1
|
Vindbæk S, Ehrbar S, Worm E, Muren L, Tanadini-Lang S, Petersen J, Balling P, Poulsen P. Motion-induced dose perturbations in photon radiotherapy and proton therapy measured by deformable liver-shaped 3D dosimeters in an anthropomorphic phantom. Phys Imaging Radiat Oncol 2024; 31:100609. [PMID: 39132555 PMCID: PMC11315221 DOI: 10.1016/j.phro.2024.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
Background and purpose The impact of intrafractional motion and deformations on clinical radiotherapy delivery has so far only been investigated by simulations as well as point and planar dose measurements. The aim of this study was to combine anthropomorphic 3D dosimetry with a deformable abdominal phantom to measure the influence of intra-fractional motion and gating in photon radiotherapy and evaluate the applicability in proton therapy. Material and methods An abdominal phantom was modified to hold a deformable anthropomorphic 3D dosimeter shaped as a human liver. A liver-specific photon radiotherapy and a proton pencil beam scanning therapy plan were delivered to the phantom without motion as well as with 12 mm sinusoidal motion while using either no respiratory gating or respiratory gating. Results Using the stationary irradiation as reference the local 3 %/2 mm 3D gamma index pass rate of the motion experiments in the planning target volume (PTV) was above 97 % (photon) and 78 % (proton) with gating whereas it was below 74 % (photon) and 45 % (proton) without gating. Conclusions For the first time a high-resolution deformable anthropomorphic 3D dosimeter embedded in a deformable abdominal phantom was applied for experimental validation of both photon and proton treatments of targets exhibiting respiratory motion. It was experimentally shown that gating improves dose coverage and the geometrical accuracy for both photon radiotherapy and proton therapy.
Collapse
Affiliation(s)
- Simon Vindbæk
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stefanie Ehrbar
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Esben Worm
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Ludvig Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Jørgen Petersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Balling
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Per Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Karger CP, Elter A, Dorsch S, Mann P, Pappas E, Oldham M. Validation of complex radiotherapy techniques using polymer gel dosimetry. Phys Med Biol 2024; 69:06TR01. [PMID: 38330494 DOI: 10.1088/1361-6560/ad278f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Modern radiotherapy delivers highly conformal dose distributions to irregularly shaped target volumes while sparing the surrounding normal tissue. Due to the complex planning and delivery techniques, dose verification and validation of the whole treatment workflow by end-to-end tests became much more important and polymer gel dosimeters are one of the few possibilities to capture the delivered dose distribution in 3D. The basic principles and formulations of gel dosimetry and its evaluation methods are described and the available studies validating device-specific geometrical parameters as well as the dose delivery by advanced radiotherapy techniques, such as 3D-CRT/IMRT and stereotactic radiosurgery treatments, the treatment of moving targets, online-adaptive magnetic resonance-guided radiotherapy as well as proton and ion beam treatments, are reviewed. The present status and limitations as well as future challenges of polymer gel dosimetry for the validation of complex radiotherapy techniques are discussed.
Collapse
Affiliation(s)
- Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Alina Elter
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany
| | - Stefan Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Philipp Mann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Evangelos Pappas
- Radiology & Radiotherapy Sector, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
3
|
Ceberg S, Olding T, Baldock C. Gel dosimetry has a viable future for dosimetry in the radiation oncology clinic. Phys Eng Sci Med 2024; 47:1-5. [PMID: 38112936 DOI: 10.1007/s13246-023-01365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Affiliation(s)
- Sofie Ceberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Tim Olding
- Cancer Centre of Southeastern Ontario at Kingston Health Sciences Centre, Kingston, Canada
- Department of Physics, Queen's University, Kingston, Canada
- Department of Oncology, Queen's University, Kingston, Canada
| | - Clive Baldock
- Graduate Research School, Western Sydney University, Penrith, NSW, 2747, Australia.
| |
Collapse
|
4
|
Knäusl B, Belotti G, Bertholet J, Daartz J, Flampouri S, Hoogeman M, Knopf AC, Lin H, Moerman A, Paganelli C, Rucinski A, Schulte R, Shimizu S, Stützer K, Zhang X, Zhang Y, Czerska K. A review of the clinical introduction of 4D particle therapy research concepts. Phys Imaging Radiat Oncol 2024; 29:100535. [PMID: 38298885 PMCID: PMC10828898 DOI: 10.1016/j.phro.2024.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Background and purpose Many 4D particle therapy research concepts have been recently translated into clinics, however, remaining substantial differences depend on the indication and institute-related aspects. This work aims to summarise current state-of-the-art 4D particle therapy technology and outline a roadmap for future research and developments. Material and methods This review focused on the clinical implementation of 4D approaches for imaging, treatment planning, delivery and evaluation based on the 2021 and 2022 4D Treatment Workshops for Particle Therapy as well as a review of the most recent surveys, guidelines and scientific papers dedicated to this topic. Results Available technological capabilities for motion surveillance and compensation determined the course of each 4D particle treatment. 4D motion management, delivery techniques and strategies including imaging were diverse and depended on many factors. These included aspects of motion amplitude, tumour location, as well as accelerator technology driving the necessity of centre-specific dosimetric validation. Novel methodologies for X-ray based image processing and MRI for real-time tumour tracking and motion management were shown to have a large potential for online and offline adaptation schemes compensating for potential anatomical changes over the treatment course. The latest research developments were dominated by particle imaging, artificial intelligence methods and FLASH adding another level of complexity but also opportunities in the context of 4D treatments. Conclusion This review showed that the rapid technological advances in radiation oncology together with the available intrafractional motion management and adaptive strategies paved the way towards clinical implementation.
Collapse
Affiliation(s)
- Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Belotti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Mischa Hoogeman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Antje C Knopf
- Institut für Medizintechnik und Medizininformatik Hochschule für Life Sciences FHNW, Muttenz, Switzerland
| | - Haibo Lin
- New York Proton Center, New York, NY, USA
| | - Astrid Moerman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Reinhard Schulte
- Division of Biomedical Engineering Sciences, School of Medicine, Loma Linda University
| | - Shing Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kristin Stützer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Xiaodong Zhang
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Katarzyna Czerska
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
5
|
Maeyama T, Hayashi K, Watanabe Y, Ohara M, Nakagawa S. Development of a silicone-based radio-fluorogenic dosimeter using dihydrorhodamine 6G. Phys Med 2023; 114:102684. [PMID: 37778206 DOI: 10.1016/j.ejmp.2023.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
A silicon-based three-dimensional dosimeter can be formed in a free shape without a container and deformed because of its flexibility. Several studies have focused on enhancing its radiological characteristics and assessing its applicability as a quality assurance tool for image-guided and adaptive radiation therapy, considering motion and deformation. Here, we applied a fluorescence probe (dihydrorhodamine 6G, DHR6G) to a silicon elastomer as a new radiosensitive compound that converts nonfluorescent into fluorescent dyes using irradiation, and its fluorescence intensity increases linearly with the absorbed dose. In this study, we demonstrated a cost-effective synthesis method and optimized the composition conditions. The results showed that the DHR6G-SE prepared from 2.2 × 10-3 wt% DHR6G, 0.024 wt% pyridine, and a silicone elastomer (SE) (SILPOT TM 184, base/curing agent = 10/1) exhibited a linear increase in fluorescence with radiation exposure within a dose range of 0-8 Gy and a highly stable sensitivity for as long as 64 h. To demonstrate its container-less characteristics, the possibility of dosimetry for low-energy X-rays using DHR6G-SE was investigated.
Collapse
Affiliation(s)
- Takuya Maeyama
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Kiichiro Hayashi
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Yusuke Watanabe
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Maki Ohara
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-City, Chiba 263-8555, Japan
| | - Seiko Nakagawa
- Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
6
|
Valdetaro LB, Jensen MB, Muren LP, Skyt PS, Petersen JBB, Balling P. Technical note: Temporal and thermal stability of optical response for silicone-based 3D radiochromic dosimeters. Med Phys 2022; 50:2560-2564. [PMID: 36585852 DOI: 10.1002/mp.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Radiochromic silicone-based dosimeters are flexible 3D dosimeters, which at appropriate concentration of leucomalachite green (LMG) and curing agent are dose-rate independent for clinical photon beams. However, their dose response is based on chemical processes that can be influenced by temporal and thermal conditions, impacting measurement stability. PURPOSE The aim of this study was to investigate the temporal stability of the dose response of radiochromic dosimeters for different curing times and post-irradiation storage temperatures. METHODS Six cylindrical dosimeters (5 cm diameter, 5 cm length) were produced in a single batch and separated into two groups that were irradiated 72 and 118 h after production. The same photon plan, consisting of two 10 × 1.6 cm2 opposing fields, was delivered to all dosimeters. After irradiation, the dosimeters were separated into three groups, stored at 5°C, 15°C, and 20°C, and read out for five consecutive days. RESULTS Storage temperature influenced the measurement stability, and changes in the optical response with time differed between irradiated and non-irradiated parts of the dosimeters. The relative change between signal and background was greater than 10% for all measurements performed 24 h or more after irradiation, except for dosimeters stored at 5°C, which changed by 2%-5% after 24 h. The dosimeter temporal stability was not influenced by curing time. CONCLUSIONS For room temperature storage (15°C and 20°C), readout should take place as soon as possible after irradiation since the background color increased rapidly for both curing times (72 and 118 h), whereas the dosimeters are stored at 5°C, readout can be performed up to 24 h after.
Collapse
Affiliation(s)
- Lia Barbosa Valdetaro
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten Bjørn Jensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Ludvig Paul Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jørgen Breede Baltzer Petersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Balling
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Jensen SV, Muren LP, Balling P, Petersen JBB, Valdetaro LB, Poulsen PR. Dose perturbations in proton pencil beam delivery investigated by dynamically deforming silicone-based radiochromic dosimeters. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9fa2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/02/2022] [Indexed: 11/29/2022]
Abstract
Abstract
Objective. Proton therapy with pencil beam delivery enables dose distributions that conform tightly to the shape of a target. However, proton therapy dose delivery is sensitive to motion and deformation, which especially occur in the abdominal and thoracic regions. In this study, the dose perturbation caused by dynamic motion with and without gating during proton pencil beam deliveries were investigated using deformable three-dimensional (3D) silicone-based radiochromic dosimeters. Approach. A spread-out Bragg peak formed by four proton spots with different energies was delivered to two dosimeter batches. All dosimeters were cylindrical with a 50 mm diameter and length. The dosimeters were irradiated stationary while uncompressed and during dynamic compression by sinusoidal motion with peak-to-peak amplitudes of 20 mm in one end of the dosimeter and 10 mm in the other end. Motion experiments were made without gating and with gating near the uncompressed position. The entire experiment was video recorded and simulated in a Monte Carlo (MC) program. Main results. The 2%/2 mm gamma index analysis between the dose measurements and the MC dose simulations had pass rates of 86%–94% (first batch) and 98%–99% (second batch). Compared to the static delivery, the dose delivered during motion had gamma pass rates of 99%–100% when employing gating and 68%–87% without gating in the experiments whereas for the MC simulations it was 100% with gating and 66%–82% without gating. Significance. This study demonstrated the ability of using deformable 3D dosimeters to measure dose perturbations in proton pencil beam deliveries caused by dynamic motion and deformation.
Collapse
|
8
|
de Freitas Nascimento L, Leblans P, van der Heyden B, Akselrod M, Goossens J, Correa Rocha LE, Vaniqui A, Verellen D. Characterisation and Quenching Correction for an Al 2O 3:C Optical Fibre Real Time System in Therapeutic Proton, Helium, and Carbon-Charged Beams. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239178. [PMID: 36501879 DOI: 10.1016/j.sna.2022.113781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 05/24/2023]
Abstract
Real time radioluminescence fibre-based detectors were investigated for application in proton, helium, and carbon therapy dosimetry. The Al2O3:C probes are made of one single crystal (1 mm) and two droplets of micro powder in two sizes (38 μm and 4 μm) mixed with a water-equivalent binder. The fibres were irradiated behind different thicknesses of solid slabs, and the Bragg curves presented a quenching effect attributed to the nonlinear response of the radioluminescence (RL) signal as a function of linear energy transfer (LET). Experimental data and Monte Carlo simulations were utilised to acquire a quenching correction method, adapted from Birks' formulation, to restore the linear dose-response for particle therapy beams. The method for quenching correction was applied and yielded the best results for the '4 μm' optical fibre probe, with an agreement at the Bragg peak of 1.4% (160 MeV), and 1.5% (230 MeV) for proton-charged particles; 2.4% (150 MeV/u) for helium-charged particles and of 4.8% (290 MeV/u) and 2.9% (400 MeV/u) for the carbon-charged particles. The most substantial deviations for the '4 μm' optical fibre probe were found at the falloff regions, with ~3% (protons), ~5% (helium) and 6% (carbon).
Collapse
Affiliation(s)
| | | | | | - Mark Akselrod
- Landauer, Stillwater Crystal Growth Division, Stillwater, OK 74074, USA
| | - Jo Goossens
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Iridium Netwerk, University of Antwerp, 2610 Antwerp, Belgium
| | - Luis Enrique Correa Rocha
- Department of Economics, Ghent University, 9000 Ghent, Belgium
- Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
| | - Ana Vaniqui
- Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
| | - Dirk Verellen
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Iridium Netwerk, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
9
|
de Freitas Nascimento L, Leblans P, van der Heyden B, Akselrod M, Goossens J, Correa Rocha LE, Vaniqui A, Verellen D. Characterisation and Quenching Correction for an Al 2O 3:C Optical Fibre Real Time System in Therapeutic Proton, Helium, and Carbon-Charged Beams. SENSORS (BASEL, SWITZERLAND) 2022; 22:9178. [PMID: 36501879 PMCID: PMC9737660 DOI: 10.3390/s22239178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 05/08/2023]
Abstract
Real time radioluminescence fibre-based detectors were investigated for application in proton, helium, and carbon therapy dosimetry. The Al2O3:C probes are made of one single crystal (1 mm) and two droplets of micro powder in two sizes (38 μm and 4 μm) mixed with a water-equivalent binder. The fibres were irradiated behind different thicknesses of solid slabs, and the Bragg curves presented a quenching effect attributed to the nonlinear response of the radioluminescence (RL) signal as a function of linear energy transfer (LET). Experimental data and Monte Carlo simulations were utilised to acquire a quenching correction method, adapted from Birks' formulation, to restore the linear dose-response for particle therapy beams. The method for quenching correction was applied and yielded the best results for the '4 μm' optical fibre probe, with an agreement at the Bragg peak of 1.4% (160 MeV), and 1.5% (230 MeV) for proton-charged particles; 2.4% (150 MeV/u) for helium-charged particles and of 4.8% (290 MeV/u) and 2.9% (400 MeV/u) for the carbon-charged particles. The most substantial deviations for the '4 μm' optical fibre probe were found at the falloff regions, with ~3% (protons), ~5% (helium) and 6% (carbon).
Collapse
Affiliation(s)
| | | | | | - Mark Akselrod
- Landauer, Stillwater Crystal Growth Division, Stillwater, OK 74074, USA
| | - Jo Goossens
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Iridium Netwerk, University of Antwerp, 2610 Antwerp, Belgium
| | - Luis Enrique Correa Rocha
- Department of Economics, Ghent University, 9000 Ghent, Belgium
- Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
| | - Ana Vaniqui
- Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
| | - Dirk Verellen
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Iridium Netwerk, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
10
|
Optically stimulated luminescence in state-of-the-art LYSO:Ce scintillators enables high spatial resolution 3D dose imaging. Sci Rep 2022; 12:8301. [PMID: 35585168 PMCID: PMC9117671 DOI: 10.1038/s41598-022-12255-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
In this contribution, we study the optically stimulated luminescence (OSL) exhibited by commercial \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Lu}_{(2-x)}\hbox {Y}_x\hbox {SiO}_5$$\end{document}Lu(2-x)YxSiO5:Ce crystals. This photon emission mechanism, complementary to scintillation, can trap a fraction of radiation energy deposited in the material and provides sufficient signal to develop a novel post-irradiation 3D dose readout. We characterize the OSL emission through spectrally and temporally resolved measurements and monitor the dose linearity response over a broad range. The measurements show that the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Ce}^{3+}$$\end{document}Ce3+ centers responsible for scintillation also function as recombination centers for the OSL mechanism. The capture to OSL-active traps competes with scintillation originating from the direct non-radiative energy transfer to the luminescent centers. An OSL response on the order of 100 ph/MeV is estimated. We demonstrate the imaging capabilities provided by such an OSL photon yield using a proof-of-concept optical readout method. A 0.1 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {mm}^3$$\end{document}mm3 spatial resolution for doses as low as 0.5 Gy is projected using a cubic crystal to image volumetric dose profiles. While OSL degrades the intrinsic scintillating performance by reducing the number of scintillation photons emitted following the passage of ionizing radiation, it can encode highly resolved spatial information of the interaction point of the particle. This feature combines ionizing radiation spectroscopy and 3D reusable dose imaging in a single material.
Collapse
|
11
|
Nielsen CL, Turtos RM, Bondesgaard M, Nyemann JS, Jensen ML, Iversen BB, Muren LP, Julsgaard B, Balling P. A Novel Nanocomposite Material for Optically Stimulated Luminescence Dosimetry. NANO LETTERS 2022; 22:1566-1572. [PMID: 35130696 DOI: 10.1021/acs.nanolett.1c04384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Radiotherapy is a well-established and important treatment for cancer tumors, and advanced technologies can deliver doses in complex three-dimensional geometries tailored to each patient's specific anatomy. A 3D dosimeter, based on optically stimulated luminescence (OSL), could provide a high accuracy and reusable tool for verifying such dose delivery. Nanoparticles of an OSL material embedded in a transparent matrix have previously been proposed as an inexpensive dosimeter, which can be read out using laser-based methods. Here, we show that Cu-doped LiF nanocubes (nano-LiF:Cu) are excellent candidates for 3D OSL dosimetry owing to their high sensitivity, dose linearity, and stability at ambient conditions. We demonstrate a scalable synthesis technique producing a material with the attractive properties of a single dosimetric trap and a single near-ultraviolet emission line well separated from visible-light stimulation sources. The observed transparency and light yield of silicone sheets with embedded nanocubes hold promise for future 3D OSL-based dosimetry.
Collapse
Affiliation(s)
- Camilla L Nielsen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Rosana M Turtos
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Jacob S Nyemann
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Mads L Jensen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Bo B Iversen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Ludvig P Muren
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Danish Center for Proton Therapy, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Brian Julsgaard
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Peter Balling
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Jensen MB, B. Valdetaro L, Balling P, Skyt PS, Petersen JBB, Doran SJ, Sitarz MK, Muren LP. Impact of curing conditions on basic dosimetric properties of silicone-based radiochromic dosimeters for photon and proton irradiation. Acta Oncol 2022; 61:264-268. [PMID: 35037549 DOI: 10.1080/0284186x.2021.2022203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Morten B. Jensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Lia B. Valdetaro
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Balling
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Peter S. Skyt
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Mateusz K. Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Ludvig P. Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Valdetaro LB, Høye EM, Skyt PS, Petersen JBB, Balling P, Muren LP. Empirical quenching correction in radiochromic silicone-based three-dimensional dosimetry of spot-scanning proton therapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 18:11-18. [PMID: 34258402 PMCID: PMC8254200 DOI: 10.1016/j.phro.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 11/24/2022]
Abstract
Background and purpose Three-dimensional dosimetry of proton therapy (PT) with chemical dosimeters is challenged by signal quenching, which is a lower dose-response in regions with high ionization density due to high linear-energy-transfer (LET) and dose-rate. This study aimed to assess the viability of an empirical correction model for 3D radiochromic silicone-based dosimeters irradiated with spot-scanning PT, by parametrizing its LET and dose-rate dependency. Materials and methods Ten cylindrical radiochromic dosimeters (Ø50 and Ø75 mm) were produced in-house, and irradiated with different spot-scanning proton beam configurations and machine-set dose rates ranging from 56 to 145 Gy/min. Beams with incident energies of 75, 95 and 120 MeV, a spread-out Bragg peak and a plan optimized to an irregular target volume were included. Five of the dosimeters, irradiated with 120 MeV beams, were used to estimate the quenching correction factors. Monte Carlo simulations were used to obtain dose and dose-averaged-LET (LETd) maps. Additionally, a local dose-rate map was estimated, using the simulated dose maps and the machine-set dose-rate information retrieved from the irradiation log-files. Finally, the correction factor was estimated as a function of LETd and local dose-rate and tested on the different fields. Results Gamma-pass-rates of the corrected measurements were >94% using a 3%-3 mm gamma analysis and >88% using 2%-2 mm, with a dose deviation of <5.6 ± 1.8%. Larger dosimeters showed a 20% systematic increase in dose-response, but the same quenching in signal when compared to the smaller dosimeters. Conclusion The quenching correction model was valid for different dosimeter sizes to obtain relative dosimetric maps of complex dose distributions in PT.
Collapse
Affiliation(s)
- Lia Barbosa Valdetaro
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Ellen Marie Høye
- Department of Oncology and Medical Physics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Peter Sandegaard Skyt
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | | | - Peter Balling
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Ludvig Paul Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.,Medical Physics, Department of Oncology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|