1
|
Lei H, Yu X, Fan D. Nanocomposite Hydrogel for Real-Time Wound Status Monitoring and Comprehensive Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405924. [PMID: 39269428 PMCID: PMC11558094 DOI: 10.1002/advs.202405924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Current skin sensors or wound dressings fall short in addressing the complexities and challenges encountered in real-world scenarios, lacking adequate capability to facilitate wound repair. The advancement of methodologies enabling early diagnosis, real-time monitoring, and active regulation of drug delivery for timely comprehensive treatment holds paramount significance for complex chronic wounds. In this study, a nanocomposite hydrogel is devised for real-time monitoring of wound condition and comprehensive treatment. Tannins and siRNA containing matrix metalloproteinase-9 gene siRNA interference are self-assembled to construct a degradable nanogel and modified with bovine serum albumin. The nanogel and pH indicator are encapsulated within a dual-crosslinking hydrogel synthesized with norbornene dianhydride-modified paramylon. The hydrogel exhibited excellent shape adaptability due to borate bonding, and the click polymerization reaction led to rapid in situ curing of the hydrogel. The system not only monitors pH, temperature, wound exudate alterations, and peristalsis during wound healing but also exhibits hemostatic, antimicrobial, anti-inflammatory, and antioxidant properties, modulates macrophage polarization, and facilitates vascular tissue regeneration. This therapeutic approach, which integrates the monitoring of pathological parameters with comprehensive treatment, is anticipated to address the clinical issues and challenges associated with chronic diabetic wounds and infected wounds, offering broad prospects for application.
Collapse
Affiliation(s)
- Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green ManufacturingMinistry of EducationSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation EngineeringSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Biotech. & Biomed. Research InstituteNorthwest UniversityXi'an710069China
| | - Xueqing Yu
- Engineering Research Center of Western Resource Innovation Medicine Green ManufacturingMinistry of EducationSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation EngineeringSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Biotech. & Biomed. Research InstituteNorthwest UniversityXi'an710069China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green ManufacturingMinistry of EducationSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation EngineeringSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
- Biotech. & Biomed. Research InstituteNorthwest UniversityXi'an710069China
| |
Collapse
|
2
|
Calabrese EJ, Agathokleous E, Dhawan G, Kapoor R, Dhawan V, Manes PK, Calabrese V. Nitric oxide and hormesis. Nitric Oxide 2023; 133:1-17. [PMID: 36764605 DOI: 10.1016/j.niox.2023.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
This present paper provides an assessment of the occurrence of nitric oxide (NO)-induced hormetic-biphasic dose/concentration relationships in biomedical research. A substantial reporting of such NO-induced hormetic effects was identified with particular focus on wound healing, tumor promotion, and sperm biology, including mechanistic assessment and potential for translational applications. Numerous other NO-induced hormetic effects have been reported, but require more development prior to translational applications. The extensive documentation of NO-induced biphasic responses, across numerous organs (e.g., bone, cardiovascular, immune, intestine, and neuronal) and cell types, suggests that NO-induced biological activities are substantially mediated via hormetic processes. These observations are particularly important because broad areas of NO biology are constrained by the quantitative features of the hormetic response. This determines the amplitude and width of the low dose stimulation, affecting numerous biomedical implications, study design features (e.g., number of doses, dose spacing, sample sizes, statistical power), and the potential success of clinical trials.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vikas Dhawan
- Department of Surgery, Indian Naval Ship Hospital, Mumbai, India.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
3
|
Calabrese EJ, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Hormesis: Wound healing and keratinocytes. Pharmacol Res 2022; 183:106393. [PMID: 35961478 DOI: 10.1016/j.phrs.2022.106393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022]
Abstract
Hormetic dose responses (i.e., a biphasic dose/concentration response characterized by a low dose stimulation and a high dose inhibition) are shown herein to be commonly reported in the dermal wound healing process, with the particular focus on cell viability, proliferation, and migration of human keratinocytes in in vitro studies. Hormetic responses are induced by a wide range of substances, including endogenous agents, numerous drug and nanoparticle preparations and especially plant derived extracts, including many well-known dietary supplements as well as physical stressor agents, such as low-level laser treatments. Detailed mechanistic studies have identified common signaling pathways and their cross-pathway communications that mediate the hormetic dose responses. These findings suggest that the concept of hormesis plays a fundamental role in wound healing, with important potential implications for agent screening and evaluation, as well as clinical strategies.
Collapse
Affiliation(s)
- Edward J Calabrese
- Professor of Toxicology; School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD); University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center; Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
4
|
Munteanu C, Rotariu M, Turnea M, Dogaru G, Popescu C, Spînu A, Andone I, Postoiu R, Ionescu EV, Oprea C, Albadi I, Onose G. Recent Advances in Molecular Research on Hydrogen Sulfide (H 2S) Role in Diabetes Mellitus (DM)-A Systematic Review. Int J Mol Sci 2022; 23:ijms23126720. [PMID: 35743160 PMCID: PMC9223903 DOI: 10.3390/ijms23126720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Abundant experimental data suggest that hydrogen sulfide (H2S) is related to the pathophysiology of Diabetes Mellitus (DM). Multiple molecular mechanisms, including receptors, membrane ion channels, signalingmolecules, enzymes, and transcription factors, are known to be responsible for the H2S biological actions; however, H2S is not fully documented as a gaseous signaling molecule interfering with DM and vascular-linked pathology. In recent decades, multiple approaches regarding therapeutic exploitation of H2S have been identified, either based on H2S exogenous apport or on its modulated endogenous biosynthesis. This paper aims to synthesize and systematize, as comprehensively as possible, the recent literature-related data regarding the therapeutic/rehabilitative role of H2S in DM. This review was conducted following the “Preferred reporting items for systematic reviews and meta-analyses” (PRISMA) methodology, interrogating five international medically renowned databases by specific keyword combinations/“syntaxes” used contextually, over the last five years (2017–2021). The respective search/filtered and selection methodology we applied has identified, in the first step, 212 articles. After deploying the next specific quest steps, 51 unique published papers qualified for minute analysis resulted. To these bibliographic resources obtained through the PRISMA methodology, in order to have the best available information coverage, we added 86 papers that were freely found by a direct internet search. Finally, we selected for a connected meta-analysis eight relevant reports that included 1237 human subjects elicited from clinical trial registration platforms. Numerous H2S releasing/stimulating compounds have been produced, some being used in experimental models. However, very few of them were further advanced in clinical studies, indicating that the development of H2S as a therapeutic agent is still at the beginning.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iași, Romania; (M.R.); (M.T.)
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
- Correspondence: (C.M.); (G.O.)
| | - Mariana Rotariu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iași, Romania; (M.R.); (M.T.)
| | - Marius Turnea
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iași, Romania; (M.R.); (M.T.)
| | - Gabriela Dogaru
- Clinical Rehabilitation Hospital, 400066 Cluj-Napoca, Romania;
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Cristina Popescu
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
| | - Aura Spînu
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Ioana Andone
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Ruxandra Postoiu
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
| | - Elena Valentina Ionescu
- Faculty of Medicine, Ovidius University of Constanta, 900527 Constanta, Romania; (E.V.I.); (C.O.); (I.A.)
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Carmen Oprea
- Faculty of Medicine, Ovidius University of Constanta, 900527 Constanta, Romania; (E.V.I.); (C.O.); (I.A.)
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Irina Albadi
- Faculty of Medicine, Ovidius University of Constanta, 900527 Constanta, Romania; (E.V.I.); (C.O.); (I.A.)
- Teaching Emergency County Hospital “Sf. Apostol Andrei” Constanta, 900591 Constanta, Romania
| | - Gelu Onose
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Correspondence: (C.M.); (G.O.)
| |
Collapse
|
5
|
Lohakul J, Jeayeng S, Chaiprasongsuk A, Torregrossa R, Wood ME, Saelim M, Thangboonjit W, Whiteman M, Panich U. Mitochondria-Targeted Hydrogen Sulfide Delivery Molecules Protect Against UVA-Induced Photoaging in Human Dermal Fibroblasts, and in Mouse Skin In Vivo. Antioxid Redox Signal 2022; 36:1268-1288. [PMID: 34235951 DOI: 10.1089/ars.2020.8255] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Oxidative stress and mitochondrial dysfunction play a role in the process of skin photoaging via activation of matrix metalloproteases (MMPs) and the subsequent degradation of collagen. The activation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor controlling antioxidant and cytoprotective defense systems, might offer a pharmacological approach to prevent skin photoaging. We therefore investigated a pharmacological approach to prevent skin photoaging, and also investigated a protective effect of the novel mitochondria-targeted hydrogen sulfide (H2S) delivery molecules AP39 and AP123, and nontargeted control molecules, on ultraviolet A light (UVA)-induced photoaging in normal human dermal fibroblasts (NHDFs) in vitro and the skin of BALB/c mice in vivo. Results: In NHDFs, AP39 and AP123 (50-200 nM) but not nontargeted controls suppressed UVA (8 J/cm2)-mediated cytotoxicity and induction of MMP-1 activity, preserved cellular bioenergetics, and increased the expression of collagen and nuclear levels of Nrf2. In in vivo experiments, topical application of AP39 or AP123 (0.3-1 μM/cm2; but not nontargeted control molecules) to mouse skin before UVA (60 J/cm2) irradiation prevented skin thickening, MMP induction, collagen loss of oxidative stress markers 8-hydroxy-2'-deoxyguanosine (8-OHdG), increased Nrf2-dependent signaling, as well as increased manganese superoxide dismutase levels and levels of the mitochondrial biogenesis marker peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α). Innovation and Conclusion: Targeting H2S delivery to mitochondria may represent a novel approach for the prevention and treatment of skin photoaging, as well as being useful tools for determining the role of mitochondrial H2S in skin disorders and aging. Antioxid. Redox Signal. 36, 1268-1288.
Collapse
Affiliation(s)
- Jinapath Lohakul
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saowanee Jeayeng
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anyamanee Chaiprasongsuk
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | - Mark E Wood
- University of Exeter Medical School, Exeter, United Kingdom
| | - Malinee Saelim
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Weerawon Thangboonjit
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
MUNTEANU C, MUNTEANU D, ONOSE G. Hydrogen sulfide (H2S) - therapeutic relevance in rehabilitation and balneotherapy Systematic literature review and meta-analysis based on the PRISMA paradig. BALNEO AND PRM RESEARCH JOURNAL 2021. [DOI: 10.12680/balneo.2021.438] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background. An active molecule in sulfurous mineral - therapeutic waters and also in sapropelic mud is H2S, a hormetic gaseous molecule that can actively penetrate the skin. While high levels of H2S are extremely toxic, low levels are tolerated and have potential cytoprotective effects, with anti-inflammatory and antioxidant applications.
Objective. This systematic review aims to rigorously select related articles and identify within their content the main possible uses of hydrogen sulfide from balneary sources and to explain its physiological mechanisms and therapeutic properties.
Methods. To elaborate our systematic review, we have searched for relevant open access articles in 6 international databases: Cochrane , Elsevier , NCBI/PubMed , NCBI/PMC , PEDro , and ISI Web of Knowledge/Science , published from January 2016 until July 2021. The contextually quested keywords combinations/ syntaxes used are specified on this page. The eligible articles were analyzed in detail regarding pathologies addressed by hydrogen sulfide. All articles with any design (reviews, randomized controlled trials, non-randomized controlled trials, case-control studies, cross-sectional studies), if eligible according to the above-mentioned selection methodology, containing in the title the selected combinations, were included in the analysis. Articles were excluded in the second phase if they did not reach the relevance criterion.
Results. Our search identified, first, 291 articles. After eliminating the duplicates and non-ISI articles, remained 121 papers. In the second phase, we applied a PEDro selection filter, resulting in 108 articles that passed the relevance criterion and were included in this systematic review.
Conclusions. H2S biology and medical relevance are not fully understood and used adequately for sanogenic or medical purposes. More research is needed to fully understand the mechanisms and importance of this therapeutic gase. The link between balneotherapy and medical rehabilitation regarding the usage of hydrogen sulfide emphasises the unity for this medical speciality.
Collapse
Affiliation(s)
- Constantin MUNTEANU
- 1 University of Medicine and Pharmacy “Grigore T. Popa, 16 University Street, Iasi, Romania
| | - Diana MUNTEANU
- National Institute of Rehabilitation, Physical Medicine and Balneoclimatology, Bucharest, Romania
| | - Gelu ONOSE
- Teaching Emergency Hospital ”Bagdasar-Arseni”, Bucharest, Romania , Faculty of Medicine, Department of Physical and Rehabilitation Medicine, University of Medicine and Pharmacy ”Carol Davila”, Bucharest,
| |
Collapse
|
7
|
Wang L, Xie X, Ke B, Huang W, Jiang X, He G. Recent advances on endogenous gasotransmitters in inflammatory dermatological disorders. J Adv Res 2021; 38:261-274. [PMID: 35572410 PMCID: PMC9091779 DOI: 10.1016/j.jare.2021.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and potential candidates sulfur dioxide (SO2), methane (CH4), hydrogen gas (H2), ammonia (NH3) and carbon dioxide (CO2), are generated within the human body. Endogenous and potential gasotransmitters regulate inflammation, vasodilation, and oxidation in inflammatory dermatological disorders. Endogenous and potential gasotransmitters play potential roles in psoriasis, atopic dermatitis, acne, and chronic skin ulcers. Further research should explore the function of these gases and gas donors and inhibitors in inflammatory dermatological disorders.
Background Endogenous gasotransmitters are small gaseous mediators that can be generated endogenously by mammalian organisms. The dysregulation of the gasotransmitter system is associated with numerous disorders ranging from inflammatory diseases to cancers. However, the relevance of these endogenous gasotransmitters, prodrug donors and inhibitors in inflammatory dermatological disorders has not yet been thoroughly reviewed and discussed. Aim of review This review discusses the recent progress and will provide perspectives on endogenous gasotransmitters in the context of inflammatory dermatological disorders. Key scientific concepts of review Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are signaling molecules that regulate several physiological and pathological processes. In addition, sulfur dioxide (SO₂), methane (CH4), hydrogen gas (H2), ammonia (NH3), and carbon dioxide (CO2) can also be generated endogenously and may take part in physiological and pathological processes. These signaling molecules regulate inflammation, vasodilation, and oxidative stress, offering therapeutic potential and attracting interest in the field of inflammatory dermatological disorders including psoriasis, atopic dermatitis, acne, rosacea, and chronic skin ulcers. The development of effective gas donors and inhibitors is a promising alternative to treat inflammatory dermatological disorders with controllable and precise delivery in the future.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bowen Ke
- Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Wei Huang
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| |
Collapse
|
8
|
Silva A, Oliveira AS, Vaz CV, Correia S, Ferreira R, Breitenfeld L, Martinez-de-Oliveira J, Palmeira-de-Oliveira R, Pereira CMF, Palmeira-de-Oliveira A, Cruz MT. Anti-inflammatory potential of Portuguese thermal waters. Sci Rep 2020; 10:22313. [PMID: 33339881 PMCID: PMC7749128 DOI: 10.1038/s41598-020-79394-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/08/2020] [Indexed: 11/09/2022] Open
Abstract
In light of Medical Hydrology, thermal waters (TW) are all-natural mineral waters that emerge inside a thermal resort and have therapeutic applications. Their beneficial effect has been empirically recognized for centuries, being indicated for symptom alleviation and/or treatment of several diseases, almost all associated with inflammation. Indeed, an anti-inflammatory effect has been attributed to many different Portuguese TW but there is no scientific validation supporting this empiric knowledge. In the present study, we aimed to investigate the anti-inflammatory properties of 14 TW pertaining to thermal centers located in the Central Region of Portugal, and grouped according to their ionic profile. Mouse macrophage cells stimulated with lipopolysaccharide (LPS), a Toll-like receptor 4 agonist, were exposed to culture medium prepared in TW. Metabolism, nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression levels and the scavenging capacity of TW, were investigated in vitro. 11 out of 14 TW reduced NO production and/or iNOS expression, and/or scavenging activity, in macrophages exposed to LPS. The sulphated/calcic TW did not show any effect on at least one of the inflammatory parameters evaluated. Two sulphurous/bicarbonate/sodic TW and the sulphurous/chlorinated/sodic TW promoted an increase in NO production and/or iNOS expression. Our results validate, for the first time, the anti-inflammatory properties of Portuguese TW, supporting their therapeutic use in the treatment of inflammation-related diseases and promoting their putative application in cosmetic products and medical devices.
Collapse
Affiliation(s)
- A Silva
- Faculty of Medicine, Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal. .,Faculty of Medicine, Center for Neuroscience and Cell Biology, University of Coimbra, Polo 3, IBILI 3rd Floor, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - A S Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - C V Vaz
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - S Correia
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - R Ferreira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - L Breitenfeld
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - J Martinez-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - R Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Labfit-Health Products Research and Development Lda, Ubimedical, Covilhã, Portugal
| | - C M F Pereira
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - A Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Labfit-Health Products Research and Development Lda, Ubimedical, Covilhã, Portugal
| | - M T Cruz
- Faculty of Medicine, Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal. .,Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
9
|
Xu M, Zhang L, Song S, Pan L, Muhammad Arslan I, Chen Y, Yang S. Hydrogen sulfide: Recent progress and perspectives for the treatment of dermatological diseases. J Adv Res 2020; 27:11-17. [PMID: 33318862 PMCID: PMC7728602 DOI: 10.1016/j.jare.2020.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 01/03/2023] Open
Abstract
Three hydrogen sulfide (H2S) production enzymes including CSE, CBS and 3-MST exist in the skin. H2S regulates burn, diabetic skin wound, psoriasis, systemic sclerosis, melanoma, and pruritus. H2S regulates oxidative stress, inflammation, angiogenesis and apoptosis in skin diseases. Some ideal characteristics of H2S-based therapeutics for topical delivery are preferred. Therapeutic potential of H2S for skin disorders will be further proposed in clinical trials.
Background Hydrogen sulfide (H2S) is now recognized as a vital endogenous gasotransmitter with a variety of biological functions in different systems. Recently, studies have increasingly focused on the role of H2S in the skin. Aim of Review This review summarizes recent progress and provides perspectives on H2S in the treatment of dermatological diseases. Key Scientific Concepts of Review Three H2S production enzymes, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS) and 3-mercaptopyruvate sulfur transferase (3-MST), are all present in the skin, and it is likely that different cell types in the skin express them differently. Previous studies have demonstrated that H2S protects against several dermatological diseases, such as burns, diabetic skin wounds, psoriasis, skin flap transplantation, systemic sclerosis, melanoma, and pruritus. The mechanism might be related to the regulation of oxidative stress, inflammation, angiogenesis, apoptosis, and allergic reactions. H2S-based therapeutics require certain characteristics for topical delivery, for example, controlled release, appropriate physicochemical properties, good storage stability, acceptable odor, and advanced delivery systems. H2S-induced S-sulfhydration on proteins are potential novel targets for therapeutic intervention and drug design for the skin, which may lead to the development and application of H2S-related drugs for dermatological diseases.
Collapse
Affiliation(s)
- Mengting Xu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China.,Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Lili Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Shu Song
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Lingling Pan
- Department of Science and Technology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | | | - Yong Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
10
|
The efficacy of in vivo administration of Apremilast on mesenchymal stem cells derived from psoriatic patients. Inflamm Res 2020; 70:79-87. [DOI: 10.1007/s00011-020-01412-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
|
11
|
Abstract
Psoriasis is caused by a complex interplay among the immune system, genetic background, autoantigens, and environmental factors. Recent studies have demonstrated that patients with psoriasis have a significantly higher serum homocysteine (Hcy) level and a higher prevalence of hyperhomocysteinaemia (HHcy). Insufficiency of folic acid and vitamin B12 can be a cause of HHcy in psoriasis. Hcy may promote the immuno-inflammatory process in the pathogenesis of psoriasis by activating Th1 and Th17 cells and neutrophils, while suppressing regulatory T cells. Moreover, Hcy can drive the immuno-inflammatory process by enhancing the production of the pro-inflammatory cytokines in related to psoriasis. Hcy can induce nuclear factor kappa B activation, which is critical in the immunopathogenesis of psoriasis. There may be a link between the oxidative stress state in psoriasis and the effect of HHcy. Hydrogen sulfide (H2S) may play a protective role in the pathogenesis of psoriasis and the deficiency of H2S in psoriasis may be caused by HHcy. As the role of Hcy in the pathogenesis of psoriasis is most likely established, Hcy can be a potential therapeutic target for the treatment of psoriasis. Systemic folinate calcium, a folic acid derivative, and topical vitamin B12 have found to be effective in treating psoriasis.
Collapse
|
12
|
Nazarnezhada S, Abbaszadeh-Goudarzi G, Samadian H, Khaksari M, Ghatar JM, Khastar H, Rezaei N, Mousavi SR, Shirian S, Salehi M. Alginate hydrogel containing hydrogen sulfide as the functional wound dressing material: In vitro and in vivo study. Int J Biol Macromol 2020; 164:3323-3331. [PMID: 32888985 DOI: 10.1016/j.ijbiomac.2020.08.233] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/12/2020] [Accepted: 08/30/2020] [Indexed: 01/23/2023]
Abstract
Functional and bioactive wound dressing materials are revolutionary for wound care and healing applications. In this concept, we fabricated alginate hydrogel (Alg) containing H2S as the wound dressing materials and assessed the morphology, swelling, degradation, and release behavior, as well as the biocompatibility, cytocompatibility, and wound healing activity. The results depicted that the prepared hydrogels have a porous structure with the pore size in the range of 50 to 100 μm. Swelling and degradation studies showed that the hydrogel absorbed water about 179 ± 5% of initial dry weight during 96 h and loos about 80% of the initial dry weight after 7 days. The in vitro assessments illustrated that the optimum concentration of H2S was 0.5% and the higher concentration induced hemolysis and cell toxicity. The in vivo study revealed that the treatment by Alg/H2S 0.5% induced the highest wound closure percent with a value of 98 ± 1.22%. Moreover, the treatment by Alg/H2S 0.5% elicited the formation of sebaceous glands, hair follicles, and complete epithelization without any fibroplasia or inflammation, revealed by the histopathological observations. Accordingly, these results illustrated that the prepared Alg/H2S 0.5% could be applied as the functional and bioactive wound dressing materials.
Collapse
Affiliation(s)
- Simin Nazarnezhada
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghasem Abbaszadeh-Goudarzi
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Khaksari
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jila Majidi Ghatar
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Khastar
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nariman Rezaei
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyed Reza Mousavi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord 6416547815, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
13
|
Gross-Amat O, Guillen M, Gimeno JP, Salzet M, Lebonvallet N, Misery L, Auxenfans C, Nataf S. Molecular Mapping of Hydrogen Sulfide Targets in Normal Human Keratinocytes. Int J Mol Sci 2020; 21:E4648. [PMID: 32629886 PMCID: PMC7369889 DOI: 10.3390/ijms21134648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Although sulfur-rich thermal waters have ancestrally been used in the context of dermatological conditions, a global mapping of the molecular effects exerted by H2S on human keratinocytes is still lacking. To fill this knowledge gap, we subjected cultured human keratinocytes to distinct amounts of the non-gaseous hydrogen sulfur donor NaHS. We first checked that H2S accumulated in the cytoplasm of keratinocytes under our experimental conditions andused a combination of proteomics, genomics and biochemical approaches to unravel functionally relevant H2S targets in human keratinocytes. We found that the identified targets fall into two main categories: (i) the oxidative stress response molecules superoxide dismutase 2 (SOD2), NAD(P)H quinone dehydrogenase 1 (NQO1) and culin 3 (CUL3) and (ii) the chemokines interleukin-8 (IL-8) and CXCL2. Interestingly, NaHS also stimulated the caspase-1 inflammasome pathway, leading to increased secretion of the pro-inflammatory molecule interleukin-18 (IL-18). Interestingly, the secretion of interleukin-1 beta (IL-1β) was only modestly impacted by NaHS exposure despite a significant accumulation of IL-1β pro-form. Finally, we observed that NaHS significantly hampered the growth of human keratinocyte progenitors and stem cells cultured under clonogenic conditions or as epidermal cell sheets. We conclude that H2S exerts specific molecular effects on normal human keratinocytes.
Collapse
Affiliation(s)
- Olivia Gross-Amat
- Lyon-Est School of Medicine, University Claude Bernard Lyon-1, 69100 Villeurbanne, France; (M.G.); (S.N.)
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), 69003 Lyon, France;
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, 69600 Oullins, France
| | - Marine Guillen
- Lyon-Est School of Medicine, University Claude Bernard Lyon-1, 69100 Villeurbanne, France; (M.G.); (S.N.)
| | - Jean-Pascal Gimeno
- Inserm, CHRU Lille, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, F-59000 Lille, France; (J.-P.G.); (M.S.)
| | - Michel Salzet
- Inserm, CHRU Lille, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, F-59000 Lille, France; (J.-P.G.); (M.S.)
| | - Nicolas Lebonvallet
- Laboratory of Epithelial-Neural Interactions, University of Brest, LIEN, 29200 Brest, France; (N.L.); (L.M.)
| | - Laurent Misery
- Laboratory of Epithelial-Neural Interactions, University of Brest, LIEN, 29200 Brest, France; (N.L.); (L.M.)
- Department of dermatology, Brest University Hospital (CHU de Brest), 29200 Brest, France
| | - Céline Auxenfans
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), 69003 Lyon, France;
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305, 69007 Lyon, France
| | - Serge Nataf
- Lyon-Est School of Medicine, University Claude Bernard Lyon-1, 69100 Villeurbanne, France; (M.G.); (S.N.)
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), 69003 Lyon, France;
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, 69600 Oullins, France
| |
Collapse
|
14
|
Yin L, Gao S, Li C. Exogenous hydrogen sulfide alleviates surgery-induced neuroinflammatory cognitive impairment in adult mice by inhibiting NO signaling. BMC Anesthesiol 2020; 20:12. [PMID: 31918664 PMCID: PMC6953271 DOI: 10.1186/s12871-019-0927-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background To investigate the effect and mechanisms of exogenous hydrogen sulfide in surgery-induced neuroinflammatory cognitive dysfunction. Methods C57BL/6 J male mice (n = 140) were used and randomly divided into seven groups: the sham group, surgery group, GYY4137 group, L-NAME group, surgery+GYY4137 group, surgery +L-NAME group, and surgery+GYY4137 + L-NAME group. After the interventions, open field tests (OFT) and the Morris water maze (MWM) test were conducted to evaluate learning and memory abilities in the mice. ELISAs, nitrate reductase assays, and Western blots (WB) were conducted to evaluate interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), inducible nitric oxide synthase (iNOS), malondialdehyde (MDA), and antioxidant enzyme superoxide dismutase (SOD) levels. Furthermore, the expression level of microglial marker ionized calcium binding adaptor molecule 1 (IBA) in the hippocampal CA1 and CA3 areas was detected by an immunohistochemical (IHC) assay and apoptotic cells were observed using terminal deoxynucleotidyl transferase dUTP end-labeling (TUNEL) staining kits. Results We found that surgery induced neuroinflammatory cognitive dysfunction, oxidative stress, microglial activation, and cell apoptosis in the hippocampus. Moreover, following surgery, NO and iNOS levels were elevated in the hippocampus. Notably, all the effects caused by surgery were reversed by the H2S donor GYY4137 or the iNOS inhibitor N(gamma)-nitro-L-arginine methyl ester (L-NAME). However, the combined application of GYY4137 and L-NAME was not superior to treatment with either agent alone and the effect of GYY4137 was similar to that of L-NAME. Conclusion The long-acting hydrogen sulfide donor GYY4137 had an ability to reversed the cognitive deficits and inflammation caused by carotid artery exposure surgery. This implies that NO signaling pathways might participate in this process. These results indicate that exogenous H2S may be a promising therapy for POCD.
Collapse
Affiliation(s)
- Lijun Yin
- Department of Anesthesiology, Baodi Clinical College of Tianjin Medical University, No.8 Guangchuan Road, Baodi District, Tianjin, 301800, China
| | - Shunli Gao
- Department of Anesthesiology, Baodi Clinical College of Tianjin Medical University, No.8 Guangchuan Road, Baodi District, Tianjin, 301800, China
| | - Changkun Li
- Department of Anesthesiology, Baodi Clinical College of Tianjin Medical University, No.8 Guangchuan Road, Baodi District, Tianjin, 301800, China.
| |
Collapse
|
15
|
Casaroto AR, da Silva RA, Salmeron S, Rezende MLRD, Dionísio TJ, Santos CFD, Pinke KH, Klingbeil MFG, Salomão PA, Lopes MMR, Lara VS. Candida albicans-Cell Interactions Activate Innate Immune Defense in Human Palate Epithelial Primary Cells via Nitric Oxide (NO) and β-Defensin 2 (hBD-2). Cells 2019; 8:cells8070707. [PMID: 31336838 PMCID: PMC6678605 DOI: 10.3390/cells8070707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 01/29/2023] Open
Abstract
The presence of Candida albicans in the biofilm underlying the dental prosthesis is related to denture stomatitis (DS), an inflammatory reaction of the oral mucosa. The oral epithelium, a component of the innate immune response, has the ability to react to fungal invasion. In this study, we evaluated the in vitro effect of viable C. albicans on the apoptosis, nitric oxide (NO) production, and β-defensin 2 (hBD-2) expression and production of human palate epithelial cells (HPECs). We further determined whether or not these effects were correlated with fungal invasion of epithelial cells. Interaction between HPEC primary culture and C. albicans was obtained through either direct or indirect cell–cell contact with a supernatant from a hyphal fungus. We found that the hyphae supernatants were sufficient to induce slight HPEC apoptosis, which occurred prior to the activation of the specific mechanisms of epithelial defense. The epithelial defense responses were found to occur via NO and antimicrobial peptide hBD-2 production only during direct contact between C. albicans and HPECs and coincided with the fungus’s intraepithelial invasion. However, although the hBD-2 levels remained constant in the HPEC supernatants over time, the NO release and hBD-2 gene expression were reduced at a later time (10 h), indicating that the epithelial defense capacity against the fungal invasion was not maintained in later phases. This aspect of the immune response was associated with increased epithelial invasion and apoptosis maintenance.
Collapse
Affiliation(s)
- Ana Regina Casaroto
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil.
| | - Rafaela Alves da Silva
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Samira Salmeron
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Maria Lúcia Rubo de Rezende
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Carlos Ferreira Dos Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Karen Henriette Pinke
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | | | - Priscila Aranda Salomão
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Marcelo Milanda Ribeiro Lopes
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| |
Collapse
|
16
|
Coavoy-Sánchez SA, Costa SKP, Muscará MN. Hydrogen sulfide and dermatological diseases. Br J Pharmacol 2019; 177:857-865. [PMID: 31051046 DOI: 10.1111/bph.14699] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Skin diseases constitute a major health problem affecting a high proportion of the population every day and have different aetiologies that include inflammation, infections, and tumours. Hydrogen sulfide (H2 S) is a gaseous signalling molecule recognized as a gasotransmitter together with NO and carbon monoxide. Under physiological conditions, H2 S is produced in the skin by enzymic pathways and plays a physiological role in a variety of functions, such as vasodilatation, cell proliferation, apoptosis, and inflammation. Alterations of H2 S production are implicated in a variety of dermatological diseases, such as psoriasis, melanoma, and other dermatoses. On the other hand, H2 S-releasing-based therapies based on H2 S donor compounds are being developed to treat some of these situations. In this review, we provide an up-to-date overview of the role of H2 S in the normal skin and its clinical and pathological significance, as well as the therapeutic potential of different H2 S donors for treatment of skin diseases. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Silvia A Coavoy-Sánchez
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo N Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Slade E, Williams L, Gagnon J. Hydrogen sulfide suppresses ghrelin secretion in vitro and delays postprandial ghrelin secretion while reducing appetite in mice. Physiol Rep 2018; 6:e13870. [PMID: 30294900 PMCID: PMC6174124 DOI: 10.14814/phy2.13870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Ghrelin is a stomach-derived hormone that regulates several metabolic functions including growth hormone release, appetite, adiposity, and gastric motility. Nutrients, the autonomic nervous system, and other metabolic hormones have all been implicated in the regulation of ghrelin secretion. Despite this, ongoing efforts to develop modulators of ghrelin secretion in human diseases are still underway. Hydrogen sulfide (H2 S) is a gaseous signaling molecule that is produced both endogenously in many tissues and by the gut microbiome. H2 S has established roles in cardiovascular and immune health, however, more recently H2 S has been implicated in the regulation of metabolic hormone secretion. We hypothesized that H2 S is able to directly regulate ghrelin secretion and in turn, regulate appetite. We first demonstrated that GYY4137 (an H2 S donor molecule) directly suppresses ghrelin secretion in rat primary gastric culture, in part through the activation of the protein kinase B (AKT) pathway. We then demonstrated the colocalization of ghrelin-positive gastric cells with the H2 S producing enzyme cystathionine-γ-lyase (CSE). While GYY4137 suppressed ghrelin secretion, inhibition of CSE caused a stimulation in ghrelin secretion in primary gastric culture. In mice, GYY4137 treatment prolonged the postprandial drop of circulating ghrelin and caused reduced food consumption up to 4 h after treatment. These results demonstrate for the first time a role for H2 S in the regulation of ghrelin and appetite. Modulating H2 S levels may be a novel approach to regulate ghrelin secretion in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Erik Slade
- Department of BiologyLaurentian University935 Ramsey Lake RoadSudburyOntarioCanadaP3E2C6
| | - Laura Williams
- Department of BiologyLaurentian University935 Ramsey Lake RoadSudburyOntarioCanadaP3E2C6
| | - Jeffrey Gagnon
- Department of BiologyLaurentian University935 Ramsey Lake RoadSudburyOntarioCanadaP3E2C6
| |
Collapse
|
18
|
Sulphurous Mineral Waters: New Applications for Health. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8034084. [PMID: 28484507 PMCID: PMC5397653 DOI: 10.1155/2017/8034084] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022]
Abstract
Sulphurous mineral waters have been traditionally used in medical hydrology as treatment for skin, respiratory, and musculoskeletal disorders. However, driven by recent intense research efforts, topical treatments are starting to show benefits for pulmonary hypertension, arterial hypertension, atherosclerosis, ischemia-reperfusion injury, heart failure, peptic ulcer, and acute and chronic inflammatory diseases. The beneficial effects of sulphurous mineral waters, sulphurous mud, or peloids made from sulphurous mineral water have been attributed to the presence of sulphur mainly in the form of hydrogen sulphide. This form is largely available in conditions of low pH when oxygen concentrations are also low. In the organism, small amounts of hydrogen sulphide are produced by some cells where they have numerous biological signalling functions. While high levels of hydrogen sulphide are extremely toxic, enzymes in the body are capable of detoxifying it by oxidation to harmless sulphate. Hence, low levels of hydrogen sulphide may be tolerated indefinitely. In this paper, we review the chemistry and actions of hydrogen sulphide in sulphurous mineral waters and its natural role in body physiology. This is followed by an update of available data on the impacts of exogenous hydrogen sulphide on the skin and internal cells and organs including new therapeutic possibilities of sulphurous mineral waters and their peloids.
Collapse
|
19
|
Gessi S, Borea PA, Bencivenni S, Fazzi D, Varani K, Merighi S. The activation of μ-opioid receptor potentiates LPS-induced NF-kB promoting an inflammatory phenotype in microglia. FEBS Lett 2016; 590:2813-26. [PMID: 27427408 DOI: 10.1002/1873-3468.12313] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Stefania Gessi
- Department of Medical Sciences; University of Ferrara; Italy
| | | | | | - Debora Fazzi
- Department of Medical Sciences; University of Ferrara; Italy
| | - Katia Varani
- Department of Medical Sciences; University of Ferrara; Italy
| | | |
Collapse
|
20
|
MiR 20a,-20b and -200c are involved in hydrogen sulfide stimulation of VEGF production in human placental trophoblasts. Placenta 2016; 39:101-10. [PMID: 26992682 DOI: 10.1016/j.placenta.2016.01.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/07/2016] [Accepted: 01/21/2016] [Indexed: 11/22/2022]
Abstract
UNLABELLED Hydrogen sulfide (H2S) has been implicated to angiogenesis in various tissues. We sought to investigate the role of hydrogen sulfide (H2S) in regulating production of vascular endothelial growth factor (VEGF) proteins, the key factors of angiogenesis and vasculogenesis, in placenta. METHODS Placental tissues were obtained from pregnant women with preeclampsia and healthy pregnant women who underwent elective cesarean section. Explants and trophoblasts were isolated from healthy placentas and treated with H2S donor and precursor. Western blotting was used to determine the levels of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). The levels of VEGF mRNA, miR miR-200c,-20a and -20b were determined by quantitative real time PCR. RESULTS NaHS and l-cysteine increased VEGF but not placenta growth factor (PlGF) production in cultured explants and trophoblasts. Transfection of CBS and CSE siRNA reversed the stimulatory effect of l-cysteine on VEGF production in placental cells. H2S prolonged the half-life of VEGF mRNA and decreased the expression of miR-200c,-20a and -20b in placental cells. MiR-200c mimic and inhibitor affected VEGF mRNA and protein level, whereas miR-20a or -20b mimic and inhibitor affect VEGF protein release but not mRNA expression. The expression level of miR-200c,-20a and -20b as well as the level of CBS, CSE and VEGF were downregulated in preeclamptic placentas. CONCLUSION H2S produced via CSE and CBS plays a critical role in VEGF production in human placenta. Reduced expression of CSE and CBS may contribute to the abnormal production of angiogenic factors in preeclamptic placenta.
Collapse
|
21
|
Xie X, Dai H, Zhuang B, Chai L, Xie Y, Li Y. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes. Biochem Biophys Res Commun 2016; 472:437-43. [PMID: 26780726 DOI: 10.1016/j.bbrc.2016.01.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
The effects and the underlying mechanisms of hydrogen sulfide (H2S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H2S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H2S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H2S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Xin Xie
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Hui Dai
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Binyu Zhuang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Li Chai
- Institute of Dermatology of Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
| | - Yanguang Xie
- Institute of Dermatology of Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
22
|
Wang R, Szabo C, Ichinose F, Ahmed A, Whiteman M, Papapetropoulos A. The role of H2S bioavailability in endothelial dysfunction. Trends Pharmacol Sci 2015; 36:568-78. [PMID: 26071118 DOI: 10.1016/j.tips.2015.05.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022]
Abstract
Endothelial dysfunction (EDF) reflects pathophysiological changes in the phenotype and functions of endothelial cells that result from and/or contribute to a plethora of cardiovascular diseases. We review the role of hydrogen sulfide (H2S) in the pathogenesis of EDF, one of the fastest advancing research topics. Conventionally treated as an environment pollutant, H2S is also produced in endothelial cells and participates in the fine regulation of endothelial integrity and functions. Disturbed H2S bioavailability has been suggested to be a novel indicator of EDF progress and prognosis. EDF manifests in different forms in multiple pathologies, but therapeutics aimed at remedying altered H2S bioavailability may benefit all.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, 601 Harborside Drive, Galveston, TX 77555, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Asif Ahmed
- Aston Medical Research Institute, Aston Medical School, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Magdalen Road, Exeter EX1 2LU, UK
| | - Andreas Papapetropoulos
- Faculty of Pharmacy, University of Athens, Zografou Campus, Athens, 15771, Greece; George P. Livanos and Marianthi Simou Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, University of Athens, Athens, 10675, Greece
| |
Collapse
|
23
|
Whiteman M, Perry A, Zhou Z, Bucci M, Papapetropoulos A, Cirino G, Wood ME. Phosphinodithioate and Phosphoramidodithioate Hydrogen Sulfide Donors. Handb Exp Pharmacol 2015; 230:337-363. [PMID: 26162843 DOI: 10.1007/978-3-319-18144-8_17] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hydrogen sulfide is rapidly emerging as a key physiological mediator and potential therapeutic tool in numerous areas such as acute and chronic inflammation, neurodegenerative and cardiovascular disease, diabetes, obesity and cancer. However, the vast majority of the published studies have employed crude sulfide salts such as sodium hydrosulfide (NaSH) and sodium sulfide (Na2S) as H2S "donors" to generate H2S. Although these salts are cheap, readily available and easy to use, H2S generated from them occurs as an instantaneous and pH-dependent dissociation, whereas endogenous H2S synthesis from the enzymes cystathionine γ-lyase, cystathionine-β-synthase and 3-mercaptopyruvate sulfurtransferase is a slow and sustained process. Furthermore, sulfide salts are frequently used at concentrations (e.g. 100 μM to 10 mM) far in excess of the levels of H2S reported in vivo (nM to low μM). For the therapeutic potential of H2S is to be properly harnessed, pharmacological agents which generate H2S in a physiological manner and deliver physiologically relevant concentrations are needed. The phosphorodithioate GYY4137 has been proposed as "slow-release" H2S donors and has shown promising efficacy in cellular and animal model diseases such as hypertension, sepsis, atherosclerosis, neonatal lung injury and cancer. However, H2S generation from GYY4137 is inefficient necessitating its use at high concentrations/doses. However, structural modification of the phosphorodithioate core has led to compounds (e.g. AP67 and AP105) with accelerated rates of H2S generation and enhanced biological activity. In this review, the therapeutic potential and limitations of GYY4137 and related phosphorodithioate derivatives are discussed.
Collapse
|
24
|
Benedetti F, Davinelli S, Krishnan S, Gallo RC, Scapagnini G, Zella D, Curreli S. Sulfur compounds block MCP-1 production by Mycoplasma fermentans-infected macrophages through NF-κB inhibition. J Transl Med 2014; 12:145. [PMID: 24886588 PMCID: PMC4046042 DOI: 10.1186/1479-5876-12-145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/22/2014] [Indexed: 12/04/2022] Open
Abstract
Background and aims Hydrogen sulfide (H2S), together with nitric oxide (NO) and carbon monoxide (CO), belongs to a family of endogenous signaling mediators termed “gasotransmitters”. Recent studies suggest that H2S modulates many cellular processes and it has been recognized to play a central role in inflammation, in the cardiovascular and nervous systems. By infecting monocytes/macrophages with Mycoplasma fermentans (M.F.), a well-known pro-inflammatory agent, we evaluated the effects of H2S. Methods M.F.-infected cells were analyzed by ELISA and real time RT-PCR to detect the M.F. effects on MCP-1 and on MMP-12 expression. The role of two different H2S donors (NaHS and GYY4137) on MF-infected cells was determined by treating infected cells with H2S and then testing the culture supernatants for MCP-1 and on MMP-12 production by ELISA assay. In order to identify the pathway/s mediating H2S- anti-inflammatory activity, cells were also treated with specific pharmaceutical inhibitors. Cytoplasmic and nuclear accumulation of NF-κB heterodimers was analyzed. Results We show that H2S was able to reduce the production of pro-inflammatory cytokine MCP-1, that was induced in monocytes/macrophages during M.F. infection. Moreover, MCP-1 was induced by M.F. through Toll-like receptor (TLR)-mediated nuclear factor-κB (NF-κB) activation, as demonstrated by the fact that TLR inhibitors TIRAP and MyD88 and NF-κB inhibitor IKK were able to block the cytokine production. In contrast H2S treatment of M.F. infected macrophages reduced nuclear accumulation of NF-κB heterodimer p65/p52. Conclusions Our data demonstrate that under the present conditions H2S is effective in reducing Mycoplasma-induced inflammation by targeting the NF-κB pathway. This supports further studies for possible clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sabrina Curreli
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
25
|
Tobler M, Henpita C, Bassett B, Kelley JL, Shaw JH. H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments. Comp Biochem Physiol A Mol Integr Physiol 2014; 175:7-14. [PMID: 24813672 DOI: 10.1016/j.cbpa.2014.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/26/2014] [Accepted: 04/17/2014] [Indexed: 11/16/2022]
Abstract
Disentangling the effects of plasticity, genetic variation, and their interactions on organismal responses to environmental stressors is a key objective in ecological physiology. We quantified the expression of five candidate genes in response to hydrogen sulfide (H2S) exposure in fish (Poecilia mexicana, Poeciliidae) from a naturally sulfide-rich environment as well as an ancestral, non-sulfidic population to test for constitutive and environmentally dependent population differences in gene expression patterns. Common garden raised individuals that had never encountered environmental H2S during their lifetime were subjected to short or long term H2S exposure treatments or respective non-sulfidic controls. The expression of genes involved in responses to H2S toxicity (cytochrome c oxidase, vascular endothelial growth factor, and cytochrome P450-2J6), H2S detoxification (sulfide:quinone oxidoreductase), and endogenous H2S production (cystathionine γ lyase) was determined in both gill and liver tissues by real time PCR. The results indicated complex changes in expression patterns that--depending on the gene--not only differed between organs and populations, but also on the type of H2S exposure. Populations differences, both constitutive and H2S exposure dependent (i.e., plastic), in gene expression were particularly evident for sulfide:quinone oxidoreductase, vascular endothelial growth factor, and to a lesser degree for cytochrome P450-2J6. Our study uncovered putatively adaptive modifications in gene regulation that parallel previously documented adaptive changes in phenotypic traits.
Collapse
Affiliation(s)
- Michael Tobler
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Chathurika Henpita
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Brandon Bassett
- Center for Veterinary Health Sciences, Oklahoma State University, 205 McElroy Hall, Stillwater, OK 74078, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| | - Jennifer H Shaw
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA.
| |
Collapse
|
26
|
Song ZJ, Ng MY, Lee ZW, Dai W, Hagen T, Moore PK, Huang D, Deng LW, Tan CH. Hydrogen sulfide donors in research and drug development. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00362k] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review summarized most of the H2S donors such as inorganic compounds, natural products, anethole trithione derivatives and synthetic compounds used in research and drug development. These special bioactivities provided us some effective strategies for antiphlogosis, cancer therapy, cardiovascular protection and so on.
Collapse
Affiliation(s)
- Zhi Jian Song
- Division of Chemistry & Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Mei Ying Ng
- Department of Biochemistry
- National University of Singapore
- Singapore
| | - Zheng-Wei Lee
- Department of Biochemistry
- National University of Singapore
- Singapore
| | - Weilu Dai
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Thilo Hagen
- Department of Biochemistry
- National University of Singapore
- Singapore
| | - Philip K. Moore
- Department of Pharmacology
- National University of Singapore
- Singapore
| | - Dejian Huang
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Lih-Wen Deng
- Department of Biochemistry
- National University of Singapore
- Singapore
| | - Choon-Hong Tan
- Division of Chemistry & Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| |
Collapse
|
27
|
Le Trionnaire S, Perry A, Szczesny B, Szabo C, Winyard PG, Whatmore JL, Wood ME, Whiteman M. The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor, (10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39). MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00323j] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is observed in many diseases. Targeting H2S generation to mitochondria may be cytoprotective.
Collapse
Affiliation(s)
| | - Alexis Perry
- Biosciences
- College of Environmental and Life Sciences
- University of Exeter
- Exeter EX4 4QD, UK
| | - Bartosz Szczesny
- Department of Anesthesiology
- University of Texas Medical Branch
- Galveston, USA
| | - Csaba Szabo
- Department of Anesthesiology
- University of Texas Medical Branch
- Galveston, USA
| | - Paul G. Winyard
- University of Exeter Medical School
- St. Luke's Campus
- Exeter EX1 2LU, UK
| | | | - Mark E. Wood
- Biosciences
- College of Environmental and Life Sciences
- University of Exeter
- Exeter EX4 4QD, UK
| | - Matthew Whiteman
- University of Exeter Medical School
- St. Luke's Campus
- Exeter EX1 2LU, UK
| |
Collapse
|
28
|
Gessi S, Merighi S, Stefanelli A, Fazzi D, Varani K, Borea PA. A1 and A3 adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes. Pharmacol Res 2013; 76:157-70. [DOI: 10.1016/j.phrs.2013.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/24/2013] [Accepted: 08/08/2013] [Indexed: 11/27/2022]
|
29
|
Carubbi C, Gobbi G, Bucci G, Gesi M, Vitale M, Mirandola P. Skin, Inflammation and Sulfurous Waters: What is Known, What is Believed. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
One could argue that balneotherapy and mud therapy would have not lasted 2,000 years or so If they were not effective. No doubt a long history cannot be taken per se as scientific proof of efficacy. Some empiricism is still present in the field: the concept of spa itself is quite confounding, whereas spring waters are used for leisure purposes but also for non-acute patient therapy and late phases of clinical recovery. These confounding elements ultimately feed the opinion of those who aprioristically reject any potential beneficial effect of balneotherapy: instead, it should at least generate questions that deserve scientific answers. Clinical practices sequentially integrating pharmacological therapy with those natural principles for which a sufficient scientific demonstration is available, would probably cut the costs of public health, generating widespread advantages for the community. Recently, it has become evident that mineral waters may have intrinsic pharmacological properties. Of the numerous salts dissolved in thermal waters that might show pharmacological properties, for certain hydrogen sulfide (H2S) contained in sulfurous waters is the one that has obtained greater scientific attention, to which should be added the extensive scientific effort recently dedicated to H2S as a cellular gasotransmitter, independently from its natural sources. Dermatology and cosmetics are among the most studied applications of sulfurous waters, around which, however, some empiricism still confounds opinions: we therefore considered that a state-of-the-art focus on this topic might be timely and useful for future studies.
Collapse
Affiliation(s)
- C. Carubbi
- Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, Parma, Italy
| | - G. Gobbi
- Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, Parma, Italy
| | - G. Bucci
- Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, Parma, Italy
| | - M. Gesi
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | - M. Vitale
- Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, Parma, Italy
- Scientific Coordinator of the Italian Foundation for Scientific Research in Balneotherapy (FoRST), Rome, Italy
| | - P. Mirandola
- Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, Parma, Italy
| |
Collapse
|
30
|
Zhao Y, Bhushan S, Yang C, Otsuka H, Stein JD, Pacheco A, Peng B, Devarie-Baez NO, Aguilar HC, Lefer DJ, Xian M. Controllable hydrogen sulfide donors and their activity against myocardial ischemia-reperfusion injury. ACS Chem Biol 2013; 8:1283-90. [PMID: 23547844 DOI: 10.1021/cb400090d] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S), known as an important cellular signaling molecule, plays critical roles in many physiological and/or pathological processes. Modulation of H2S levels could have tremendous therapeutic value. However, the study on H2S has been hindered due to the lack of controllable H2S releasing agents that could mimic the slow and moderate H2S release in vivo. In this work we report the design, synthesis, and biological evaluation of a new class of controllable H2S donors. Twenty-five donors were prepared and tested. Their structures were based on a perthiol template, which was suggested to be involved in H2S biosynthesis. H2S release mechanism from these donors was studied and proved to be thiol-dependent. We also developed a series of cell-based assays to access their H2S-related activities. H9c2 cardiac myocytes were used in these experiments. We tested lead donors' cytotoxicity and confirmed their H2S production in cells. Finally we demonstrated that selected donors showed potent protective effects in an in vivo murine model of myocardial ischemia-reperfusion injury, through a H2S-related mechanism.
Collapse
Affiliation(s)
| | - Shashi Bhushan
- Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Carlyle Fraser
Heart Center, Atlanta, Georgia 30308, United States
| | - Chuntao Yang
- Department of Physiology, Guangzhou Medical University, Guangzhou 510182, China
| | - Hiroyuki Otsuka
- Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Carlyle Fraser
Heart Center, Atlanta, Georgia 30308, United States
| | | | | | | | | | | | - David J. Lefer
- Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Carlyle Fraser
Heart Center, Atlanta, Georgia 30308, United States
| | | |
Collapse
|
31
|
Hydrogen sulfide in paraventricular nucleus enhances sympathetic activity and cardiac sympathetic afferent reflex in chronic heart failure rats. PLoS One 2012; 7:e50102. [PMID: 23166827 PMCID: PMC3499499 DOI: 10.1371/journal.pone.0050102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intracerebroventricular infusion of NaHS, a hydrogen sulfide (H(2)S) donor, increased mean arterial pressure (MAP). This study was designed to determine the roles of H(2)S in the paraventricular nucleus (PVN) in modulating sympathetic activity and cardiac sympathetic afferent reflex (CSAR) in chronic heart failure (CHF). METHODOLOGY/PRINCIPAL FINDINGS CHF was induced by left descending coronary artery ligation in rats. Renal sympathetic nerve activity (RSNA) and MAP were recorded under anesthesia. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of low doses of a H(2)S donor, GYY4137 (0.01 and 0.1 nmol), had no significant effects on RSNA, MAP and CSAR. High doses of GYY4137 (1, 2 and 4 nmol) increased baseline RSNA, MAP and heart rate (HR), and enhanced CSAR. The effects were greater in CHF rats than sham-operated rats. A cystathionine-β-synthase (CBS) inhibitor, hydroxylamine (HA) in PVN had no significant effect on the RSNA, MAP and CSAR. CBS activity and H(2)S level in the PVN were decreased in CHF rats. No significant difference in CBS level in PVN was found between sham-operated rats and CHF rats. Stimulation of cardiac sympathetic afferents with capsaicin decreased CBS activity and H(2)S level in the PVN in both sham-operated rats and CHF rats. CONCLUSIONS Exogenous H(2)S in PVN increases RSNA, MAP and HR, and enhances CSAR. The effects are greater in CHF rats than those in sham-operated rats. Endogenous H(2)S in PVN is not responsible for the sympathetic activation and enhanced CSAR in CHF rats.
Collapse
|