1
|
Phosphodiesterase 5 (PDE5): Structure-function regulation and therapeutic applications of inhibitors. Biomed Pharmacother 2020; 134:111128. [PMID: 33348311 DOI: 10.1016/j.biopha.2020.111128] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Phosphodiesterase 5 (PDE5) is one of the most well-studied phosphodiesterases (PDEs) that specifically targets cGMP typically generated by nitric oxide (NO)-mediated activation of the soluble guanylyl cyclase. Given the crucial role of cGMP generated through the activation of this cellular signaling pathway in a variety of physiologically processes, pharmacological inhibition of PDE5 has been demonstrated to have several therapeutic applications including erectile dysfunction and pulmonary arterial hypertension. While they are designed to inhibit PDE5, the inhibitors show different affinities and specificities against all PDE subtypes. Additionally, they have been shown to induce allosteric structural changes in the protein. These are mostly attributed to their chemical structure and, therefore, binding interactions with PDE catalytic domains. Therefore, understanding how these inhibitors interact with PDE5 and the structural basis of their selectivity is critically important for the design of novel, highly selective PDE5 inhibitors. Here, we review the structure of PDE5, how its function is regulated, and discuss the clinically available inhibitors that target phosphodiesterase 5, aiming to better understand the structural bases of their affinity and specificity. We also discuss the therapeutic indications of these inhibitors and the potential of repurposing for a wider range of clinical applications.
Collapse
|
2
|
Gresele P, Momi S, Guglielmini G. Nitric oxide-enhancing or -releasing agents as antithrombotic drugs. Biochem Pharmacol 2019; 166:300-312. [DOI: 10.1016/j.bcp.2019.05.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
|
3
|
Bekendam RH, Iyu D, Passam F, Stopa JD, De Ceunynck K, Muse O, Bendapudi PK, Garnier CL, Gopal S, Crescence L, Chiu J, Furie B, Panicot-Dubois L, Hogg PJ, Dubois C, Flaumenhaft R. Protein disulfide isomerase regulation by nitric oxide maintains vascular quiescence and controls thrombus formation. J Thromb Haemost 2018; 16:2322-2335. [PMID: 30207066 PMCID: PMC6374154 DOI: 10.1111/jth.14291] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 12/17/2022]
Abstract
Essentials Nitric oxide synthesis controls protein disulfide isomerase (PDI) function. Nitric oxide (NO) modulation of PDI controls endothelial thrombogenicity. S-nitrosylated PDI inhibits platelet function and thrombosis. Nitric oxide maintains vascular quiescence in part through inhibition of PDI. SUMMARY: Background Protein disulfide isomerase (PDI) plays an essential role in thrombus formation, and PDI inhibition is being evaluated clinically as a novel anticoagulant strategy. However, little is known about the regulation of PDI in the vasculature. Thiols within the catalytic motif of PDI are essential for its role in thrombosis. These same thiols bind nitric oxide (NO), which is a potent regulator of vessel function. To determine whether regulation of PDI represents a mechanism by which NO controls vascular quiescence, we evaluated the effect of NO on PDI function in endothelial cells and platelets, and thrombus formation in vivo. Aim To assess the effect of S-nitrosylation on the regulation of PDI and other thiol isomerases in the vasculature. Methods and results The role of endogenous NO in PDI activity was evaluated by incubating endothelium with an NO scavenger, which resulted in exposure of free thiols, increased thiol isomerase activity, and enhanced thrombin generation on the cell membrane. Conversely, exposure of endothelium to NO+ carriers or elevation of endogenous NO levels by induction of NO synthesis resulted in S-nitrosylation of PDI and decreased surface thiol reductase activity. S-nitrosylation of platelet PDI inhibited its reductase activity, and S-nitrosylated PDI interfered with platelet aggregation, α-granule release, and thrombin generation on platelets. S-nitrosylated PDI also blocked laser-induced thrombus formation when infused into mice. S-nitrosylated ERp5 and ERp57 were found to have similar inhibitory activity. Conclusions These studies identify NO as a critical regulator of vascular PDI, and show that regulation of PDI function is an important mechanism by which NO maintains vascular quiescence.
Collapse
Affiliation(s)
- Roelof H. Bekendam
- Aix Marseille Université, INSERM UMR-S1076, Vascular Research Center Marseille, Marseille, France
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - David Iyu
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
- Departamento de Fisiología. Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Murcia, Spain
| | - Freda Passam
- St George Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| | - Jack D. Stopa
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Karen De Ceunynck
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Oluwatoyosi Muse
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Pavan K. Bendapudi
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Céline L. Garnier
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Srila Gopal
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Lydie Crescence
- Aix Marseille Université, INSERM UMR-S1076, Vascular Research Center Marseille, Marseille, France
| | - Joyce Chiu
- The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney New South Wales, Australia
| | - Bruce Furie
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Laurence Panicot-Dubois
- Aix Marseille Université, INSERM UMR-S1076, Vascular Research Center Marseille, Marseille, France
| | - Philip J. Hogg
- The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney New South Wales, Australia
| | - Christophe Dubois
- Aix Marseille Université, INSERM UMR-S1076, Vascular Research Center Marseille, Marseille, France
| | - Robert Flaumenhaft
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| |
Collapse
|
4
|
Weng Y, Wu S, Fan Y, Han H, Wang H, Huang N. Chirality-mediated enhancement of nitric oxide release and regulation of endothelial cells behaviors by cystine immobilization on Ti–O films. RSC Adv 2017. [DOI: 10.1039/c7ra02815f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NO release inducing by regulated by surface chirality have significant effects on endothelial cells.
Collapse
Affiliation(s)
- Yajun Weng
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- China
- School of Materials Science and Engineering
| | - Sisi Wu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- China
- School of Materials Science and Engineering
| | - Yonghong Fan
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- China
- School of Materials Science and Engineering
| | - Honghong Han
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- China
- School of Materials Science and Engineering
| | - Hong Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- China
- School of Materials Science and Engineering
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- China
- School of Materials Science and Engineering
| |
Collapse
|
5
|
Żorniak M, Mitręga KA, Porc M, Krzemiński TF. New approach to molsidomine active metabolites coming from the results of 2 models of experimental cardiology. Can J Physiol Pharmacol 2016; 95:111-121. [PMID: 27918857 DOI: 10.1139/cjpp-2016-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molsidomine is a well-known vasodilatating, antianginal drug. Despite earlier studies with its metabolites (3-morpholino-syndnonimine (SIN-1) and N-nitroso-N-morpholino-amino-acetonitrile (SIN-1A)), which indicated a potential favorable cardioprotective activity, a lot of controversy remains. The aim of our research was to compare molsidomine, SIN-1, SIN-1A, and lidocaine influence on arrhythmias and hemodynamic parameters in 2 experimental models in rats. In the Langendorff heart study, SIN-1A markedly elevated left ventricular systolic pressure, maximum rise and fall of the first pressure derivative, coronary flow, and myocardial oxygen consumption. In addition, SIN-1A more so than SIN-1 significantly lowered creatine kinase release. The antiarrhythmic action of SIN-1 was observed, while lidocaine significantly diminished ventricular arrhythmias duration in comparison with the control. In the ischemia-reperfusion-induced arrhythmias model, hypotensive action of molsidomine was observed as well as the reduction in pressure rate product. Molsidomine also prolonged ventricular tachycardia duration. On the other hand, no significant effects on hemodynamic parameters as well as on ventricular arrhythmias were found in any of the SIN-1 and SIN-1A groups. In conclusion, our research suggests a possible direct, cardioprotective action of SIN-1A. It seems worthwhile to further investigate molsidomine derivatives, especially SIN-1A, because of its potential use in invasive cardiology procedures such as percutaneous transluminal coronary angioplasty.
Collapse
Affiliation(s)
- Michał Żorniak
- a Chair and Department of Pharmacology, Medical University of Silesia, ul. Jordana 38, 41-808, Zabrze, Poland
| | - Katarzyna A Mitręga
- b Silesian Centre for Heart Diseases, ul. Szpitalna 2, 41-800, Zabrze, Poland
| | - Maurycy Porc
- a Chair and Department of Pharmacology, Medical University of Silesia, ul. Jordana 38, 41-808, Zabrze, Poland
| | - Tadeusz F Krzemiński
- a Chair and Department of Pharmacology, Medical University of Silesia, ul. Jordana 38, 41-808, Zabrze, Poland
| |
Collapse
|
6
|
An JM, Moon SA, Hong SY, Kang JW, Seo JT. Neuroprotective effect of 3-morpholinosydnonimine against Zn2+-induced PC12 cell death. Eur J Pharmacol 2015; 748:37-44. [DOI: 10.1016/j.ejphar.2014.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/18/2022]
|
7
|
Mechanisms and targets of the modulatory action of S-nitrosoglutathione (GSNO) on inflammatory cytokines expression. Arch Biochem Biophys 2014; 562:80-91. [PMID: 25135357 DOI: 10.1016/j.abb.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 02/07/2023]
Abstract
A number of experimental studies has documented that S-nitrosoglutathione (GSNO), the main endogenous low-molecular-weight S-nitrosothiol, can exert modulatory effects on inflammatory processes, thus supporting its potential employment in medicine for the treatment of important disease conditions. At molecular level, GSNO effects have been shown to modulate the activity of a series of transcription factors (notably NF-κB, AP-1, CREB and others) as well as other components of signal transduction chains (e.g. IKK-β, caspase 1, calpain and others), resulting in the modulation of several cytokines and chemokines expression (TNFα, IL-1β, IFN-γ, IL-4, IL-8, RANTES, MCP-1 and others). Results reported to date are however not univocal, and a single main mechanism of action for the observed anti-inflammatory effects of GSNO has not been identified. Conflicting observations can be explained by differences among the various cell types studies as to the relative abundance of enzymes in charge of GSNO metabolism (GSNO reductase, γ-glutamyltransferase, protein disulfide isomerase and others), as well as by variables associated with the individual experimental models employed. Altogether, anti-inflammatory properties of GSNO seem however to prevail, and exploration of the therapeutic potential of GSNO and analogues appears therefore warranted.
Collapse
|
8
|
Specific inhibitory effects of the NO donor MAHMA/NONOate on human platelets. Eur J Pharmacol 2014; 735:169-76. [PMID: 24780647 DOI: 10.1016/j.ejphar.2014.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/30/2023]
Abstract
Nitric oxide (NO) is a physiological inhibitor of platelet function and has vaso-dilating effects. Therefore, synthesized NO releasing agents are used e.g. in cardiovascular medicine. The aim of this study was to characterise specific effects of the short living agent MAHMA/NONOate, a NO donor of the diazeniumdiolate class, on human platelets. Whole blood was obtained from healthy volunteers. In washed human platelets, the MAHMA/NONOate induced phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) and cyclic nucleotide production were studied by Western Blot and by enzyme immunoassay kits. Agonist induced aggregation was measured in platelet rich plasma. Paired Student׳s t-test was used for statistical analysis. MAHMA/NONOate significantly stimulated platelet VASP phosphorylation in a concentration dependent manner and increased intracellular cGMP, but not cAMP levels, transiently. ODQ, a specific inhibitor of the soluble guanylyl cyclase, completely prevented VASP phosphorylation induced by low MAHMA/NONOate concentrations (5nM-15nM). The effects of higher concentrations (30-200nM) were only partially inhibited by ODQ. MAHMA/NONOate reduced platelet aggregation induced by low doses of agonists (2µM ADP, 0.5µg/mL collagen, 5µM TRAP-6) in a concentration dependent manner. MAHMA/NONOate leads to a rapid and transient activation of platelet inhibitory systems, accompanied by decreased platelet aggregation induced by low dose agonists. At low MAHMA/NONOate concentrations, the effects are cGMP dependent and at higher concentrations additionally cGMP independent. The substance could be of interest for clinical situations requiring transient and subtotal inhibition of platelet function.
Collapse
|
9
|
Kobzar G, Mardla V, Samel N. Lactate is a possible mediator of the glucose effect on platelet inhibition. Platelets 2013; 25:239-45. [PMID: 23909711 DOI: 10.3109/09537104.2013.816670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Glucose has been found to impair the inhibition of platelets with aspirin and alter the basal activity of nitric oxide synthase (NOS) in platelets. The aim of this work was to study the effects of glucose on the inhibitory pathways in activated platelets. A short-term incubation of glucose impaired the inhibition of platelet aggregation induced by agents activating an NOS-dependent pathway, such as l-arginine, adenosine and α-tocopherol. However, glucose had no effect on the inhibition induced by iloprost and BW245C, agents that activate the cyclic adenosine monophosphate (cAMP) signaling pathway. Potassium lactate attenuated the effects of the same inhibitors as glucose did. The inhibitors of glucose transport prevented the effect of glucose. Dichloroacetate, known to prevent the conversion of pyruvate to lactate and to decrease lactate in platelets, significantly attenuated the effect of glucose in platelets. The data support the suggestion that the effect of glucose on the inhibition of platelets by agents activating an NOS-dependent pathway is mediated by glucose metabolite lactate.
Collapse
Affiliation(s)
- Gennadi Kobzar
- Department of Chemistry, Tallinn University of Technology , Tallinn , Estonia
| | | | | |
Collapse
|
10
|
Santana RG, Paiva DR, da Silva Gomes R, Reis AKCA. 1H and 13C NMR analysis of 2-acetamido-3-mercapto-3-methyl-N-aryl-butanamides and 2-acetamido-3-methyl-3-nitrososulfanyl-N-aryl-butanamide derivatives. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:316-319. [PMID: 23495085 DOI: 10.1002/mrc.3944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 02/09/2013] [Accepted: 02/11/2013] [Indexed: 06/01/2023]
Abstract
The complete assignment of the (1)H and (13)C NMR spectra of various 2-acetamido-3-mercapto-3-methyl-N-aryl-butanamides and 2-acetamide-3-methyl-3-nitrososulfanyl-N-aryl-butanamides with p-methoxy, o-chloro and m-chloro substituents is reported.
Collapse
|
11
|
Nacharaju P, Tuckman-Vernon C, Maier KE, Chouake J, Friedman A, Cabrales P, Friedman JM. A nanoparticle delivery vehicle for S-nitroso-N-acetyl cysteine: sustained vascular response. Nitric Oxide 2012; 27:150-60. [PMID: 22705913 DOI: 10.1016/j.niox.2012.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/11/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Interest in the development of nitric oxide (NO) based therapeutics has grown exponentially due to its well elucidated and established biological functions. In line with this surge, S-nitroso thiol (RSNO) therapeutics are also receiving more attention in recent years both as potential stable sources of NO as well as for their ability to serve as S-nitrosating agents; S-nitrosation of protein thiols is implicated in many physiological processes. We describe two hydrogel based RSNO containing nanoparticle platforms. In one platform the SNO groups are covalently attached to the particles (SNO-np) and the other contains S-nitroso-N-acetyl cysteine encapsulated within the particles (NAC-SNO-np). Both platforms function as vehicles for sustained activity as trans-S-nitrosating agents. NAC-SNO-np exhibited higher efficiency for generating GSNO from GSH and maintained higher levels of GSNO concentration for longer time (24 h) as compared to SNO-np as well as a previously characterized nitric oxide releasing platform, NO-np (nitric oxide releasing nanoparticles). In vivo, intravenous infusion of the NAC-SNO-np and NO-np resulted in sustained decreases in mean arterial pressure, though NAC-SNO-np induced longer vasodilatory effects as compared to the NO-np. Serum chemistries following infusion demonstrated no toxicity in both treatment groups. Together, these data suggest that the NAC-SNO-np represents a novel means to both study the biologic effects of nitrosothiols and effectively capitalize on its therapeutic potential.
Collapse
Affiliation(s)
- Parimala Nacharaju
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|