1
|
Li Z, Gan G, Guo J, Zhan W, Chen L. Accurate object localization facilitates automatic esophagus segmentation in deep learning. Radiat Oncol 2024; 19:55. [PMID: 38735947 PMCID: PMC11088757 DOI: 10.1186/s13014-024-02448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Currently, automatic esophagus segmentation remains a challenging task due to its small size, low contrast, and large shape variation. We aimed to improve the performance of esophagus segmentation in deep learning by applying a strategy that involves locating the object first and then performing the segmentation task. METHODS A total of 100 cases with thoracic computed tomography scans from two publicly available datasets were used in this study. A modified CenterNet, an object location network, was employed to locate the center of the esophagus for each slice. Subsequently, the 3D U-net and 2D U-net_coarse models were trained to segment the esophagus based on the predicted object center. A 2D U-net_fine model was trained based on the updated object center according to the 3D U-net model. The dice similarity coefficient and the 95% Hausdorff distance were used as quantitative evaluation indexes for the delineation performance. The characteristics of the automatically delineated esophageal contours by the 2D U-net and 3D U-net models were summarized. Additionally, the impact of the accuracy of object localization on the delineation performance was analyzed. Finally, the delineation performance in different segments of the esophagus was also summarized. RESULTS The mean dice coefficient of the 3D U-net, 2D U-net_coarse, and 2D U-net_fine models were 0.77, 0.81, and 0.82, respectively. The 95% Hausdorff distance for the above models was 6.55, 3.57, and 3.76, respectively. Compared with the 2D U-net, the 3D U-net has a lower incidence of delineating wrong objects and a higher incidence of missing objects. After using the fine object center, the average dice coefficient was improved by 5.5% in the cases with a dice coefficient less than 0.75, while that value was only 0.3% in the cases with a dice coefficient greater than 0.75. The dice coefficients were lower for the esophagus between the orifice of the inferior and the pulmonary bifurcation compared with the other regions. CONCLUSION The 3D U-net model tended to delineate fewer incorrect objects but also miss more objects. Two-stage strategy with accurate object location could enhance the robustness of the segmentation model and significantly improve the esophageal delineation performance, especially for cases with poor delineation results.
Collapse
Affiliation(s)
- Zhibin Li
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanghui Gan
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Zhan
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Long Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Alzahrani NM, Henry AM, Clark AK, Al‐Qaisieh BM, Murray LJ, Nix MG. Dosimetric impact of contour editing on CT and MRI deep-learning autosegmentation for brain OARs. J Appl Clin Med Phys 2024; 25:e14345. [PMID: 38664894 PMCID: PMC11087158 DOI: 10.1002/acm2.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/12/2024] [Accepted: 03/05/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE To establish the clinical applicability of deep-learning organ-at-risk autocontouring models (DL-AC) for brain radiotherapy. The dosimetric impact of contour editing, prior to model training, on performance was evaluated for both CT and MRI-based models. The correlation between geometric and dosimetric measures was also investigated to establish whether dosimetric assessment is required for clinical validation. METHOD CT and MRI-based deep learning autosegmentation models were trained using edited and unedited clinical contours. Autosegmentations were dosimetrically compared to gold standard contours for a test cohort. D1%, D5%, D50%, and maximum dose were used as clinically relevant dosimetric measures. The statistical significance of dosimetric differences between the gold standard and autocontours was established using paired Student's t-tests. Clinically significant cases were identified via dosimetric headroom to the OAR tolerance. Pearson's Correlations were used to investigate the relationship between geometric measures and absolute percentage dose changes for each autosegmentation model. RESULTS Except for the right orbit, when delineated using MRI models, the dosimetric statistical analysis revealed no superior model in terms of the dosimetric accuracy between the CT DL-AC models or between the MRI DL-AC for any investigated brain OARs. The number of patients where the clinical significance threshold was exceeded was higher for the optic chiasm D1% than other OARs, for all autosegmentation models. A weak correlation was consistently observed between the outcomes of dosimetric and geometric evaluations. CONCLUSIONS Editing contours before training the DL-AC model had no significant impact on dosimetry. The geometric test metrics were inadequate to estimate the impact of contour inaccuracies on dose. Accordingly, dosimetric analysis is needed to evaluate the clinical applicability of DL-AC models in the brain.
Collapse
Affiliation(s)
- Nouf M. Alzahrani
- Department of Diagnostic RadiologyKing Abdulaziz UniversityJeddahSaudi Arabia
- School of MedicineUniversity of LeedsLeedsUK
- Department of Medical Physics and EngineeringSt James's University HospitalLeedsUK
| | - Ann M. Henry
- School of MedicineUniversity of LeedsLeedsUK
- Department of Clinical OncologySt James's University HospitalLeedsUK
| | - Anna K. Clark
- Department of Medical Physics and EngineeringSt James's University HospitalLeedsUK
| | - Bashar M. Al‐Qaisieh
- Department of Medical Physics and EngineeringSt James's University HospitalLeedsUK
| | - Louise J. Murray
- School of MedicineUniversity of LeedsLeedsUK
- Department of Clinical OncologySt James's University HospitalLeedsUK
| | - Michael G. Nix
- Department of Medical Physics and EngineeringSt James's University HospitalLeedsUK
| |
Collapse
|
3
|
De Kerf G, Claessens M, Raouassi F, Mercier C, Stas D, Ost P, Dirix P, Verellen D. A geometry and dose-volume based performance monitoring of artificial intelligence models in radiotherapy treatment planning for prostate cancer. Phys Imaging Radiat Oncol 2023; 28:100494. [PMID: 37809056 PMCID: PMC10550805 DOI: 10.1016/j.phro.2023.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Background and Purpose Clinical Artificial Intelligence (AI) implementations lack ground-truth when applied on real-world data. This study investigated how combined geometrical and dose-volume metrics can be used as performance monitoring tools to detect clinically relevant candidates for model retraining. Materials and Methods Fifty patients were analyzed for both AI-segmentation and planning. For AI-segmentation, geometrical (Standard Surface Dice 3 mm and Local Surface Dice 3 mm) and dose-volume based parameters were calculated for two organs (bladder and anorectum) to compare AI output against the clinically corrected structure. A Local Surface Dice was introduced to detect geometrical changes in the vicinity of the target volumes, while an Absolute Dose Difference (ADD) evaluation increased focus on dose-volume related changes. AI-planning performance was evaluated using clinical goal analysis in combination with volume and target overlap metrics. Results The Local Surface Dice reported equal or lower values compared to the Standard Surface Dice (anorectum: (0.93 ± 0.11) vs (0.98 ± 0.04); bladder: (0.97 ± 0.06) vs (0.98 ± 0.04)). The ADD metric showed a difference of (0.9 ± 0.8)Gy for the anorectum D 1 cm 3 . The bladder D 5cm 3 reported a difference of (0.7 ± 1.5)Gy. Mandatory clinical goals were fulfilled in 90 % of the DLP plans. Conclusions Combining dose-volume and geometrical metrics allowed detection of clinically relevant changes, applied to both auto-segmentation and auto-planning output and the Local Surface Dice was more sensitive to local changes compared to the Standard Surface Dice. This monitoring is able to evaluate AI behavior in clinical practice and allows candidate selection for active learning.
Collapse
Affiliation(s)
- Geert De Kerf
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
| | - Michaël Claessens
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
- Centre for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Fadoua Raouassi
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
| | - Carole Mercier
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
- Centre for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Daan Stas
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Piet Ost
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
- Centre for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Piet Dirix
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
- Centre for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Dirk Verellen
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
- Centre for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Heilemann G, Buschmann M, Lechner W, Dick V, Eckert F, Heilmann M, Herrmann H, Moll M, Knoth J, Konrad S, Simek IM, Thiele C, Zaharie A, Georg D, Widder J, Trnkova P. Clinical Implementation and Evaluation of Auto-Segmentation Tools for Multi-Site Contouring in Radiotherapy. Phys Imaging Radiat Oncol 2023; 28:100515. [PMID: 38111502 PMCID: PMC10726238 DOI: 10.1016/j.phro.2023.100515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
Background and purpose Tools for auto-segmentation in radiotherapy are widely available, but guidelines for clinical implementation are missing. The goal was to develop a workflow for performance evaluation of three commercial auto-segmentation tools to select one candidate for clinical implementation. Materials and Methods One hundred patients with six treatment sites (brain, head-and-neck, thorax, abdomen, and pelvis) were included. Three sets of AI-based contours for organs-at-risk (OAR) generated by three software tools and manually drawn expert contours were blindly rated for contouring accuracy. The dice similarity coefficient (DSC), the Hausdorff distance, and a dose/volume evaluation based on the recalculation of the original treatment plan were assessed. Statistically significant differences were tested using the Kruskal-Wallis test and the post-hoc Dunn Test with Bonferroni correction. Results The mean DSC scores compared to expert contours for all OARs combined were 0.80 ± 0.10, 0.75 ± 0.10, and 0.74 ± 0.11 for the three software tools. Physicians' rating identified equivalent or superior performance of some AI-based contours in head (eye, lens, optic nerve, brain, chiasm), thorax (e.g., heart and lungs), and pelvis and abdomen (e.g., kidney, femoral head) compared to manual contours. For some OARs, the AI models provided results requiring only minor corrections. Bowel-bag and stomach were not fit for direct use. During the interdisciplinary discussion, the physicians' rating was considered the most relevant. Conclusion A comprehensive method for evaluation and clinical implementation of commercially available auto-segmentation software was developed. The in-depth analysis yielded clear instructions for clinical use within the radiotherapy department.
Collapse
Affiliation(s)
- Gerd Heilemann
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Martin Buschmann
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Wolfgang Lechner
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Vincent Dick
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Franziska Eckert
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Martin Heilmann
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Harald Herrmann
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Matthias Moll
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Johannes Knoth
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Stefan Konrad
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Inga-Malin Simek
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Christopher Thiele
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Alexandru Zaharie
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Petra Trnkova
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| |
Collapse
|
5
|
Ramachandran P, Eswarlal T, Lehman M, Colbert Z. Assessment of Optimizers and their Performance in Autosegmenting Lung Tumors. J Med Phys 2023; 48:129-135. [PMID: 37576091 PMCID: PMC10419743 DOI: 10.4103/jmp.jmp_54_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose Optimizers are widely utilized across various domains to enhance desired outcomes by either maximizing or minimizing objective functions. In the context of deep learning, they help to minimize the loss function and improve model's performance. This study aims to evaluate the accuracy of different optimizers employed for autosegmentation of non-small cell lung cancer (NSCLC) target volumes on thoracic computed tomography images utilized in oncology. Materials and Methods The study utilized 112 patients, comprising 92 patients from "The Cancer Imaging Archive" (TCIA) and 20 of our local clinical patients, to evaluate the efficacy of various optimizers. The gross tumor volume was selected as the foreground mask for training and testing the models. Of the 92 TCIA patients, 57 were used for training and validation, and the remaining 35 for testing using nnU-Net. The performance of the final model was further evaluated on the 20 local clinical patient datasets. Six different optimizers, namely AdaDelta, AdaGrad, Adam, NAdam, RMSprop, and stochastic gradient descent (SGD), were investigated. To assess the agreement between the predicted volume and the ground truth, several metrics including Dice similarity coefficient (DSC), Jaccard index, sensitivity, precision, Hausdorff distance (HD), 95th percentile Hausdorff distance (HD95), and average symmetric surface distance (ASSD) were utilized. Results The DSC values for AdaDelta, AdaGrad, Adam, NAdam, RMSprop, and SGD were 0.75, 0.84, 0.85, 0.84, 0.83, and 0.81, respectively, for the TCIA test data. However, when the model trained on TCIA datasets was applied to the clinical datasets, the DSC, HD, HD95, and ASSD metrics showed a statistically significant decrease in performance compared to the TCIA test datasets, indicating the presence of image and/or mask heterogeneity between the data sources. Conclusion The choice of optimizer in deep learning is a critical factor that can significantly impact the performance of autosegmentation models. However, it is worth noting that the behavior of optimizers may vary when applied to new clinical datasets, which can lead to changes in models' performance. Therefore, selecting the appropriate optimizer for a specific task is essential to ensure optimal performance and generalizability of the model to different datasets.
Collapse
Affiliation(s)
- Prabhakar Ramachandran
- Department of Radiation Oncology, Cancer Services, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Tamma Eswarlal
- Department of Engineering Mathematics, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Margot Lehman
- Department of Radiation Oncology, Cancer Services, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Zachery Colbert
- Department of Radiation Oncology, Cancer Services, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| |
Collapse
|
6
|
Haseltine JM, Apte A, Jackson A, Yorke E, Yu AF, Plodkowski A, Wu A, Peleg A, Al-Sadawi M, Iocolano M, Gelblum D, Shaverdian N, Simone CB, Rimner A, Gomez DR, Shepherd AF, Thor M. Association of cardiac calcium burden with overall survival after radiotherapy for non-small cell lung cancer. Phys Imaging Radiat Oncol 2023; 25:100410. [PMID: 36687507 PMCID: PMC9852638 DOI: 10.1016/j.phro.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Background and purpose Coronary calcifications are associated with coronary artery disease in patients undergoing radiotherapy (RT) for non-small cell lung cancer (NSCLC). We quantified calcifications in the coronary arteries and aorta and investigated their relationship with overall survival (OS) in patients treated with definitive RT (Def-RT) or post-operative RT (PORT). Materials and methods We analyzed 263 NSCLC patients treated from 2004 to 2017. Calcium burden was ascertained with a Hounsfield unit (HU) cutoff of > 130 in addition to a deep learning (DL) plaque estimator. The HU cutoff volumes were defined for coronary arteries (PlaqueCoro) and coronary arteries and aorta combined (PlaqueCoro+Ao), while the DL estimator ranged from 0 (no plaque) to 3 (high plaque). Patient and treatment characteristics were explored for association with OS. Results The median PlaqueCoro and PlaqueCoro+Ao was 0.75 cm3 and 0.87 cm3 in the Def-RT group and 0.03 cm3 and 0.52 cm3 in the PORT group. The median DL estimator was 2 in both cohorts. In Def-RT, large PlaqueCoro (HR:1.11 (95%CI:1.04-1.19); p = 0.008), and PlaqueCoro+Ao (HR:1.06 (95%CI:1.02-1.11); p = 0.03), and poor Karnofsky Performance Status (HR: 0.97 (95%CI: 0.94-0.99); p = 0.03) were associated with worse OS. No relationship was identified between the plaque volumes and OS in PORT, or between the DL plaque estimator and OS in either Def-RT or PORT. Conclusions Coronary artery calcification assessed from RT planning CT scans was significantly associated with OS in patients who underwent Def-RT for NSCLC. This HU thresholding method can be straightforwardly implemented such that the role of calcifications can be further explored.
Collapse
Affiliation(s)
- Justin M. Haseltine
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aditya Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anthony F. Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Plodkowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abraham Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ariel Peleg
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mohammed Al-Sadawi
- Department of Medicine, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Michelle Iocolano
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daphna Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Narek Shaverdian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles B. Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel R. Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Annemarie F. Shepherd
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Corresponding authors.
| | - Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Corresponding authors.
| |
Collapse
|
7
|
Towards real-time radiotherapy planning: The role of autonomous treatment strategies. Phys Imaging Radiat Oncol 2022; 24:136-137. [DOI: 10.1016/j.phro.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|