The concept of peptidomimetics is gaining ground around the world nowadays. Among the delivery systems, nanoparticles are emerging as potential delivery tools for AMPs, amplifying their utility against a variety of pathogens. In the present review, the broad classification of various AMPs, their mechanism of action (MOA), challenges associated with AMPs, current applications, and novel strategies to overcome the limitations have been discussed.
Collapse
|
43
|
Nanomaterials-Based Combinatorial Therapy as a Strategy to Combat Antibiotic Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060794. [PMID: 35740200 PMCID: PMC9220075 DOI: 10.3390/antibiotics11060794] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/10/2023] Open
Abstract
Since the discovery of antibiotics, humanity has been able to cope with the battle against bacterial infections. However, the inappropriate use of antibiotics, the lack of innovation in therapeutic agents, and other factors have allowed the emergence of new bacterial strains resistant to multiple antibiotic treatments, causing a crisis in the health sector. Furthermore, the World Health Organization has listed a series of pathogens (ESKAPE group) that have acquired new and varied resistance to different antibiotics families. Therefore, the scientific community has prioritized designing and developing novel treatments to combat these ESKAPE pathogens and other emergent multidrug-resistant bacteria. One of the solutions is the use of combinatorial therapies. Combinatorial therapies seek to enhance the effects of individual treatments at lower doses, bringing the advantage of being, in most cases, much less harmful to patients. Among the new developments in combinatorial therapies, nanomaterials have gained significant interest. Some of the most promising nanotherapeutics include polymers, inorganic nanoparticles, and antimicrobial peptides due to their bactericidal and nanocarrier properties. Therefore, this review focuses on discussing the state-of-the-art of the most significant advances and concludes with a perspective on the future developments of nanotherapeutic combinatorial treatments that target bacterial infections.
Collapse
|
44
|
Cutaneous Wound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediators Inflamm 2022; 2022:5344085. [PMID: 35509434 PMCID: PMC9061066 DOI: 10.1155/2022/5344085] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/22/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Skin wounds and compromised wound healing are major concerns for the public. Although skin wound healing has been studied for decades, the molecular and cellular mechanisms behind the process are still not completely clear. The systemic responses to trauma involve the body’s inflammatory and immunomodulatory cellular and humoral networks. Studies over the years provided essential insights into a complex and dynamic immunity during the cutaneous wound healing process. This review will focus on innate cell populations involved in the initial phase of this orchestrated process, including innate cells from both the skin and the immune system.
Collapse
|
45
|
Safavi MS, Walsh FC, Visai L, Khalil-Allafi J. Progress in Niobium Oxide-Containing Coatings for Biomedical Applications: A Critical Review. ACS OMEGA 2022; 7:9088-9107. [PMID: 35356687 PMCID: PMC8944537 DOI: 10.1021/acsomega.2c00440] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 05/11/2023]
Abstract
Typically, pure niobium oxide coatings are deposited on metallic substrates, such as commercially pure Ti, Ti6Al4 V alloys, stainless steels, niobium, TiNb alloy, and Mg alloys using techniques such as sputter deposition, sol-gel deposition, anodizing, and wet plasma electrolytic oxidation. The relative advantages and limitations of these coating techniques are considered, with particular emphasis on biomedical applications. The properties of a wide range of pure and modified niobium oxide coatings are illustrated, including their thickness, morphology, microstructure, elemental composition, phase composition, surface roughness and hardness. The corrosion resistance, tribological characteristics and cell viability/proliferation of the coatings are illustrated using data from electrochemical, wear resistance and biological cell culture measurements. Critical R&D needs for the development of improved future niobium oxide coatings, in the laboratory and in practice, are highlighted.
Collapse
Affiliation(s)
- Mir Saman Safavi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
| | - F. C. Walsh
- Electrochemical
Engineering Laboratory & National Centre for Advanced Tribology,
Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Livia Visai
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Jafar Khalil-Allafi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
| |
Collapse
|
46
|
Skwarczynski M, Bashiri S, Yuan Y, Ziora ZM, Nabil O, Masuda K, Khongkow M, Rimsueb N, Cabral H, Ruktanonchai U, Blaskovich MAT, Toth I. Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics (Basel) 2022; 11:412. [PMID: 35326875 PMCID: PMC8944422 DOI: 10.3390/antibiotics11030412] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The development of effective treatments against infectious diseases is an extensive and ongoing process due to the rapid adaptation of bacteria to antibiotic-based therapies. However, appropriately designed activity enhancers, including antibiotic delivery systems, can increase the effectiveness of current antibiotics, overcoming antimicrobial resistance and decreasing the chance of contributing to further bacterial resistance. The activity/delivery enhancers improve drug absorption, allow targeted antibiotic delivery, improve their tissue and biofilm penetration and reduce side effects. This review provides insights into various antibiotic activity enhancers, including polymer, lipid, and silver-based systems, designed to reduce the adverse effects of antibiotics and improve formulation stability and efficacy against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ye Yuan
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zyta M Ziora
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Osama Nabil
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keita Masuda
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Natchanon Rimsueb
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
47
|
Mallick S, Nag M, Lahiri D, Pandit S, Sarkar T, Pati S, Nirmal NP, Edinur HA, Kari ZA, Ahmad Mohd Zain MR, Ray RR. Engineered Nanotechnology: An Effective Therapeutic Platform for the Chronic Cutaneous Wound. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:778. [PMID: 35269266 PMCID: PMC8911807 DOI: 10.3390/nano12050778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
Abstract
The healing of chronic wound infections, especially cutaneous wounds, involves a complex cascade of events demanding mutual interaction between immunity and other natural host processes. Wound infections are caused by the consortia of microbial species that keep on proliferating and produce various types of virulence factors that cause the development of chronic infections. The mono- or polymicrobial nature of surface wound infections is best characterized by its ability to form biofilm that renders antimicrobial resistance to commonly administered drugs due to poor biofilm matrix permeability. With an increasing incidence of chronic wound biofilm infections, there is an urgent need for non-conventional antimicrobial approaches, such as developing nanomaterials that have intrinsic antimicrobial-antibiofilm properties modulating the biochemical or biophysical parameters in the wound microenvironment in order to cause disruption and removal of biofilms, such as designing nanomaterials as efficient drug-delivery vehicles carrying antibiotics, bioactive compounds, growth factor antioxidants or stem cells reaching the infection sites and having a distinct mechanism of action in comparison to antibiotics-functionalized nanoparticles (NPs) for better incursion through the biofilm matrix. NPs are thought to act by modulating the microbial colonization and biofilm formation in wounds due to their differential particle size, shape, surface charge and composition through alterations in bacterial cell membrane composition, as well as their conductivity, loss of respiratory activity, generation of reactive oxygen species (ROS), nitrosation of cysteines of proteins, lipid peroxidation, DNA unwinding and modulation of metabolic pathways. For the treatment of chronic wounds, extensive research is ongoing to explore a variety of nanoplatforms, including metallic and nonmetallic NPs, nanofibers and self-accumulating nanocarriers. As the use of the magnetic nanoparticle (MNP)-entrenched pre-designed hydrogel sheet (MPS) is found to enhance wound healing, the bio-nanocomposites consisting of bacterial cellulose and magnetic nanoparticles (magnetite) are now successfully used for the healing of chronic wounds. With the objective of precise targeting, some kinds of "intelligent" nanoparticles are constructed to react according to the required environment, which are later incorporated in the dressings, so that the wound can be treated with nano-impregnated dressing material in situ. For the effective healing of skin wounds, high-expressing, transiently modified stem cells, controlled by nano 3D architectures, have been developed to encourage angiogenesis and tissue regeneration. In order to overcome the challenge of time and dose constraints during drug administration, the approach of combinatorial nano therapy is adopted, whereby AI will help to exploit the full potential of nanomedicine to treat chronic wounds.
Collapse
Affiliation(s)
- Suhasini Mallick
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Soumya Pandit
- Department of Life Sciences, Sharda University, Noida 201310, India;
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, India;
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore 756001, India;
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation & Research (ABC), Balasore 756001, India
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand;
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | | | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| |
Collapse
|
48
|
Expression of the Antimicrobial Peptide Piscidin 1 and Neuropeptides in Fish Gill and Skin: A Potential Participation in Neuro-Immune Interaction. Mar Drugs 2022; 20:md20020145. [PMID: 35200674 PMCID: PMC8879440 DOI: 10.3390/md20020145] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are found widespread in nature and possess antimicrobial and immunomodulatory activities. Due to their multifunctional properties, these peptides are a focus of growing body of interest and have been characterized in several fish species. Due to their similarities in amino-acid composition and amphipathic design, it has been suggested that neuropeptides may be directly involved in the innate immune response against pathogen intruders. In this review, we report the molecular characterization of the fish-specific AMP piscidin1, the production of an antibody raised against this peptide and the immunohistochemical identification of this peptide and enkephalins in the neuroepithelial cells (NECs) in the gill of several teleost fish species living in different habitats. In spite of the abundant literature on Piscidin1, the biological role of this peptide in fish visceral organs remains poorly explored, as well as the role of the neuropeptides in neuroimmune interaction in fish. The NECs, by their role as sensors of hypoxia changes in the external environments, in combination with their endocrine nature and secretion of immunomodulatory substances would influence various types of immune cells that contain piscidin, such as mast cells and eosinophils, both showing interaction with the nervous system. The discovery of piscidins in the gill and skin, their diversity and their role in the regulation of immune response will lead to better selection of these immunomodulatory molecules as drug targets to retain antimicrobial barrier function and for aquaculture therapy in the future.
Collapse
|
49
|
Prospects and Applications of Natural Blood-Derived Products in Regenerative Medicine. Int J Mol Sci 2021; 23:ijms23010472. [PMID: 35008900 PMCID: PMC8745602 DOI: 10.3390/ijms23010472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Currently, there are a number of therapeutic schemes used for the treatment of various types of musculoskeletal disorders. However, despite the use of new treatment options, therapeutic failure remains common due to impaired and delayed healing, or implant rejection. Faced with this challenge, in recent years regenerative medicine started looking for alternative solutions that could additionally support tissue regeneration. This review aims to outline the functions and possible clinical applications of, and future hopes associated with, using autologous or heterologous products such as antimicrobial peptides (AMPs), microvesicles (MVs), and neutrophil degranulation products (DGP) obtained from circulating neutrophils. Moreover, different interactions between neutrophils and platelets are described. Certain products released from neutrophils are critical for interactions between different immune cells to ensure adequate tissue repair. By acting directly and indirectly on host cells, these neutrophil-derived products can modulate the body’s inflammatory responses in various ways. The development of new formulations based on these products and their clinically proven success would give hope for significant progress in regenerative therapy in human and veterinary medicine.
Collapse
|