1
|
Elhence H, Dodge JL, Lee BP. Association of Renin-Angiotensin System Inhibition With Liver-Related Events and Mortality in Compensated Cirrhosis. Clin Gastroenterol Hepatol 2024; 22:315-323.e17. [PMID: 37495200 PMCID: PMC11232660 DOI: 10.1016/j.cgh.2023.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND & AIMS While renin-angiotensin system inhibition lowers the hepatic venous gradient, the effect on more clinically meaningful endpoints is less studied. We aimed to quantify the relationship between renin-angiotensin system inhibition and liver-related events (LREs) among adults with compensated cirrhosis. METHODS In this national cohort study using the Optum database, we quantified the association between angiotensin-converting enzyme (ACE) inhibitor or angiotensin-receptor blocker (ARB) use and LREs (hepatocellular carcinoma, liver transplantation, ascites, hepatic encephalopathy, or variceal bleeding) among patients with cirrhosis between 2009 and 2019. Selective beta-blocker (SBB) users served as the comparator group. We used demographic and clinical features to calculate inverse-probability treatment weighting-weighted cumulative incidences, absolute risk differences, and Cox proportional hazard ratios. RESULTS Among 4214 adults with cirrhosis, 3155 were ACE inhibitor/ARB users and 1059 were SBB users. In inverse probability treatment weighting-weighted analyses, ACE inhibitor/ARB (vs SBB) users had lower 5-year cumulative incidence (30.6% [95% confidence interval (CI), 27.8% to 33.2%] vs 41.3% [95% CI, 34.0% to 47.7%]; absolute risk difference, -10.7% [95% CI, -18.1% to -3.6%]) and lower risk of LREs (adjusted hazard ratio [aHR], 0.69; 95% CI, 0.60 to 0.80). There was a dose-response relationship: compared with SBB use, ACE inhibitor/ARB prescriptions ≥1 defined daily dose (aHR, 0.65; 95% CI, 0.56 to 0.76) were associated with a greater risk reduction compared with <1 defined daily dose (aHR, 0.87; 95% CI, 0.71 to 1.07). Results were robust across sensitivity analyses such as comparing ACE inhibitor/ARB users with nonusers and as-treated analysis. CONCLUSIONS In this national cohort study, ACE inhibitor/ARB use was associated with significantly lower risk of LREs in patients with compensated cirrhosis. These results provide support for a randomized clinical trial to confirm clinical benefit.
Collapse
Affiliation(s)
- Hirsh Elhence
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jennifer L Dodge
- Department of Population Public Health Sciences, University of Southern California, Los Angeles, Los Angeles, California; Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, California
| | - Brian P Lee
- Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, California.
| |
Collapse
|
2
|
Lukovic D, Hasimbegovic E, Winkler J, Mester-Tonczar J, Müller-Zlabinger K, Han E, Spannbauer A, Traxler-Weidenauer D, Bergler-Klein J, Pavo N, Goliasch G, Batkai S, Thum T, Zannad F, Gyöngyösi M. Identification of Gene Expression Signatures for Phenotype-Specific Drug Targeting of Cardiac Fibrosis. Int J Mol Sci 2023; 24:ijms24087461. [PMID: 37108624 PMCID: PMC10139067 DOI: 10.3390/ijms24087461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
We have designed translational animal models to investigate cardiac profibrotic gene signatures. Domestic pigs were treated with cardiotoxic drugs (doxorubicin, DOX, n = 5 or Myocet®, MYO, n = 5) to induce replacement fibrosis via cardiotoxicity. Reactive interstitial fibrosis was triggered by LV pressure overload by artificial isthmus stenosis with stepwise developing myocardial hypertrophy and final fibrosis (Hyper, n = 3) or by LV volume overload in the adverse remodeled LV after myocardial infarction (RemoLV, n = 3). Sham interventions served as controls and healthy animals (Control, n = 3) served as a reference in sequencing study. Myocardial samples from the LV of each group were subjected to RNA sequencing. RNA-seq analysis revealed a clear distinction between the transcriptomes of myocardial fibrosis (MF) models. Cardiotoxic drugs activated the TNF-alpha and adrenergic signaling pathways. Pressure or volume overload led to the activation of FoxO pathway. Significant upregulation of pathway components enabled the identification of potential drug candidates used for the treatment of heart failure, such as ACE inhibitors, ARB, ß-blockers, statins and diuretics specific to the distinct MF models. We identified candidate drugs in the groups of channel blockers, thiostrepton that targets the FOXM1-regulated ACE conversion to ACE2, tyrosine kinases or peroxisome proliferator-activated receptor inhibitors. Our study identified different gene targets involved in the development of distinct preclinical MF protocols enabling tailoring expression signature-based approach for the treatment of MF.
Collapse
Affiliation(s)
- Dominika Lukovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ena Hasimbegovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Winkler
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Mester-Tonczar
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Katrin Müller-Zlabinger
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Emilie Han
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Spannbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Denise Traxler-Weidenauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jutta Bergler-Klein
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Noemi Pavo
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Goliasch
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sandor Batkai
- Hannover Medical School Institute of Molecular and Translational Therapeutic Strategies (IMTTS), 30625 Hannover, Germany
| | - Thomas Thum
- Hannover Medical School Institute of Molecular and Translational Therapeutic Strategies (IMTTS), 30625 Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany
| | - Faiez Zannad
- Inserm Clinical Investigation Centre, Université de Lorraine, CHU, 54052 Nancy, France
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Abd El-Fattah EE, Zakaria AY. Targeting HSP47 and HSP70: promising therapeutic approaches in liver fibrosis management. J Transl Med 2022; 20:544. [DOI: 10.1186/s12967-022-03759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/06/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractLiver fibrosis is a liver disease in which there is an excessive buildup of extracellular matrix proteins, including collagen. By regulating cytokine production and the inflammatory response, heat shock proteins (HSPs) contribute significantly to a wider spectrum of fibrotic illnesses, such as lung, liver, and idiopathic pulmonary fibrosis by aiding in the folding and assembly of freshly synthesized proteins, HSPs serve as chaperones. HSP70 is one of the key HSPs in avoiding protein aggregation which induces its action by sending unfolded and/or misfolded proteins to the ubiquitin–proteasome degradation pathway and antagonizing influence on epithelial-mesenchymal transition. HSP47, on the other hand, is crucial for boosting collagen synthesis, and deposition, and fostering the emergence of fibrotic disorders. The current review aims to provide light on how HSP70 and HSP47 affect hepatic fibrogenesis. Additionally, our review looks into new therapeutic approaches that target HSP70 and HSP47 and could potentially be used as drug candidates to treat liver fibrosis, especially in cases of comorbidities.
Collapse
|
4
|
Bryniarski P, Nazimek K, Marcinkiewicz J. Immunomodulatory properties of antihypertensive drugs and digitalis glycosides. Expert Rev Cardiovasc Ther 2022; 20:111-121. [PMID: 35130796 DOI: 10.1080/14779072.2022.2039627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The role of chronic inflammatory process in the pathogenesis or exacerbation of hypertension has been already acknowledged. AREAS COVERED Therefore, one can speculate that hypotensive drugs may exert some of their therapeutic effects due to immunomodulatory properties. So far, this assumption has been tested in different studies, and the resulting knowledge is summarized in the current review article that is dedicated to different groups of antihypertensives, namely calcium channel blockers, beta blockers, as well as other less commonly used medications, such as hydralazine, agonists of alfa-2 receptor, diazoxide, doxazosin, aliskiren, and sodium nitroprusside. Articles were found in the Pubmed database by entering the name of a specific drug (or group of drugs) together with the words: immunology, cellular response, humoral response, inflammation, interleukin. The 2000-2021 range was used to search for all drugs except propranolol (1980-2021) and calcium blockers (1990-2021). EXPERT OPINION Observed decrease in serum/plasma concentration of proinflammatory cytokines, and CRP along with lower expression of adhesion molecules on immune cells strongly suggest that these drugs possess immunomodulatory properties, which seems to be crucial in the medical practice, especially in the therapy of hypertensive patients with other accompanying inflammatory-based diseases, such as type II diabetes, developed metabolic syndrome, allergies or autoimmunity.
Collapse
Affiliation(s)
- Paweł Bryniarski
- Department of Immunology, Jagiellonian University in Kraków Medical College Ringgold standard institution, Krakow, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University in Kraków Medical College Ringgold standard institution, Krakow, Poland
| | - Janusz Marcinkiewicz
- Department of Immunology, Jagiellonian University in Kraków Medical College Ringgold standard institution, Krakow, Poland
| |
Collapse
|
5
|
Di Pasqua LG, Cagna M, Berardo C, Vairetti M, Ferrigno A. Detailed Molecular Mechanisms Involved in Drug-Induced Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: An Update. Biomedicines 2022; 10:194. [PMID: 35052872 PMCID: PMC8774221 DOI: 10.3390/biomedicines10010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are some of the biggest public health challenges due to their spread and increasing incidence around the world. NAFLD is characterized by intrahepatic lipid deposition, accompanied by dyslipidemia, hypertension, and insulin resistance, leading to more serious complications. Among the various causes, drug administration for the treatment of numerous kinds of diseases, such as antiarrhythmic and antihypertensive drugs, promotes the onset and progression of steatosis, causing drug-induced hepatic steatosis (DIHS). Here, we reviewed in detail the major classes of drugs that cause DIHS and the specific molecular mechanisms involved in these processes. Eight classes of drugs, among the most used for the treatment of common pathologies, were considered. The most diffused mechanism whereby drugs can induce NAFLD/NASH is interfering with mitochondrial activity, inhibiting fatty acid oxidation, but other pathways involved in lipid homeostasis are also affected. PubMed research was performed to obtain significant papers published up to November 2021. The key words included the class of drugs, or the specific compound, combined with steatosis, nonalcoholic steatohepatitis, fibrosis, fatty liver and hepatic lipid deposition. Additional information was found in the citations listed in other papers, when they were not displayed in the original search.
Collapse
Affiliation(s)
- Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Marta Cagna
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Clarissa Berardo
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
Shen DF, Cheng H, Cai BZ, Cai WF, Wang B, Zhu Q, Wu YB, Liu M, Chen RJ, Gao FF, Zhang YM, Niu YD, Shi GG. N-n-Butyl haloperidol iodide ameliorates liver fibrosis and hepatic stellate cell activation in mice. Acta Pharmacol Sin 2022; 43:133-145. [PMID: 33758354 PMCID: PMC8724321 DOI: 10.1038/s41401-021-00630-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
N-n-Butyl haloperidol iodide (F2) is a novel compound that has antiproliferative and antifibrogenic activities. In this study we investigated the therapeutic potential of F2 against liver fibrosis in mice and the underlying mechanisms. Two widely used mouse models of fibrosis was established in mice by injection of either carbon tetrachloride (CCl4) or thioacetamide (TAA). The mice received F2 (0.75, 1.5 or 3 mg·kg-1·d-1, ip) for 4 weeks of fibrosis induction. We showed that F2 administration dose-dependently ameliorated CCl4- or TAA-induced liver fibrosis, evidenced by significant decreases in collagen deposition and c-Jun, TGF-β receptor II (TGFBR2), α-smooth muscle actin (α-SMA), and collagen I expression in the liver. In transforming growth factor beta 1 (TGF-β1)-stimulated LX-2 cells (a human hepatic stellate cell line) and primary mouse hepatic stellate cells, treatment with F2 (0.1, 1, 10 μM) concentration-dependently inhibited the expression of α-SMA, and collagen I. In LX-2 cells, F2 inhibited TGF-β/Smad signaling through reducing the levels of TGFBR2; pretreatment with LY2109761 (TGF-β signaling inhibitor) or SP600125 (c-Jun signaling inhibitor) markedly inhibited TGF-β1-induced induction of α-SMA and collagen I. Knockdown of c-Jun decreased TGF-β signaling genes, including TGFBR2 levels. We revealed that c-Jun was bound to the TGFBR2 promoter, whereas F2 suppressed the binding of c-Jun to the TGFBR2 promoter to restrain TGF-β signaling and inhibit α-SMA and collagen I upregulation. In conclusion, the therapeutic benefit of F2 against liver fibrosis results from inhibition of c-Jun expression to reduce TGFBR2 and concomitant reduction of the responsiveness of hepatic stellate cells to TGF-β1. F2 may thus be a potentially new effective pharmacotherapy for human liver fibrosis.
Collapse
Affiliation(s)
- Dai-Fei Shen
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - He Cheng
- Qingyuan Maternal and Child Health Hospital, Qingyuan, 511515, China
| | - Bo-Zhi Cai
- Laboratory of Molecular Cardiology, The First Affiliated Hospital, Shantou University Medical College, Shantou, 515041, China
| | - Wen-Feng Cai
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Qing Zhu
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Yue-Bin Wu
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Man Liu
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Run-Ji Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Fen-Fei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Mei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Yong-Dong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Gang-Gang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
7
|
Zeng MQ, Xiao W, Yang K, Gao ZY, Wang JS, Lu Q, Guo X, Li YW, Yuan WX. Verapamil inhibits ureteral scar formation by regulating CaMK II-mediated Smad pathway. Chem Biol Interact 2021; 346:109570. [PMID: 34217686 DOI: 10.1016/j.cbi.2021.109570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 01/24/2023]
Abstract
Verapamil is reported to prevent scar formation. However, whether verapamil is involved in the ureteral stricture scar and the underlying mechanism need further investigation. Fibroblasts were isolated from ureteral scar tissues. TGF-β1 stimulation was used to induce fibrosis of fibroblasts. Inhibition of CaMK II was achieved by shRNA transfection. CCK-8 was performed to evaluate cell viability. qRT-PCR was applied to determine the level of mRNA while western blotting was used to determine the level of proteins. Immunofluorescence was used to detect the level of vimentin, collagen I and collagen III. Primary fibroblasts was successfully isolated from ureteral scar tissues. TGF-β1 stimulation was capable to induce collagen production and fibrosis in primary fibroblasts while inhibition of CaMK II attenuate collagen production. Overexpression of wild type CaMK II lead to further increase of collagen production upon TGF-β1 stimulation while the mutated CaMK II did not exert this promotion. Treatment of verapamil inhibits TGF-β1 induced collagen production via inhibiting CaMK II. In present study, we revealed a vital role of Verapamil and CaMK II in the formation of ureteral scar. Verapamil inhibited TGF-β1 induced collagen fiber formation by regulating CaMK II. Our finding might provide new insight into mechanism of prevention and treatment of ureteral scar.
Collapse
Affiliation(s)
- Ming-Qiang Zeng
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, PR China
| | - Wei Xiao
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, PR China
| | - Ke Yang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, PR China
| | - Zhi-Yong Gao
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, PR China
| | - Jian-Song Wang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, PR China
| | - Qiang Lu
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, PR China
| | - Xi Guo
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, PR China
| | - Yuan-Wei Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, PR China.
| | - Wu-Xiong Yuan
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, PR China.
| |
Collapse
|
8
|
Zhou F, Zhang Y, Chen J, Hu Y, Xu Y. Verapamil Ameliorates Hepatic Metaflammation by Inhibiting Thioredoxin-Interacting Protein/NLRP3 Pathways. Front Endocrinol (Lausanne) 2018; 9:640. [PMID: 30429827 PMCID: PMC6220071 DOI: 10.3389/fendo.2018.00640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of thioredoxin-interacting protein (TXNIP)/nod-like receptor protein 3 (NLRP3) inflammasome plays a critical role in pathogenesis of non-alcoholic fatty liver disease. This study investigated the protective effects of verapamil on hepatic metaflammation in a rodent model of high-fat (HF) diet-induced obesity (DIO). DIO was induced in a subset of mice provided with HF diet (45% kcal fat). After 10 weeks of HF diet, verapamil was administered by intraperitoneal injection. The experimental groups included the following: (1) normal diet group, (2) normal diet + treatment with verapamil (VER) group, (3) HF control group, (4) HF+VER (25 mg/kg/day) group. After 1 week of each treatment, blood and liver tissues were collected, and glucose control, serum triglyceride (TG) level, inflammation, and TXNIP/NLRP3 inflammasome were analyzed. Verapamil administration caused no alteration in food intake. HF diet impaired glucose control and increased body weight and serum TG levels. Hepatic inflammation was aggravated in HF-fed mice, as demonstrated by increased levels of pro-inflammatory markers interleukin-1β (IL-1β) and IL-18 in the liver. On the other hand, verapamil administration significantly improved glucose control, body weight, and serum TG levels. Verapamil treatment also reduced pro-inflammatory marker levels. These improvements were accompanied by alterations in activation of TXNIP/NLRP3 inflammasome. The observed results demonstrate that verapamil ameliorates hepatic metaflammation by inhibiting TXNIP/NLRP3 pathways.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Endocrinology, Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jing Chen
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yimeng Hu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yancheng Xu
| |
Collapse
|
9
|
Shrestha N, Chand L, Han MK, Lee SO, Kim CY, Jeong YJ. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes. Food Chem Toxicol 2016; 93:129-37. [PMID: 27137983 DOI: 10.1016/j.fct.2016.04.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
Abstract
Glutamine, traditionally a non-essential amino acid, now has been considered as essential in serious illness and injury. It is a major precursor for glutathione synthesis. However, the anti-fibrotic effect of glutamine and its molecular mechanism in experimental liver fibrosis have not been explored. In the present study we aimed to examine the potential role of glutamine in carbon tetrachloride (CCl4) induced liver fibrosis and TGF-β1 mediated epithelial mesenchymal transition (EMT) and apoptosis in mouse hepatocytes. Liver fibrosis was induced by intraperitoneal injection of CCl4 three times a week for 10 weeks. Glutamine treatment effectively attenuated liver injury and oxidative stress. Collagen content was significantly decreased in liver sections of glutamine treated mice compared to CCl4 model mice. Furthermore, glutamine decreased expression level of α-SMA and TGF-β in liver tissue. Our in vitro study showed that TGF-β1 treatment in hepatocytes resulted in loss of E-cadherin and increased expression of mesenchymal markers and EMT related transcription factor. In addition, TGF-β1 increased the expression of apoptotic markers. However, glutamine interestingly suppressed TGF-β1 mediated EMT and apoptosis. In conclusion, our results suggest that glutamine ameliorates CCl4 induced liver fibrosis and suppresses TGF-β1 induced EMT progression and apoptosis.
Collapse
Affiliation(s)
- Nirajan Shrestha
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Hospital, 561-712, Jeonju, South Korea
| | - Lokendra Chand
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Hospital, 561-712, Jeonju, South Korea
| | - Myung Kwan Han
- Department of Microbiology, Chonbuk National University Medical School, 561-712, Jeonju, South Korea
| | - Seung Ok Lee
- Department of Internal Medicine, Chonbuk National University Medical School, 561-712, Jeonju, South Korea
| | - Chan Young Kim
- Department of Surgery, Chonbuk National University Medical School, 561-712, Jeonju, South Korea
| | - Yeon Jun Jeong
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Hospital, 561-712, Jeonju, South Korea; Department of Surgery, Chonbuk National University Medical School, 561-712, Jeonju, South Korea.
| |
Collapse
|
10
|
Zhang Y, Zhao X, Chang Y, Zhang Y, Chu X, Zhang X, Liu Z, Guo H, Wang N, Gao Y, Zhang J, Chu L. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis. Toxicol Appl Pharmacol 2016; 301:50-60. [PMID: 27095094 DOI: 10.1016/j.taap.2016.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n=8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China; Department of Pathology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, People's Republic of China
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Yuanyuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Xi Chu
- Department of Pharmacy, The Forth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, People's Republic of China
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Zhenyi Liu
- Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Hui Guo
- Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Na Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Yonggang Gao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Jianping Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China.
| | - Li Chu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, People's Republic of China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, People's Republic of China.
| |
Collapse
|
11
|
Quill B, Irnaten M, Docherty NG, McElnea EM, Wallace DM, Clark AF, O'Brien CJ. Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells. Br J Ophthalmol 2015; 99:1009-14. [PMID: 25795916 DOI: 10.1136/bjophthalmol-2014-306093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/18/2015] [Indexed: 11/04/2022]
Abstract
PURPOSE This study examines the effect of the L-type calcium channel blocker verapamil on mechanical strain-induced extracellular matrix genes in optic nerve head lamina cribrosa (LC) cells. METHODS Changes in LC cell intracellular calcium [Ca(2+)]i following hypotonic cell membrane stretch were measured with the fluorescent probe fura-2/AM. Fluorescence intensity was measured, after labelling, by calcium (Ca2+) imaging confocal microscopy. Confluent human LC cell cultures were serum starved for 24 h prior to exposure to cyclical mechanical strain (1 Hz, 15%) for 24 h in the presence or absence of verapamil (10 mm). Transforming growth factor-β 1 (TGF-β1), collagen 6A3 (COL6A3) and chondroitin sulfate proteoglycan 2 (CSPG2) mRNA expression levels were assessed by quantitative RT-PCR. RESULTS Hypotonic cell membrane stretch of LC cells from normal donors significantly increased [Ca2+]i (p<0.05). Exposure to cyclical mechanical strain (15% strain) produced a statistically significant increase in the three matrix genes that were examined (TGF-β1, COL6A3 and CSPG2). This response in both cyclical and mechanical stretch was significantly reduced by pretreating LC cells with the L-type calcium channel blocker verapamil (p<0.05). CONCLUSIONS This study provides evidence of a novel mechanotransduction pathway linking mechanical strain, cation channel function and the induction of LC cell matrix gene transcription. This highlights the potential involvement of calcium influx in the activation of matrix remodelling responses in the optic nerve head and supports the rationale that calcium channel blockers may attenuate disease progression in glaucoma.
Collapse
Affiliation(s)
- B Quill
- Institute of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland University College Dublin School of Medicine and Health Sciences, University College Dublin, Dublin, Ireland
| | - M Irnaten
- Institute of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - N G Docherty
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland University College Dublin School of Medicine and Health Sciences, University College Dublin, Dublin, Ireland
| | - E M McElnea
- Institute of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland University College Dublin School of Medicine and Health Sciences, University College Dublin, Dublin, Ireland
| | - D M Wallace
- Institute of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland University College Dublin School of Medicine and Health Sciences, University College Dublin, Dublin, Ireland
| | - A F Clark
- University College Dublin School of Medicine and Health Sciences, University College Dublin, Dublin, Ireland
| | - C J O'Brien
- Institute of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland University College Dublin School of Medicine and Health Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Zhou WC, Zhang QB, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol 2014; 20:7312-7324. [PMID: 24966602 PMCID: PMC4064077 DOI: 10.3748/wjg.v20.i23.7312] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/16/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis is the final pathological result of various chronic liver diseases, and fibrosis is the precursor of cirrhosis. Many types of cells, cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis. Activation of hepatic stellate cells (HSCs) is a pivotal event in fibrosis. Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis. Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs. Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis. At the molecular level, many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis. Recently, miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis. Robust animal models of liver fibrosis and cirrhosis, as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions.
Collapse
|
13
|
Ohyama T, Sato K, Kishimoto K, Yamazaki Y, Horiguchi N, Ichikawa T, Kakizaki S, Takagi H, Izumi T, Mori M. Azelnidipine is a calcium blocker that attenuates liver fibrosis and may increase antioxidant defence. Br J Pharmacol 2012; 165:1173-87. [PMID: 21790536 DOI: 10.1111/j.1476-5381.2011.01599.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxidative stress plays a critical role in liver fibrogenesis. Reactive oxygen species (ROS) stimulate hepatic stellate cells (HSCs), and ROS-mediated increases in calcium influx further increase ROS production. Azelnidipine is a calcium blocker that has been shown to have antioxidant effects in endothelial cells and cardiomyocytes. Therefore, we evaluated the anti-fibrotic and antioxidative effects of azelnidipine on liver fibrosis. EXPERIMENTAL APPROACH We used TGF-β1-activated LX-2 cells (a human HSC line) and mouse models of fibrosis induced by treatment with either carbon tetrachloride (CCl(4) ) or thioacetamide (TAA). KEY RESULTS Azelnidipine inhibited TGF-β1 and angiotensin II (Ang II)-activated α1(I) collagen mRNA expression in HSCs. Furthermore, TGF-β1- and Ang II-induced oxidative stress and TGF-β1-induced p38 and JNK phosphorylation were reduced in HSCs treated with azelnidipine. Azelnidipine significantly decreased inflammatory cell infiltration, pro-fibrotic gene expressions, HSC activation, lipid peroxidation, oxidative DNA damage and fibrosis in the livers of CCl(4) - or TAA-treated mice. Finally, azelnidipine prevented a decrease in the expression of some antioxidant enzymes and accelerated regression of liver fibrosis in CCl(4) -treated mice. CONCLUSIONS AND IMPLICATIONS Azelnidipine inhibited TGF-β1- and Ang II-induced HSC activation in vitro and attenuated CCl(4) - and TAA-induced liver fibrosis, and it accelerated regression of CCl(4) -induced liver fibrosis in mice. The anti-fibrotic mechanism of azelnidipine against CCl(4) -induced liver fibrosis in mice may have been due an increased level of antioxidant defence. As azelnidipine is widely used in clinical practice without serious adverse effects, it may provide an effective new strategy for anti-fibrotic therapy.
Collapse
Affiliation(s)
- T Ohyama
- Departments of Medicine and Molecular Science Biochemistry, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci U S A 2011; 108:19078-83. [PMID: 22042856 DOI: 10.1073/pnas.1109736108] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human serum albumin (HSA) is widely used in clinical and cell culture applications. Conventional production of HSA from human blood is limited by the availability of blood donation and the high risk of viral transmission from donors. Here, we report the production of Oryza sativa recombinant HSA (OsrHSA) from transgenic rice seeds. The level of OsrHSA reached 10.58% of the total soluble protein of the rice grain. Large-scale production of OsrHSA generated protein with a purity >99% and a productivity rate of 2.75 g/kg brown rice. Physical and biochemical characterization of OsrHSA revealed it to be equivalent to plasma-derived HSA (pHSA). The efficiency of OsrHSA in promoting cell growth and treating liver cirrhosis in rats was similar to that of pHSA. Furthermore, OsrHSA displays similar in vitro and in vivo immunogenicity as pHSA. Our results suggest that a rice seed bioreactor produces cost-effective recombinant HSA that is safe and can help to satisfy an increasing worldwide demand for human serum albumin.
Collapse
|
15
|
Shafik AN, Khodeir MM, Gouda NA, Mahmoud ME. Improved antifibrotic effect of a combination of verapamil and silymarin in rat-induced liver fibrosis. Arab J Gastroenterol 2011; 12:143-9. [PMID: 22055593 DOI: 10.1016/j.ajg.2011.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 02/17/2011] [Accepted: 07/03/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND STUDY AIMS Liver fibrosis progresses to cirrhosis in several settings, for example, severe acute alcoholic hepatitis, and hepatitis C virus (HCV) reinfection after liver transplantation. Cirrhosis produces hepatocellular dysfunction, which is also a risk factor for hepatocellular carcinoma. We studied verapamil as a prophylactic, therapeutic antifibrotic drug alone and in combination with silymarin in experimental rat's liver-induced fibrosis. MATERIAL AND METHODS Liver fibrosis was induced by intra-peritoneal injection of rats with pig serum 0.5ml twice weekly for 6 weeks, which resulted in score three fibrosis. Prophylactic verapamil alone and silymarin alone and a combination of both were administered at the same time of induction of liver fibrosis and continued for the duration of induction. Therapeutic verapamil was started on the last day of fibrosis induction and continued for 4 weeks. The extent of liver fibrosis was evaluated using Ishak's fibrosis score. Serum alanine aminotransferase (ALT) was measured for follow-up. RESULTS Compared to fibrotic model rats, prophylactic verapamil, silymarin and combined verapamil plus silymarin significantly resulted in lower serum ALT levels. Prophylactic use of verapamil and silymarin each alone revealed score 2 fibrosis with positive α-SMA immunostaining; while prophylactic treatment with combined verapamil plus silymarin revealed no fibrosis supported by negative α-SMA immunostaining. Verapamil treated fibrotic rat's liver revealed significant regression in liver fibrosis scores with positive α-SMA immunostaining. CONCLUSIONS Verapamil alone has a more significant prophylactic than therapeutic antifibrotic effect against induced liver fibrosis; it was more significant than silymarin. The combination of verapamil and silymarin, showed the best protection through their synergistic antifibrotic effect.
Collapse
Affiliation(s)
- Amani N Shafik
- Department of Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | |
Collapse
|
16
|
He X, Lv R, Wang K, Huang X, Wu W, Yin L, Liu Y. Cytoglobin Exhibits Anti-Fibrosis Activity on Liver In Vivo and In Vitro. Protein J 2011; 30:437-46. [DOI: 10.1007/s10930-011-9340-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Abdel-Bakky MS, Hammad MA, Walker LA, Ashfaq MK. Developing and Characterizing a Mouse Model of Hepatotoxicity Using Oral Pyrrolizidine Alkaloid (Monocrotaline) Administration, with Potentiation of the Liver Injury by Co-administration of LPS. Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000500922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Oral administration of xenobiotics is preferable for research in In Vivo models because it mimics the real life situation of human subjects. Therefore, oral (po) monocrotaline (MCT) (a common contaminant of dietary supplements)/intraperitoneal (ip) lipopolysaccharides (LPS)-induced liver injury possibly imitates idiosyncratic hepatotoxicity in humans. Cytokines, for example interleukin-1β (IL-1β) and transforming growth factor beta (TGF-β) are known to play a role in the development of toxicity and repair processes, respectively. The purpose of this study was to develop and characterize a model of po MCT/ip LPS hepatotoxicity which may elucidate the mechanisms of injury. ND4 male mice were given MCT (200 mg/kg) followed 4 h later by LPS (6 mg/kg). Blood samples were drawn for plasma chemistry and IL-1β. Animals were euthanized and livers were harvested at different time points. We have shown that MCT/LPS cotreatment results in significant elevation of plasma alanine aminotransferase (ALT), CRP, IL-1β and TGF-β. Histopathological evaluation revealed diffuse degenerative injury. In summary, we have established a reproducible in vivo model of hepatotoxicity by po MCT/ip LPS cotreatment that may closely mimic real life idiosyncratic hepatotoxicity.
Collapse
Affiliation(s)
- Mohamed Sadek Abdel-Bakky
- National Center For Natural Products Research, School Of Pharmacy, University Of Mississippi, University, Ms 38677, Usa
- These authors contributed equally to this work
| | - Mohamed A. Hammad
- National Center For Natural Products Research, School Of Pharmacy, University Of Mississippi, University, Ms 38677, Usa
- Department Of Pharmacology, School Of Pharmacy, University Of Mississippi, University, Ms 38677, Usa
- These authors contributed equally to this work
| | - Larry A. Walker
- National Center For Natural Products Research, School Of Pharmacy, University Of Mississippi, University, Ms 38677, Usa
- Department Of Pharmacology, School Of Pharmacy, University Of Mississippi, University, Ms 38677, Usa
| | - Mohammad K. Ashfaq
- National Center For Natural Products Research, School Of Pharmacy, University Of Mississippi, University, Ms 38677, Usa
- Thad Cochran Research Center, School Of Pharmacy, University Of Mississippi, Room 2047, University, Ms 3867, Usa
| |
Collapse
|
18
|
Synergistic antifibrotic effect of verapamil and interferon-gamma in rats: partially based on enhanced verapamil oral bioavailability. Eur J Gastroenterol Hepatol 2010; 22:466-73. [PMID: 20306567 DOI: 10.1097/meg.0b013e32833226d5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the synergistic antifibrotic effect of verapamil and interferon-gamma (IFN-gamma) on rat liver fibrosis and its potential pharmacokinetic-based mechanism. METHODS Rat liver fibrosis model was successfully established, and both the therapeutic effects and pharmacokinetic parameters of verapamil were evaluated after the administration of verapamil with or without IFN-gamma. The activities of cytochrome P450 3A (CYP3A) and the expression of multidrug resistance (Mdr) mRNA were measured in liver and small intestine. RESULTS The results showed the synergistic antifibrotic effect of verapamil and IFN-gamma in rat liver fibrosis, in terms of decreased serum L-alanine aminotransferase activity and liver hydroxyproline content and improved liver histopathology, when compared with rats treated with verapamil or IFN-gamma alone. Meanwhile, the area under the curve of verapamil increased significantly after single administration of verapamil and IFN-gamma and the concentration of verapamil in plasma increased, but the metabolite : parent ratio of verapamil decreased after consecutive administrations of verapamil and IFN-gamma. Furthermore, the activities of CYP3A in both the liver and the small intestine and the expression of Mdr in small intestine decreased in rats treated with verapamil and IFN-gamma. CONCLUSION All these results indicated that the combination of verapamil and IFN-gamma exerts a synergistic antifibrotic effect on rat liver fibrosis. The mechanism was partially based on the enhanced oral bioavailability of verapamil by increasing the intestinal absorption as well as reducing the first-pass metabolism, through inhibition of CYP3A activity and P-glycoprotein expression by IFN-gamma
Collapse
|
19
|
Determination of the key innate genes related to individual variation in carbon tetrachloride-induced hepatotoxicity using a pre-biopsy procedure. Toxicol Appl Pharmacol 2009; 239:55-63. [DOI: 10.1016/j.taap.2009.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/21/2009] [Accepted: 05/15/2009] [Indexed: 01/17/2023]
|
20
|
Chen M, Xu D, Hu XL, Wang H. Effects of liver fibrosis on verapamil pharmacokinetics in rats. Clin Exp Pharmacol Physiol 2007; 35:287-94. [PMID: 17973928 DOI: 10.1111/j.1440-1681.2007.04826.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. Liver fibrosis is the compensatory state of cirrhosis. In the long asymptomatic period, it is imperative to select a proper dosing regimen for drugs that are applicable to hepatic fibrosis owing to altered pharmacokinetics and bioavailability. The present study was designed to observe the changes in verapamil pharmacokinetics in rats with early liver fibrosis with respect to alterations in cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp). 2. A rat liver fibrosis model was successfully established using several inducers, including a high-fat diet, alcohol and carbon tetrachloride. After rats received a single intravenous or oral dose of verapamil (5 mg/kg), the plasma concentrations of verapamil were determined at scheduled time-points using HPLC. The activity of hepatic and small intestinal microsomal erythromycin N-demethylase (a marker for CYP3A) and the expression of small intestinal cyp3a and multidrug resistance (mdr) mRNA were compared between normal rats and rats with liver fibrosis. 3. The results showed that when verapamil was administered intravenously, the area under the curve (AUC), elimination half-life (T((1/2)(K10))) and mean residence time (MRT) increased significantly, whereas clearance (Cl) decreased, in rats with liver fibrosis compared with normal rats. After oral administration of verapamil, the AUC, (T((1/2)(K10))) and maximum concentration (C(max)) increased, Cl decreased and the absorption half-life (T((1/2)(K01))) and time to peak concentration (T(max)) were unchanged compared with normal rats. The oral bioavailability of verapamil was 32.9% in normal rats and 34.4% in rats with liver fibrosis. Furthermore, decreased CYP3A activity in the liver was accompanied by upregulated cyp3a9/18 and unchanged mdr mRNA in the small intestine compared with normal rats. Expression of cyp3a9/18 and mdr mRNA in the intestine was significantly inhibited by verapamil. 4. The results suggest that the lowered Cl and increased AUC of verapamil after intravenous and oral administration in rats with liver fibrosis were due to downregulation of CYP3A in the liver. The absorption rate of verapamil in rats with liver fibrosis was unchanged because mdr was unchanged and cyp3a was inhibited in the intestine by verapamil itself. There was no notable difference in oral bioavailability between normal rats and rats with liver fibrosis.
Collapse
Affiliation(s)
- Man Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, Hubei Province, China
| | | | | | | |
Collapse
|