1
|
Wang N, Fan J, Xu Y, Yan L, Chen D, Wang W, Men K, Dai J, Liu Z. Clinical implementation and evaluation of deep learning-assisted automatic radiotherapy treatment planning for lung cancer. Phys Med 2024; 124:104492. [PMID: 39094213 DOI: 10.1016/j.ejmp.2024.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE The purpose of the study is to investigate the clinical application of deep learning (DL)-assisted automatic radiotherapy planning for lung cancer. METHODS A DL model was developed for predicting patient-specific doses, trained and validated on a dataset of 235 patients with diverse target volumes and prescriptions. The model was integrated into clinical workflow with DL-predicted objective functions. The automatic plans were retrospectively designed for additional 50 treated manual volumetric modulated arc therapy (VMAT) plans. A comparison was made between automatic and manual plans in terms of dosimetric indexes, monitor units (MUs) and planning time. Plan quality metric (PQM) encompassing these indexes was evaluated, with higher PQM values indicating superior plan quality. Qualitative evaluations of two plans were conducted by four reviewers. RESULTS The PQM score was 40.7 ± 13.1 for manual plans and 40.8 ± 13.5 for automatic plans (P = 0.75). Compared to manual plans, the targets coverage and homogeneity of automatic plans demonstrated no significant difference. Manual plans exhibited better sparing for lung in V5 (difference: 1.8 ± 4.2 %, P = 0.02), whereas automatic plans showed enhanced sparing for heart in V30 (difference: 1.4 ± 4.7 %, P = 0.02) and for spinal cord in Dmax (difference: 0.7 ± 4.7 Gy, P = 0.04). The planning time and MUs of automatic plans were significantly reduced by 70.5 ± 20.0 min and 97.4 ± 82.1. Automatic plans were deemed acceptable in 88 % of the reviews (176/200). CONCLUSIONS The DL-assisted approach for lung cancer notably decreased planning time and MUs, while demonstrating comparable or superior quality relative to manual plans. It has the potential to provide benefit to lung cancer patients.
Collapse
Affiliation(s)
- Ningyu Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jiawei Fan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Clinical Research Center for Radiation Oncology, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China.
| | - Yingjie Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Lingling Yan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Deqi Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenqing Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kuo Men
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jianrong Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Zhiqiang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
2
|
Miszczyk M, Wu T, Kuna K, Stankiewicz M, Staniewska E, Nowicka Z, Chen Z, Mell LK, Widder J, Schmidt M, Tarnawski R, Rajwa P, Shariat SF, Zhou P. Clinical outcomes of pelvic bone marrow sparing radiotherapy for cervical cancer: A systematic review and meta-analysis of randomised controlled trials. Clin Transl Radiat Oncol 2024; 47:100801. [PMID: 38946805 PMCID: PMC11214291 DOI: 10.1016/j.ctro.2024.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Background Concurrent chemoradiotherapy (CRT) is the standard treatment for locally advanced cervical cancer. We investigated how additional bone marrow sparing (BMS) affects the clinical outcomes. Methods We queried MEDLINE, Embase, Web of Science Core Collection, Google Scholar, Sinomed, CNKI, and Wanfang databases for articles published in English or Chinese between 2010/01/01 and 2023/10/31. Full-text manuscripts of prospective, randomised trials on BMS in cervical cancer patients treated with definitive or postoperative CRT were included. Risk of bias (RoB) was assessed using Cochrane Collaboration's RoB tool. Random-effects models were used for the meta-analysis. Results A total of 17 trials encompassing 1297 patients were included. The majority were single-centre trials (n = 1268) performed in China (n = 1128). Most trials used CT-based anatomical BMS (n = 1076). There was a comparable representation of trials in the definitive (n = 655) and postoperative (n = 582) settings, and the remaining trials included both.Twelve studies reported data on G ≥ 3 (n = 782) and G ≥ 2 (n = 754) haematologic adverse events. Both G ≥ 3 (OR 0.39; 95 % CI 0.28-0.55; p < 0.001) and G ≥ 2 (OR 0.29; 95 % CI 0.18-0.46; p < 0.001) toxicity were significantly lowered, favouring BMS. Seven studies (n = 635) reported data on chemotherapy interruptions, defined as receiving less than five cycles of cisplatin, which were significantly less frequent in patients treated with BMS (OR 0.44; 95 % CI 0.24-0.81; p = 0.016). There was no evidence of increased gastrointestinal or genitourinary toxicity.There were no signs of significant heterogeneity. Four studies were assessed as high RoB; sensitivity analyses excluding these provided comparable results for main outcomes. The main limitations include heterogeneity in BMS methodology between studies, low representation of populations most affected by cervical cancer, and insufficient data to assess survival outcomes. Conclusions The addition of BMS to definitive CRT in cervical cancer patients decreases hematologic toxicity and the frequency of interruptions in concurrent chemotherapy. However, data are insufficient to verify the impact on survival and disease control.
Collapse
Affiliation(s)
- Marcin Miszczyk
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Collegium Medicum - Faculty of Medicine, WSB University, Dąbrowa Górnicza, Poland
| | - Tao Wu
- Department of Oncology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| | - Kasper Kuna
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Magdalena Stankiewicz
- Brachytherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Gliwice, Poland
| | - Emilia Staniewska
- III Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Gliwice, Poland
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Ziqin Chen
- Department of Hematological Oncology, No.1 Traditional Chinese Medicine Hospital in Changde, Changde, China
| | - Loren K. Mell
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Joachim Widder
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Maximilian Schmidt
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Rafał Tarnawski
- III Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Gliwice, Poland
| | - Paweł Rajwa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Silesia, Zabrze, Poland
| | - Shahrokh F. Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
- Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Division of Urology, Department of Special Surgery, University of Jordan, Amman, Jordan
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
- Department of Urology, University of Texas Southwestern, Dallas, TX, USA
- Research Centre for Evidence Medicine, Urology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pixiao Zhou
- Department of Oncology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| |
Collapse
|
3
|
Baydoun A, Jia AY, Zaorsky NG, Kashani R, Rao S, Shoag JE, Vince RA, Bittencourt LK, Zuhour R, Price AT, Arsenault TH, Spratt DE. Artificial intelligence applications in prostate cancer. Prostate Cancer Prostatic Dis 2024; 27:37-45. [PMID: 37296271 DOI: 10.1038/s41391-023-00684-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Artificial intelligence (AI) applications have enabled remarkable advancements in healthcare delivery. These AI tools are often aimed to improve accuracy and efficiency of histopathology assessment and diagnostic imaging interpretation, risk stratification (i.e., prognostication), and prediction of therapeutic benefit for personalized treatment recommendations. To date, multiple AI algorithms have been explored for prostate cancer to address automation of clinical workflow, integration of data from multiple domains in the decision-making process, and the generation of diagnostic, prognostic, and predictive biomarkers. While many studies remain within the pre-clinical space or lack validation, the last few years have witnessed the emergence of robust AI-based biomarkers validated on thousands of patients, and the prospective deployment of clinically-integrated workflows for automated radiation therapy design. To advance the field forward, multi-institutional and multi-disciplinary collaborations are needed in order to prospectively implement interoperable and accountable AI technology routinely in clinic.
Collapse
Affiliation(s)
- Atallah Baydoun
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Angela Y Jia
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rojano Kashani
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Santosh Rao
- Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Randy A Vince
- Department of Urology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Leonardo Kayat Bittencourt
- Department of Radiology, University Hospitals Cleveland Medical Center Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Raed Zuhour
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Alex T Price
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Theodore H Arsenault
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Tengler B, Künzel LA, Hagmüller M, Mönnich D, Boeke S, Wegener D, Gani C, Zips D, Thorwarth D. Full daily re-optimization improves plan quality during online adaptive radiotherapy. Phys Imaging Radiat Oncol 2024; 29:100534. [PMID: 38298884 PMCID: PMC10827578 DOI: 10.1016/j.phro.2024.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Background and purpose Daily online treatment plan adaptation requires a fast workflow and planning process. Current online planning consists of adaptation of a predefined reference plan, which might be suboptimal in cases of large anatomic changes. The aim of this study was to investigate plan quality differences between the current online re-planning approach and a complete re-optimization. Material and methods Magnetic resonance linear accelerator reference plans for ten prostate cancer patients were automatically generated using particle swarm optimization (PSO). Adapted plans were created for each fraction using (1) the current re-planning approach and (2) full PSO re-optimization and evaluated overall compliance with institutional dose-volume criteria compared to (3) clinically delivered fractions. Relative volume differences between reference and daily anatomy were assessed for planning target volumes (PTV60, PTV57.6), rectum and bladder and correlated with dose-volume results. Results The PSO approach showed significantly higher adherence to dose-volume criteria than the reference approach and clinical fractions (p < 0.001). In 74 % of PSO plans at most one criterion failed compared to 56 % in the reference approach and 41 % in clinical plans. A fair correlation between PTV60 D98% and relative bladder volume change was observed for the reference approach. Bladder volume reductions larger than 50 % compared to the reference plan recurrently decreased PTV60 D98% below 56 Gy. Conclusion Complete re-optimization maintained target coverage and organs at risk sparing even after large anatomic variations. Re-planning based on daily magnetic resonance imaging was sufficient for small variations, while large variations led to decreasing target coverage and organ-at-risk sparing.
Collapse
Affiliation(s)
- Benjamin Tengler
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Luise A. Künzel
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Markus Hagmüller
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - David Mönnich
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Daniel Wegener
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| |
Collapse
|
5
|
Guckenberger M, Andratschke N, Chung C, Fuller D, Tanadini-Lang S, Jaffray DA. The Future of MR-Guided Radiation Therapy. Semin Radiat Oncol 2024; 34:135-144. [PMID: 38105088 DOI: 10.1016/j.semradonc.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Magnetic resonance image guided radiation therapy (MRIgRT) is a relatively new technology that has already shown outcomes benefits but that has not yet reached its clinical potential. The improved soft-tissue contrast provided with MR, coupled with the immediacy of image acquisition with respect to the treatment, enables expansion of on-table adaptive protocols, currently at a cost of increased treatment complexity, use of human resources, and longer treatment slot times, which translate to decreased throughput. Many approaches are being investigated to meet these challenges, including the development of artificial intelligence (AI) algorithms to accelerate and automate much of the workflow and improved technology that parallelizes workflow tasks, as well as improvements in image acquisition speed and quality. This article summarizes limitations of current available integrated MRIgRT systems and gives an outlook about scientific developments to further expand the use of MRIgRT.
Collapse
Affiliation(s)
- Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland..
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Caroline Chung
- Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dave Fuller
- Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - David A Jaffray
- Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Funderud M, Hoem IS, Guleng MAD, Eidem M, Almberg SS, Alsaker MD, Ståhl-Kornerup J, Frengen J, Marthinsen ABL. Script-based automatic radiotherapy planning for cervical cancer. Acta Oncol 2023; 62:1798-1807. [PMID: 37881003 DOI: 10.1080/0284186x.2023.2267171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/01/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND This study aimed to develop fully automated script-based radiotherapy treatment plans for cervical cancer patients, and evaluate them against clinically accepted plans, as validation before clinical implementation. MATERIAL AND METHODS In this retrospective planning study, treatment plans for 25 locally advanced cervical cancer (LACC) patients with up to three dose levels were included. Fully automated plans were created using an in-house developed Python script in RayStation, and compared to clinically accepted manually made plans. Quantitatively, relevant dose statistics were compared, and average dose volume histograms (DVHs) were analyzed. Qualitatively, a blinded plan comparison was conducted between the clinical and automatic plans. The accuracy of treatment plan delivery was verified with the Delta4 Phantom+. RESULTS The quantitative evaluation showed that target coverage was acceptable for all the automatic and clinical plans. The automatic plans were significantly more conformal than the clinical plans; median of 1.03 vs. 1.12. Mean doses to almost all organs at risk (OARs) were reduced in the automatic plans, with a median reduction of between 0.6 Gy and 1.9 Gy. In the blinded plan comparison, the automatic plans were the preferred plans or of equal quality as the clinical plans in 99% of the cases. In addition, plan delivery was excellent, with a mean gamma passing rate of 99.8%. Complete script-based plans were generated in 30-45 min; about four to ten times faster than manually made plans. CONCLUSION The automatic plans had acceptable target coverage, lower doses to almost all OARs, more conformal dose distributions, and were predominantly preferred by the clinicians. Based on these results, our institution has implemented the script for clinical use.
Collapse
Affiliation(s)
- Marit Funderud
- Department of Radiotherapy, St. Olavs Hospital, Trondheim, Norway
| | - Ingvild Straumsheim Hoem
- Department of Radiotherapy, St. Olavs Hospital, Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Monika Eidem
- Department of Radiotherapy, St. Olavs Hospital, Trondheim, Norway
| | | | | | | | - Jomar Frengen
- Department of Radiotherapy, St. Olavs Hospital, Trondheim, Norway
| | - Anne Beate Langeland Marthinsen
- Department of Radiotherapy, St. Olavs Hospital, Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
7
|
Özer Ö, Shafi H, O'Reilly D, Loiseau C, Dejean C, Bourhis J, Thariat J. Need for standardization in the use of structures in the intensity-modulated radiation therapy planning of head and neck cancers, a GORTEC study. Radiother Oncol 2023; 188:109895. [PMID: 37659657 DOI: 10.1016/j.radonc.2023.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Most radiotherapy structures contoured on CT scans during IMRT planning are defined by the ICRU, forming part of standard practice. Associated dose-volume constraints serve as parameters for dose computation algorithms to produce optimized dose maps. On the ground, however, physicists/dosimetrists routinely delineate auxiliary "non-standard" radiotherapy structures (nsRS). MATERIALS/METHODS From 287 patients' data, five categories of nsRS were identified. Inter-center, inter-patient variability, and temporal trends in nsRS use were investigated. Relation of nsRS with topological complexity, plan quality, calculated quality assurance (QA) and expert QA, was investigated using machine learning classification. RESULTS nsRS accounted for 19.2% of all structures. Average number of nsRS per patient was 8.92 ± 6.70. Variation coefficient across centers was > 70% for nsRS frequency. There was no effect of patient volume per center on averaged nsRS number between low, intermediate, and high-volume centers. No temporal trends in nsRS use were detected at the high-volume centers, except for an increase in 'forced-dose' nsRS (p = 3.08 × (10)^(-5)) at one center. Machine learning prediction accuracy including nsRS features were 0.70 ± 0.06 for topological complexity, 0.58 ± 0.05 for calculated QA and 0.72 ± 0.05 for expert QA. CONCLUSION Use of nsRS is frequent but heterogeneous and should be standardized further in line with ICRU initiatives in IMRT planning. Use of nsRS should be documented with respect to the need for nsRS from dose computation algorithms of treatment planning systems and IMRT machines in terms of modulation capacity and plan robustness.
Collapse
Affiliation(s)
- Özgür Özer
- Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000 Caen, France
| | - Hanaan Shafi
- Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000 Caen, France
| | - David O'Reilly
- Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000 Caen, France
| | - Cedric Loiseau
- Department of Radiotherapy, Centre François-Baclesse, Caen, France
| | - Catherine Dejean
- Department of Radiotherapy, Centre Antoine Lacassagne, Nice, France
| | - Jean Bourhis
- Department of Radiation Oncology, Department of Oncology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Juliette Thariat
- Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000 Caen, France; Department of Radiotherapy, Centre François-Baclesse, Caen, France.
| |
Collapse
|
8
|
De Kerf G, Claessens M, Raouassi F, Mercier C, Stas D, Ost P, Dirix P, Verellen D. A geometry and dose-volume based performance monitoring of artificial intelligence models in radiotherapy treatment planning for prostate cancer. Phys Imaging Radiat Oncol 2023; 28:100494. [PMID: 37809056 PMCID: PMC10550805 DOI: 10.1016/j.phro.2023.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Background and Purpose Clinical Artificial Intelligence (AI) implementations lack ground-truth when applied on real-world data. This study investigated how combined geometrical and dose-volume metrics can be used as performance monitoring tools to detect clinically relevant candidates for model retraining. Materials and Methods Fifty patients were analyzed for both AI-segmentation and planning. For AI-segmentation, geometrical (Standard Surface Dice 3 mm and Local Surface Dice 3 mm) and dose-volume based parameters were calculated for two organs (bladder and anorectum) to compare AI output against the clinically corrected structure. A Local Surface Dice was introduced to detect geometrical changes in the vicinity of the target volumes, while an Absolute Dose Difference (ADD) evaluation increased focus on dose-volume related changes. AI-planning performance was evaluated using clinical goal analysis in combination with volume and target overlap metrics. Results The Local Surface Dice reported equal or lower values compared to the Standard Surface Dice (anorectum: (0.93 ± 0.11) vs (0.98 ± 0.04); bladder: (0.97 ± 0.06) vs (0.98 ± 0.04)). The ADD metric showed a difference of (0.9 ± 0.8)Gy for the anorectum D 1 cm 3 . The bladder D 5cm 3 reported a difference of (0.7 ± 1.5)Gy. Mandatory clinical goals were fulfilled in 90 % of the DLP plans. Conclusions Combining dose-volume and geometrical metrics allowed detection of clinically relevant changes, applied to both auto-segmentation and auto-planning output and the Local Surface Dice was more sensitive to local changes compared to the Standard Surface Dice. This monitoring is able to evaluate AI behavior in clinical practice and allows candidate selection for active learning.
Collapse
Affiliation(s)
- Geert De Kerf
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
| | - Michaël Claessens
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
- Centre for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Fadoua Raouassi
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
| | - Carole Mercier
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
- Centre for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Daan Stas
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Piet Ost
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
- Centre for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Piet Dirix
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
- Centre for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Dirk Verellen
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
- Centre for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
9
|
Caricato P, Trivellato S, Pellegrini R, Montanari G, Daniotti MC, Bordigoni B, Faccenda V, Panizza D, Meregalli S, Bonetto E, Voet P, Arcangeli S, De Ponti E. Updating approach for lexicographic optimization-based planning to improve cervical cancer plan quality. Discov Oncol 2023; 14:180. [PMID: 37775613 PMCID: PMC10541351 DOI: 10.1007/s12672-023-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND To investigate the capability of a not-yet commercially available fully automated lexicographic optimization (LO) planning algorithm, called mCycle (Elekta AB, Stockholm, Sweden), to further improve the plan quality of an already-validated Wish List (WL) pushing on the organs-at-risk (OAR) sparing without compromising target coverage and plan delivery accuracy. MATERIAL AND METHODS Twenty-four mono-institutional consecutive cervical cancer Volumetric-Modulated Arc Therapy (VMAT) plans delivered between November 2019 and April 2022 (50 Gy/25 fractions) have been retrospectively selected. In mCycle the LO planning algorithm was combined with the a-priori multi-criterial optimization (MCO). Two versions of WL have been defined to reproduce manual plans (WL01), and to improve the OAR sparing without affecting minimum target coverage and plan delivery accuracy (WL02). Robust WLs have been tuned using a subset of 4 randomly selected patients. The remaining plans have been automatically re-planned by using the designed WLs. Manual plans (MP) and mCycle plans (mCP01 and mCP02) were compared in terms of dose distributions, complexity, delivery accuracy, and clinical acceptability. Two senior physicians independently performed a blind clinical evaluation, ranking the three competing plans. Furthermore, a previous defined global quality index has been used to gather into a single score the plan quality evaluation. RESULTS The WL tweaking requests 5 and 3 working days for the WL01 and the WL02, respectively. The re-planning took in both cases 3 working days. mCP01 best performed in terms of target coverage (PTV V95% (%): MP 98.0 [95.6-99.3], mCP01 99.2 [89.7-99.9], mCP02 96.9 [89.4-99.5]), while mCP02 showed a large OAR sparing improvement, especially in the rectum parameters (e.g., Rectum D50% (Gy): MP 41.7 [30.2-47.0], mCP01 40.3 [31.4-45.8], mCP02 32.6 [26.9-42.6]). An increase in plan complexity has been registered in mCPs without affecting plan delivery accuracy. In the blind comparisons, all automated plans were considered clinically acceptable, and mCPs were preferred over MP in 90% of cases. Globally, automated plans registered a plan quality score at least comparable to MP. CONCLUSIONS This study showed the flexibility of the Lexicographic approach in creating more demanding Wish Lists able to potentially minimize toxicities in RT plans.
Collapse
Affiliation(s)
- Paolo Caricato
- Medical Physics Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy.
- Department of Physics, University of Milan, Milan, Italy.
| | - Sara Trivellato
- Medical Physics Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | | | - Gianluca Montanari
- Medical Physics Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Martina Camilla Daniotti
- Medical Physics Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Department of Physics, University of Milan, Milan, Italy
| | - Bianca Bordigoni
- Medical Physics Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Department of Physics, University of Milano Bicocca, Milan, Italy
| | - Valeria Faccenda
- Medical Physics Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Department of Physics, University of Milan, Milan, Italy
| | - Denis Panizza
- Medical Physics Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Sofia Meregalli
- School of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
- Department of Radiation Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Elisa Bonetto
- Department of Radiation Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Peter Voet
- Research Clinical Liaison, Elekta AB, Stockholm, Sweden
| | - Stefano Arcangeli
- School of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
- Department of Radiation Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Elena De Ponti
- Medical Physics Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| |
Collapse
|
10
|
Scaggion A, Fusella M, Cavinato S, Dusi F, El Khouzai B, Germani A, Pivato N, Rossato MA, Roggio A, Scott A, Sepulcri M, Zandonà R, Paiusco M. Updating a clinical Knowledge-Based Planning prediction model for prostate radiotherapy. Phys Med 2023; 107:102542. [PMID: 36780793 DOI: 10.1016/j.ejmp.2023.102542] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Clinical knowledge-based planning (KBP) models dedicated to prostate radiotherapy treatment may require periodical updates to remain relevant and to adapt to possible changes in the clinic. This study proposes a paired comparison of two different update approaches through a longitudinal analysis. MATERIALS AND METHODS A clinically validated KBP model for moderately hypofractionated prostate therapy was periodically updated using two approaches: one was targeted at achieving the biggest library size (Mt), while the other one at achieving the highest mean sample quality (Rt). Four subsequent updates were accomplished. The goodness, robustness and quality of the outcomes were measured and compared to those of the common ancestor. Plan quality was assessed through the Plan Quality Metric (PQM) and plan complexity was monitored. RESULTS Both update procedures allowed for an increase in the OARs sparing between +3.9 % and +19.2 % compared to plans generated by a human planner. Target coverage and homogeneity slightly reduced [-0.2 %;-14.7 %] while plan complexity showed only minor changes. Increasing the sample size resulted in more reliable predictions and improved goodness-of-fit, while increasing the mean sample quality improved the outcomes but slightly reduced the models reliability. CONCLUSIONS Repeated updates of clinical KBP models can enhance their robustness, reliability and the overall quality of automatically generated plans. The periodical expansion of the model sample accompanied by the removal of the unacceptable low quality plans should maximize the benefits of the updates while limiting the associated workload.
Collapse
Affiliation(s)
- Alessandro Scaggion
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy.
| | - Marco Fusella
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Samuele Cavinato
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy; Dipartimento di Fisica e Astronomia 'G. Galilei', Università degli Studi di Padova, Padova, Italy
| | - Francesca Dusi
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Badr El Khouzai
- Radiation Oncology Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Alessandra Germani
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Nicola Pivato
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Marco Andrea Rossato
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Antonella Roggio
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Anthony Scott
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Matteo Sepulcri
- Radiation Oncology Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Roberto Zandonà
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Marta Paiusco
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| |
Collapse
|
11
|
Babier A, Mahmood R, Zhang B, Alves VGL, Barragán-Montero AM, Beaudry J, Cardenas CE, Chang Y, Chen Z, Chun J, Diaz K, Eraso HD, Faustmann E, Gaj S, Gay S, Gronberg M, Guo B, He J, Heilemann G, Hira S, Huang Y, Ji F, Jiang D, Giraldo JCJ, Lee H, Lian J, Liu S, Liu KC, Marrugo J, Miki K, Nakamura K, Netherton T, Nguyen D, Nourzadeh H, Osman AFI, Peng Z, Muñoz JDQ, Ramsl C, Rhee DJ, Rodriguez JD, Shan H, Siebers JV, Soomro MH, Sun K, Hoyos AU, Valderrama C, Verbeek R, Wang E, Willems S, Wu Q, Xu X, Yang S, Yuan L, Zhu S, Zimmermann L, Moore KL, Purdie TG, McNiven AL, Chan TCY. OpenKBP-Opt: an international and reproducible evaluation of 76 knowledge-based planning pipelines. Phys Med Biol 2022; 67:10.1088/1361-6560/ac8044. [PMID: 36093921 PMCID: PMC10696540 DOI: 10.1088/1361-6560/ac8044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022]
Abstract
Objective.To establish an open framework for developing plan optimization models for knowledge-based planning (KBP).Approach.Our framework includes radiotherapy treatment data (i.e. reference plans) for 100 patients with head-and-neck cancer who were treated with intensity-modulated radiotherapy. That data also includes high-quality dose predictions from 19 KBP models that were developed by different research groups using out-of-sample data during the OpenKBP Grand Challenge. The dose predictions were input to four fluence-based dose mimicking models to form 76 unique KBP pipelines that generated 7600 plans (76 pipelines × 100 patients). The predictions and KBP-generated plans were compared to the reference plans via: the dose score, which is the average mean absolute voxel-by-voxel difference in dose; the deviation in dose-volume histogram (DVH) points; and the frequency of clinical planning criteria satisfaction. We also performed a theoretical investigation to justify our dose mimicking models.Main results.The range in rank order correlation of the dose score between predictions and their KBP pipelines was 0.50-0.62, which indicates that the quality of the predictions was generally positively correlated with the quality of the plans. Additionally, compared to the input predictions, the KBP-generated plans performed significantly better (P< 0.05; one-sided Wilcoxon test) on 18 of 23 DVH points. Similarly, each optimization model generated plans that satisfied a higher percentage of criteria than the reference plans, which satisfied 3.5% more criteria than the set of all dose predictions. Lastly, our theoretical investigation demonstrated that the dose mimicking models generated plans that are also optimal for an inverse planning model.Significance.This was the largest international effort to date for evaluating the combination of KBP prediction and optimization models. We found that the best performing models significantly outperformed the reference dose and dose predictions. In the interest of reproducibility, our data and code is freely available.
Collapse
Affiliation(s)
- Aaron Babier
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | - Rafid Mahmood
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Binghao Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Victor G L Alves
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, VA, United States of America
| | | | - Joel Beaudry
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Carlos E Cardenas
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Yankui Chang
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zijie Chen
- Shenying Medical Technology Co., Ltd., Shenzhen, Guangdong, People’s Republic of China
| | - Jaehee Chun
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kelly Diaz
- Department of Physics, National University of Colombia, Medellín, Colombia
| | - Harold David Eraso
- Department of Physics, National University of Colombia, Medellín, Colombia
| | - Erik Faustmann
- Atominstitut, Vienna University of Technology, Vienna, Austria
| | - Sibaji Gaj
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States of America
| | - Skylar Gay
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Mary Gronberg
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Bingqi Guo
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, United States of America
| | - Junjun He
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Gerd Heilemann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Sanchit Hira
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Yuliang Huang
- Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Fuxin Ji
- Department of Electrical Engineering and Automation, Anhui University, Hefei, People’s Republic of China
| | - Dashan Jiang
- Department of Electrical Engineering and Automation, Anhui University, Hefei, People’s Republic of China
| | | | - Hoyeon Lee
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jun Lian
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shuolin Liu
- Department of Electrical Engineering and Automation, Anhui University, Hefei, People’s Republic of China
| | - Keng-Chi Liu
- Department of Medical Imaging, Taiwan AI Labs, Taipei, Taiwan
| | - José Marrugo
- Department of Physics, National University of Colombia, Medellín, Colombia
| | - Kentaro Miki
- Department Of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kunio Nakamura
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States of America
| | - Tucker Netherton
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Hamidreza Nourzadeh
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | | | - Zhao Peng
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, People’s Republic of China
| | | | - Christian Ramsl
- Atominstitut, Vienna University of Technology, Vienna, Austria
| | - Dong Joo Rhee
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | | - Hongming Shan
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, People’s Republic of China
| | - Jeffrey V Siebers
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Mumtaz H Soomro
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Kay Sun
- Studio Vodels, Atlanta, GA, United States of America
| | - Andrés Usuga Hoyos
- Department of Physics, National University of Colombia, Medellín, Colombia
| | - Carlos Valderrama
- Department of Physics, National University of Colombia, Medellín, Colombia
| | - Rob Verbeek
- Department Computer Science, Aalto University, Espoo, Finland
| | - Enpei Wang
- Shenying Medical Technology Co., Ltd., Shenzhen, Guangdong, People’s Republic of China
| | - Siri Willems
- Department of Electrical Engineering, KULeuven, Leuven, Belgium
| | - Qi Wu
- Department of Electrical Engineering and Automation, Anhui University, Hefei, People’s Republic of China
| | - Xuanang Xu
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Sen Yang
- Tencent AI Lab, Shenzhen, Guangdong, People’s Republic of China
| | - Lulin Yuan
- Department of Radiation Oncology, Virginia Commonwealth University Medical Center, Richmond, VA, United States of America
| | - Simeng Zhu
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States of America
| | - Lukas Zimmermann
- Faculty of Health, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
- Competence Center for Preclinical Imaging and Biomedical Engineering, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Kevin L Moore
- Department of Radiation Oncology, University of California, San Diego, La Jolla, CA, United States of America
| | - Thomas G Purdie
- Radiation Medicine Program, UHN Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Techna Institute for the Advancement of Technology for Health, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Andrea L McNiven
- Radiation Medicine Program, UHN Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Timothy C Y Chan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
- Techna Institute for the Advancement of Technology for Health, Toronto, ON, Canada
| |
Collapse
|
12
|
González PJ, Simões R, Kiers K, Janssen TM. Explaining the dosimetric impact of contouring errors in head and neck radiotherapy. Biomed Phys Eng Express 2022; 8. [PMID: 35732139 DOI: 10.1088/2057-1976/ac7b4c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/22/2022] [Indexed: 11/12/2022]
Abstract
Objective. Auto-contouring of organs at risk (OAR) is becoming more common in radiotherapy. An important issue in clinical decision making is judging the quality of the auto-contours. While recent studies considered contour quality by looking at geometric errors only, this does not capture the dosimetric impact of the errors. In this work, we studied the relationship between geometrical errors, the local dose and the dosimetric impact of the geometrical errors.Approach. For 94 head and neck patients, unmodified atlas-based auto-contours and clinically used delineations of the parotid glands and brainstem were retrieved. VMAT plans were automatically optimized on the auto-contours and evaluated on both contours. We defined the dosimetric impact on evaluation (DIE) as the difference in the dosimetric parameter of interest between the two contours. We developed three linear regression models to predict the DIE using: (1) global geometric metrics, (2) global dosimetric metrics, (3) combined local geometric and dosimetric metrics. For model (3), we next determined the minimal amount of editing information required to produce a reliable prediction. Performance was assessed by the root mean squared error (RMSE) of the predicted DIE using 5-fold cross-validation.Main results. In model (3), the median RMSE of the left parotid was 0.4 Gy using 5% of the largest editing vectors. For the right parotid and brainstem the results were 0.5 Gy using 10% and 0.4 Gy using 1% respectively. The median RMS of the DIE was 0.6 Gy, 0.7 Gy and 0.9 Gy for the left parotid, the right parotid and the brainstem, respectively. Model (3), combining local dosimetric and geometric quantities, outperformed the models that used only geometric or dosimetric information.Significance. We showed that the largest local errors plus the local dose suffice to accurately predict the dosimetric impact, opening the door to automated dosimetric QA of auto-contours.
Collapse
Affiliation(s)
- Patrick J González
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rita Simões
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karen Kiers
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tomas M Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Brodin NP, Schulte L, Velten C, Martin W, Shen S, Shen J, Basavatia A, Ohri N, Garg MK, Carpenter C, Tomé WA. Organ-at-risk dose prediction using a machine learning algorithm: Clinical validation and treatment planning benefit for lung SBRT. J Appl Clin Med Phys 2022; 23:e13609. [PMID: 35460150 PMCID: PMC9195027 DOI: 10.1002/acm2.13609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/22/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To quantify the clinical performance of a machine learning (ML) algorithm for organ-at-risk (OAR) dose prediction for lung stereotactic body radiation therapy (SBRT) and estimate the treatment planning benefit from having upfront access to these dose predictions. METHODS ML models were trained using multi-center data consisting of 209 patients previously treated with lung SBRT. Two prescription levels were investigated, 50 Gy in five fractions and 54 Gy in three fractions. Models were generated using a gradient-boosted regression tree algorithm using grid searching with fivefold cross-validation. Twenty patients not included in the training set were used to test OAR dose prediction performance, ten for each prescription. We also performed blinded re-planning based on OAR dose predictions but without access to clinically delivered plans. Differences between predicted and delivered doses were assessed by root-mean square deviation (RMSD), and statistical differences between predicted, delivered, and re-planned doses were evaluated with one-way analysis of variance (ANOVA) tests. RESULTS ANOVA tests showed no significant differences between predicted, delivered, and replanned OAR doses (all p ≥ 0.36). The RMSD was 2.9, 3.9, 4.3, and 1.7Gy for max dose to the spinal cord, great vessels, heart, and trachea, respectively, for 50 Gy in five fractions. Average improvements of 1.0, 1.4, and 2.0 Gy were seen for spinal cord, esophagus, and trachea max doses in blinded replans compared to clinically delivered plans with 54 Gy in three fractions, and 1.8, 0.7, and 1.5 Gy, respectively, for the esophagus, heart and bronchus max doses with 50 Gy in five fractions. Target coverage was similar with an average PTV V100% of 94.7% for delivered plans compared to 97.3% for blinded re-plans for 50 Gy in five fractions, and respectively 98.4% versus 99.2% for 54 Gy in three fractions. CONCLUSION This study validated ML-based OAR dose prediction for lung SBRT, showing potential for improved OAR dose sparing and more consistent plan quality using dose predictions for patient-specific planning guidance.
Collapse
Affiliation(s)
- N Patrik Brodin
- Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | | | - Christian Velten
- Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - William Martin
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - Sydney Shen
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jin Shen
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - Amar Basavatia
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - Nitin Ohri
- Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - Madhur K Garg
- Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA.,Department of Urology, Montefiore Medical Center, Bronx, NY, USA.,Department of Otorhinolaryngology-Head & Neck Surgery, Montefiore Medical Center, Bronx, NY, USA
| | | | - Wolfgang A Tomé
- Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA.,Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
14
|
Chan M, Gevaert T, Kadoya N, Dorr J, Leung R, Alheet S, Toutaoui A, Farias R, Wong M, Skourou C, Valenti M, Farré I, Otero-Martínez C, O'Doherty D, Waldron J, Hanvey S, Grohmann M, Liu H. Multi-center planning study of radiosurgery for intracranial metastases through Automation (MC-PRIMA) by crowdsourcing prior web-based plan challenge study. Phys Med 2022; 95:73-82. [DOI: 10.1016/j.ejmp.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 10/19/2022] Open
|