1
|
Xu J, Shi C, Ding Y, Qin T, Li C, Yuan F, Liu Y, Xie Y, Qin Y, Cao Y, Wu T, Duan C, Lu H, Hu J, Jiang L. Endothelial Foxo1 Phosphorylation Inhibition via Aptamer-Liposome Alleviates OPN-Induced Pathological Vascular Remodeling Following Spinal Cord Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406398. [PMID: 39340832 DOI: 10.1002/advs.202406398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Reconstruction of the neurovascular unit is essential for the repair of spinal cord injury (SCI). Nonetheless, detailed documentation of specific vascular changes following SCI and targeted interventions for vascular treatment remains limited. This study demonstrates that traumatic pathological vascular remodeling occurs during the chronic phase of injury, characterized by enlarged vessel diameter, disruption of blood-spinal cord barrier, endothelial-to-mesenchymal transition (EndoMT), and heightened extracellular matrix deposition. After SCI, osteopontin (OPN), a critical factor secreted by immune cells, is indispensable for early vascular regeneration but also contributes to traumatic pathological vascular remodeling. This work further elucidates the mechanism by which OPN influences spinal cord microvascular endothelial cells, involving Akt-mediated Foxo1 phosphorylation. This process facilitates the extranuclear transport of Foxo1 and decreases Smad7 expression, leading to excessive activation of the TGF-β signaling pathway, which ultimately results in EndoMT and fibrosis. Targeted inhibition of Foxo1 phosphorylation through an endothelium-specific aptamer-liposome small molecule delivery system significantly mitigates vascular remodeling, thereby enhancing axon regeneration and neurological function recovery following SCI. The findings offer a novel perspective for drug therapies aimed at specifically targeting pathological vasculature after SCI.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chaoran Shi
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yinghe Ding
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tian Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yiming Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
2
|
Zhang Y, Zheng BY, Zhang QF, Zhao YN, Yu QM, Liu X, Ding SY, Qian SS, Wu H, Wu QY, Zhang YH, Zheng L, Zhang XH, Zhang HF, Hao YM, Lu JC, Wang L, Wen JK, Zheng B. Nanoparticles targeting OPN loaded with BY1 inhibits vascular restenosis by inducing FTH1-dependent ferroptosis in vascular smooth muscle cells. Biomaterials 2024; 309:122613. [PMID: 38759485 DOI: 10.1016/j.biomaterials.2024.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Vascular restenosis following angioplasty continues to pose a significant challenge. The heterocyclic trioxirane compound [1, 3, 5-tris((oxiran-2-yl)methyl)-1, 3, 5-triazinane-2, 4, 6-trione (TGIC)], known for its anticancer activity, was utilized as the parent ring to conjugate with a non-steroidal anti-inflammatory drug, resulting in the creation of the spliced conjugated compound BY1. We found that BY1 induced ferroptosis in VSMCs as well as in neointima hyperplasia. Furthermore, ferroptosis inducers amplified BY1-induced cell death, while inhibitors mitigated it, indicating the contribution of ferroptosis to BY1-induced cell death. Additionally, we established that ferritin heavy chain1 (FTH1) played a pivotal role in BY1-induced ferroptosis, as evidenced by the fact that FTH1 overexpression abrogated BY1-induced ferroptosis, while FTH1 knockdown exacerbated it. Further study found that BY1 induced ferroptosis by enhancing the NCOA4-FTH1 interaction and increasing the amount of intracellular ferrous. We compared the effectiveness of various administration routes for BY1, including BY1-coated balloons, hydrogel-based BY1 delivery, and nanoparticles targeting OPN loaded with BY1 (TOP@MPDA@BY1) for targeting proliferated VSMCs, for prevention and treatment of the restenosis. Our results indicated that TOP@MPDA@BY1 was the most effective among the three administration routes, positioning BY1 as a highly promising candidate for the development of drug-eluting stents or treatments for restenosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bo-Yang Zheng
- Department of tumor biotherapy, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Qian-Fan Zhang
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ya-Nan Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qi-Ming Yu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xin Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Si-Ying Ding
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuang-Shuang Qian
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Han Wu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qian-Yu Wu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu-Han Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China; Institution of Chinese Integrative Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Hao-Feng Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, Shijiazhuang, 050017, China
| | - Yi-Ming Hao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing-Chao Lu
- Department of Cardiovascular Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, Shijiazhuang, 050017, China.
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
3
|
Mamazhakypov A, Maripov A, Sarybaev AS, Schermuly RT, Sydykov A. Osteopontin in Pulmonary Hypertension. Biomedicines 2023; 11:biomedicines11051385. [PMID: 37239056 DOI: 10.3390/biomedicines11051385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathological condition with multifactorial etiology, which is characterized by elevated pulmonary arterial pressure and pulmonary vascular remodeling. The underlying pathogenetic mechanisms remain poorly understood. Accumulating clinical evidence suggests that circulating osteopontin may serve as a biomarker of PH progression, severity, and prognosis, as well as an indicator of maladaptive right ventricular remodeling and dysfunction. Moreover, preclinical studies in rodent models have implicated osteopontin in PH pathogenesis. Osteopontin modulates a plethora of cellular processes within the pulmonary vasculature, including cell proliferation, migration, apoptosis, extracellular matrix synthesis, and inflammation via binding to various receptors such as integrins and CD44. In this article, we provide a comprehensive overview of the current understanding of osteopontin regulation and its impact on pulmonary vascular remodeling, as well as consider research issues required for the development of therapeutics targeting osteopontin as a potential strategy for the management of PH.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Abdirashit Maripov
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Akpay S Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Akylbek Sydykov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
4
|
The Intracellular and Secreted Sides of Osteopontin and Their Putative Physiopathological Roles. Int J Mol Sci 2023; 24:ijms24032942. [PMID: 36769264 PMCID: PMC9917417 DOI: 10.3390/ijms24032942] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Classically, osteopontin (OPN) has been described as a secreted glycophosprotein. Indeed, most data concerning its physiological and pathological roles are mainly related to the secreted OPN (sOPN). However, there are several instances in which intracellular OPN (iOPN) has been described, presenting some specific roles in distinct experimental models, such as in the immune system, cancer cells, and neurological disorders. We herein aimed to highlight and discuss some of these secreted and intracellular roles of OPN and their putative clinical and biological impacts. Moreover, by consolidating data from the OPN protein database, we also analyzed the occurrence of signal peptide (SP) sequences and putative subcellular localization, especially concerning currently known OPN splicing variants (OPN-SV). Comprehending the roles of OPN in its distinct cellular and tissue environments may provide data regarding the additional applications of this protein as biomarkers and targets for therapeutic purposes, besides further describing its pleiotropic roles.
Collapse
|
5
|
The Functional Interaction of EGFR with AT1R or TP in Primary Vascular Smooth Muscle Cells Triggers a Synergistic Regulation of Gene Expression. Cells 2022; 11:cells11121936. [PMID: 35741065 PMCID: PMC9222111 DOI: 10.3390/cells11121936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
In vivo, cells are simultaneously exposed to multiple stimuli whose effects are difficult to distinguish. Therefore, they are often investigated in experimental cell culture conditions where stimuli are applied separately. However, it cannot be presumed that their individual effects simply add up. As a proof-of-principle to address the relevance of transcriptional signaling synergy, we investigated the interplay of the Epidermal Growth Factor Receptor (EGFR) with the Angiotensin-II (AT1R) or the Thromboxane-A2 (TP) receptors in murine primary aortic vascular smooth muscle cells. Transcriptome analysis revealed that EGFR-AT1R or EGFR-TP simultaneous activations led to different patterns of regulated genes compared to individual receptor activations (qualitative synergy). Combined EGFR-TP activation also caused a variation of amplitude regulation for a defined set of genes (quantitative synergy), including vascular injury-relevant ones (Klf15 and Spp1). Moreover, Gene Ontology enrichment suggested that EGFR and TP-induced gene expression changes altered processes critical for vascular integrity, such as cell cycle and senescence. These bioinformatics predictions regarding the functional relevance of signaling synergy were experimentally confirmed. Therefore, by showing that the activation of more than one receptor can trigger a synergistic regulation of gene expression, our results epitomize the necessity to perform comprehensive network investigations, as the study of individual receptors may not be sufficient to understand their physiological or pathological impact.
Collapse
|
6
|
p38 MAPK priming boosts VSMC proliferation and arteriogenesis by promoting PGC1α-dependent mitochondrial dynamics. Sci Rep 2022; 12:5938. [PMID: 35396524 PMCID: PMC8994030 DOI: 10.1038/s41598-022-09757-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is essential for arteriogenesis to restore blood flow after artery occlusion, but the mechanisms underlying this response remain unclear. Based on our previous findings showing increased VSMC proliferation in the neonatal aorta of mice lacking the protease MT4-MMP, we aimed at discovering new players in this process. We demonstrate that MT4-MMP absence boosted VSMC proliferation in vitro in response to PDGF-BB in a cell-autonomous manner through enhanced p38 MAPK activity. Increased phospho-p38 in basal MT4-MMP-null VSMCs augmented the rate of mitochondrial degradation by promoting mitochondrial morphological changes through the co-activator PGC1α as demonstrated in PGC1α−/− VSMCs. We tested the in vivo implications of this pathway in a novel conditional mouse line for selective MT4-MMP deletion in VSMCs and in mice pre-treated with the p38 MAPK activator anisomycin. Priming of p38 MAPK activity in vivo by the absence of the protease MT4-MMP or by anisomycin treatment led to enhanced arteriogenesis and improved flow recovery after femoral artery occlusion. These findings may open new therapeutic opportunities for peripheral vascular diseases.
Collapse
|
7
|
The L-shaped association between superoxide dismutase levels and blood pressure in older Chinese adults: community-based, cross-sectional study. J Geriatr Cardiol 2022; 19:71-82. [PMID: 35233225 PMCID: PMC8832044 DOI: 10.11909/j.issn.1671-5411.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND As an antioxidant, serum superoxide dismutase (SOD) have been found to be associated with hypertension. METHODS The data were derived from the Chinese Longitudinal Healthy Longevity Survey (CLHLS), a prospective cohort study in China. We explored the association between serum SOD and blood pressure (BP) using multivariable correction analysis in an older Chinese population. RESULTS We observed a significantly gradual downward trend in the association between serum SOD levels and diastolic BP (DBP) in participants with lower serum SOD levels (< 58 IU/mL), while no associations were observed between serum SOD levels and DBP in participants with higher serum SOD levels (> 58 IU/mL). Similar results showed a significant gradual downward trend in associations between serum SOD levels and the risk of diastolic hypertension only at SOD < 58 IU/mL. Multiple linear regression analysis suggested that serum SOD was negatively correlated with DBP (Sβ = -0.088,P < 0.001) but not with SBP (Sβ = 0.013, P = 0.607). Multiple logistic regression analysis suggested that serum SOD was independently associated with the risk of diastolic hypertension (OR = 0.984, 95% CI: 0.973-0.996, P = 0.010) but not with the risk of systolic hypertension (OR = 1.001, 95% CI: 0.990-1.012,P = 0.836)) after adjusting for relevant confounding factors. Serum SOD levels (< 58 IU/mL, > 58 IU/mL) were an effect modifier of the association between serum SOD and DBP (interactionP = 0.0038) or the risk of diastolic hypertension (interaction P = 0.0050). CONCLUSIONS Our study indicated for the first time that there was an L-shaped association between serum SOD levels and the risk of diastolic hypertension in the older Chinese population.
Collapse
|
8
|
Wang R, Li W, Dai H, Zhu M, Li L, Si G, Bai Y, Wu H, Hu X, Xing Y. PKD1 deficiency induces Bronchiectasis in a porcine ADPKD model. Respir Res 2022; 23:292. [PMID: 36309681 PMCID: PMC9617414 DOI: 10.1186/s12931-022-02214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent genetic disorder, mainly characterized by the development of renal cysts, as well as various extrarenal manifestations. Previous studies have shown that ADPKD is related to bronchiectasis, while its pathogenic mechanism is unclear. In previous studies, we have generated the PKD1+/- pigs to simulate the progression of cyst formation and physiological alterations similar to those seen in ADPKD patients. METHODS Phenotypic changes to airway epithelial cell and mesenchymal cell in PKD1+/- pigs were assessed by histological analysis. The molecular mechanisms driving these processes were investigated by using PKD1+/- pig lungs, human mesenchymal cells, and generating PKD1 deficient human epithelial cells. RESULTS We identified bronchiectasis in PKD1+/- pigs, which is consistent with the clinical symptoms in ADPKD patients. The deficiency of PKD1 suppressed E-cadherin expression in the airway epithelial barrier, which aggravated invasion and leaded to a perpetuated inflammatory response. During this process, extracellular matrix (ECM) components were altered, which contributed to airway smooth muscle cell phenotype switch from a contractile phenotype to a proliferative phenotype. The effects on smooth muscle cells resulted in airway remodeling and establishment of bronchiectasis. CONCLUSION To our knowledge, the PKD1+/- pig provides the first model recapitulating the pathogenesis of bronchiectasis in ADPKD. The role of PKD1 in airway epithelial suggests a potential target for development of new strategies for the diagnosis and treatment of bronchiectasis.
Collapse
Affiliation(s)
- Runming Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Wenya Li
- grid.22935.3f0000 0004 0530 8290State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Haiting Dai
- grid.22935.3f0000 0004 0530 8290State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Mingli Zhu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Lingyu Li
- grid.22935.3f0000 0004 0530 8290State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Guohui Si
- grid.22935.3f0000 0004 0530 8290State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yilina Bai
- grid.22935.3f0000 0004 0530 8290State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Hanyu Wu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Xiaoxiang Hu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yiming Xing
- grid.22935.3f0000 0004 0530 8290State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
9
|
Jeon EY, Baek SE, Kim JO, Choi JM, Jang EJ, Kim CD. A Pivotal Role for AP-1-Mediated Osteopontin Expression in the Increased Migration of Vascular Smooth Muscle Cells Stimulated With HMGB1. Front Physiol 2021; 12:775464. [PMID: 34803747 PMCID: PMC8599980 DOI: 10.3389/fphys.2021.775464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Migration of vascular smooth muscle cells (VSMCs) plays an essential role in the development of vascular remodeling in the injured vasculatures. Previous studies have identified high-mobility group box 1 (HMGB1) as a principal effector mediating vascular remodeling; however, the mechanisms involved have not been fully elucidated. Thus, this study investigated the role of HMGB1 on VSMC migration and the underlying molecular mechanisms involved. VSMCs were ex plant cultured using rat thoracic aorta, and the cellular migration was measured using wound-healing assay. Osteopontin (OPN) mRNA and protein were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. The OPN promoter was cloned into pGL3 basic to generate a pLuc-OPN-2284 construct. Migration of VSMCs stimulated with HMGB1 (100ng/ml) was markedly increased, which was significantly attenuated in cells pretreated with MPIIIB10 (100–300ng/ml), a neutralizing monoclonal antibody for OPN as well as in cells deficient of OPN. In VSMCs stimulated with HMGB1, OPN mRNA and protein levels were significantly increased in association with an increased promotor activity of OPN gene. Putative-binding sites for activator protein 1 (AP-1) and CCAAT/enhancer-binding protein beta (C/EBPβ) in the indicated promoter region were suggested by TF Search, and the HMGB1-induced expression of OPN was markedly attenuated in cells transfected with siRNA for AP-1. VSMC stimulated with HMGB1 also showed an increased expression of AP-1. Results of this study suggest a pivotal role for AP-1-induced OPN expression in VSMC migration induced by HMGB1. Thus, the AP-1-OPN signaling axis in VSMC might serve as a potential therapeutic target for vascular remodeling in the injured vasculatures.
Collapse
Affiliation(s)
- Eun Yeong Jeon
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, South Korea.,Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, South Korea
| | - Seung Eun Baek
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, South Korea.,Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, South Korea
| | - Ji On Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, South Korea.,Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, South Korea
| | - Jong Min Choi
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, South Korea.,Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, South Korea
| | - Eun Jeong Jang
- Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, South Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, South Korea.,Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, South Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| |
Collapse
|
10
|
Qiu L, Hu L, Liu X, Li W, Zhang X, Xia H, Zhang C. Physalin B inhibits PDGF-BB-induced VSMC proliferation, migration and phenotypic transformation by activating the Nrf2 pathway. Food Funct 2021; 12:10950-10966. [PMID: 34647944 DOI: 10.1039/d1fo01926k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vascular intimal hyperplasia is a hallmark event in vascular restenosis. The excessive proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) play important roles in the pathological mechanism of vascular intimal hyperplasia. Physalin B is an alcoholate isolated from Physalis (Solanaceae) that has a wide range of biological activities. However, the effect of physalin B on VSMCs is currently unclear. In this study, we demonstrated that physalin B significantly inhibited the proliferation, migration and phenotypic transformation of VSMCs induced by PDGF-BB. Physalin B also reduced inflammation and oxidative stress in VSMCs induced by PDGF-BB. Mechanistic studies showed that physalin B plays a role mainly by activating Nrf2. After Nrf2 activation, physalin B mitigates oxidative stress by enhancing the expression of the antioxidant gene HO-1; on the other hand, physalin B inhibits the NF-κB pathway to alleviate the inflammatory response. These two effects ultimately reduce the proliferation, migration and phenotypic transformation of VSMCs induced by PDGF-BB. In addition, in the mouse carotid artery ligation model, physalin B prevented intimal hyperplasia and inhibited the proliferation, migration and phenotypic transformation of cells in the hyperplastic intima. In conclusion, we provided significant evidence that physalin B abrogates PDGF-BB-induced VSMC proliferation, migration, phenotypic transformation and intimal hyperplasia by activating Nrf2-mediated signal transduction. Therefore, physalin B may be a potential therapeutic agent for preventing or treating restenosis.
Collapse
Affiliation(s)
- Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China. .,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Lingli Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China.
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China. .,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Wenjing Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430064, P.R. China
| | - Xutao Zhang
- Jianshi Hospital of Traditional Chinese Medicine, Jianshi, Hubei 445300, P.R. China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China. .,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Changjiang Zhang
- Department of Cardiology, Minda Hospital of Hubei Minzu University, Enshi 445000, P.R. China.
| |
Collapse
|
11
|
Abstract
Significance: The vascular extracellular matrix (ECM) not only provides mechanical stability but also manipulates vascular cell behaviors, which are crucial for vascular function and homeostasis. ECM remodeling, which alters vascular wall mechanical properties and exposes vascular cells to bioactive molecules, is involved in the development and progression of hypertension. Recent Advances: This brief review summarized the dynamic changes in ECM components and their modification and degradation during hypertension and after antihypertensive treatment. We also discussed how alterations in the ECM amount, assembly, mechanical properties, and degradation fragment generation provide input into the pathological process of hypertension. Critical Issues: Although the relevance between ECM remodeling and hypertension has been recognized, the underlying mechanism by which ECM remodeling initiates the development of hypertension remains unclear. Therefore, the modulation of ECM remodeling on arterial stiffness and hypertension in genetically modified rodent models is summarized in this review. The circulating biomarkers based on ECM metabolism and therapeutic strategies targeting ECM disorders in hypertension are also introduced. Future Directions: Further research will provide more comprehensive understanding of ECM remodeling in hypertension by the application of matridomic and degradomic approaches. The better understanding of mechanisms underlying vascular ECM remodeling may provide novel potential therapeutic strategies for preventing and treating hypertension. Antioxid. Redox Signal. 34, 765-783.
Collapse
Affiliation(s)
- Zeyu Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
12
|
Flouda K, Gammelgaard B, Davies MJ, Hawkins CL. Modulation of hypochlorous acid (HOCl) induced damage to vascular smooth muscle cells by thiocyanate and selenium analogues. Redox Biol 2021; 41:101873. [PMID: 33550113 PMCID: PMC7868818 DOI: 10.1016/j.redox.2021.101873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
The production of hypochlorous acid (HOCl) by myeloperoxidase (MPO) plays a key role in immune defense, but also induces host tissue damage, particularly in chronic inflammatory pathologies, including atherosclerosis. This has sparked interest in the development of therapeutic approaches that decrease HOCl formation during chronic inflammation, including the use of alternative MPO substrates. Thiocyanate (SCN−) supplementation decreases HOCl production by favouring formation of hypothiocyanous acid (HOSCN), which is more selectively toxic to bacterial cells. Selenium-containing compounds are also attractive therapeutic agents as they react rapidly with HOCl and can be catalytically recycled. In this study, we examined the ability of SCN−, selenocyanate (SeCN−) and selenomethionine (SeMet) to modulate HOCl-induced damage to human coronary artery smooth muscle cells (HCASMC), which are critical to both normal vessel function and lesion formation in atherosclerosis. Addition of SCN− prevented HOCl-induced cell death, altered the pattern and extent of intracellular thiol oxidation, and decreased perturbations to calcium homeostasis and pro-inflammatory signaling. Protection was also observed with SeCN− and SeMet, though SeMet was less effective than SeCN− and SCN−. Amelioration of damage was detected with sub-stoichiometric ratios of the added compound to HOCl. The effects of SCN− are consistent with conversion of HOCl to HOSCN. Whilst SeCN− prevented HOCl-induced damage to a similar extent to SCN−, the resulting product hyposelenocyanous acid (HOSeCN), was more toxic to HCASMC than HOSCN. These results provide support for the use of SCN− and/or selenium analogues as scavengers, to decrease HOCl-induced cellular damage and HOCl production at inflammatory sites in atherosclerosis and other pathologies. HOCl induces extensive smooth muscle cell death and irreversible thiol oxidation. Addition of SCN− decreases the extent of HOCl-induced cell damage. SeCN− has similar protective effects to SCN− towards HOCl-induced cell damage. HOSeCN is less toxic than HOCl but more damaging than HOSCN. SeMet modulates HOCl-induced damage but less effectively than SCN− or SeCN−.
Collapse
Affiliation(s)
- Konstantina Flouda
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Bente Gammelgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark.
| |
Collapse
|
13
|
He X, Deng J, Yu XJ, Yang S, Yang Y, Zang WJ. Activation of M3AChR (Type 3 Muscarinic Acetylcholine Receptor) and Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2) Signaling by Choline Alleviates Vascular Smooth Muscle Cell Phenotypic Switching and Vascular Remodeling. Arterioscler Thromb Vasc Biol 2020; 40:2649-2664. [PMID: 32938216 DOI: 10.1161/atvbaha.120.315146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a critical role in atherosclerosis, vascular restenosis, and hypertension. Choline exerts cardioprotective effects; however, little is known about its effects on VSMC phenotypic switching and vascular remodeling. Here, we investigated whether choline modulates VSMC phenotypic changes and explored the underlying mechanisms. Approach and Results: In cultured VSMCs, choline promoted Nrf2 (nuclear factor erythroid 2-related factor 2) nuclear translocation, inducing the expression of HO-1 (heme oxygenase-1) and NQO-1 (NAD[P]H quinone oxidoreductase-1). Consequently, choline ameliorated Ang II (angiotensin II)-induced increases in NOX (NAD[P]H oxidase) expression and the mitochondrial reactive oxygen species level, thereby attenuating Ang II-induced VSMC phenotypic switching, proliferation, and migration, presumably via M3AChRs (type 3 muscarinic acetylcholine receptors). Downregulation of M3AChR or Nrf2 diminished choline-mediated upregulation of Nrf2, HO-1, and NQO-1 expression, as well as inhibition of VSMC phenotypic transformation, suggesting that M3AChR and Nrf2 activation are responsible for the protective effects of choline. Moreover, activation of the Nrf2 pathway by sulforaphane suppressed Ang II-induced VSMC phenotypic switching and proliferation, indicating that Nrf2 is a key regulator of VSMC phenotypic switching and vascular homeostasis. In a rat model of abdominal aortic constriction in vivo, choline attenuated VSMC phenotypic transformation and vascular remodeling in a manner related to activation of the Nrf2 pathway. CONCLUSIONS These results reveal that choline impedes VSMC phenotypic switching, proliferation, migration, and vascular remodeling by activating M3AChR and Nrf2-antioxidant signaling and suggest a novel role for Nrf2 in VSMC phenotypic modulation.
Collapse
Affiliation(s)
- Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Juan Deng
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Si Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Yang Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| |
Collapse
|
14
|
Yan W, Li T, Yin T, Hou Z, Qu K, Wang N, Durkan C, Dong L, Qiu J, Gregersen H, Wang G. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics 2020; 10:10712-10728. [PMID: 32929376 PMCID: PMC7482821 DOI: 10.7150/thno.46143] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: For intravascular stent implantation to be successful, the processes of vascular tissue repair and therapy are considered to be critical. However, the mechanisms underlying the eventual fate of vascular smooth muscle cells (VSMCs) during vascular tissue repair remains elusive. In this study, we hypothesized that M2 macrophage-derived exosomes to mediate cell-to-cell crosstalk and induce dedifferentiation phenotypes in VSMCs. Methods: In vivo, 316L bare metal stents (BMS) were implanted from the left iliac artery into the abdominal aorta of 12-week-old male Sprague-Dawley (SD) rats for 7 and 28 days. Hematoxylin and eosin (HE) were used to stain the neointimal lesions. En-face immunofluorescence staining of smooth muscle 22 alpha (SM22α) and CD68 showed the rat aorta smooth muscle cells (RASMCs) and macrophages. Immunohistochemical staining of total galactose-specific lectin 3 (MAC-2) and total chitinase 3-like 3 (YM-1) showed the total macrophages and M2 macrophages. In vitro, exosomes derived from IL-4+IL-13-treated macrophages (M2Es) were isolated by ultracentrifugation and characterized based on their specific morphology. Ki-67 staining was conducted to assess the effects of the M2Es on the proliferation of RASMCs. An atomic force microscope (AFM) was used to detect the stiffness of the VSMCs. GW4869 was used to inhibit exosome release. RNA-seq was performed to determine the mRNA profiles of the RASMCs and M2Es-treated RASMCs. Quantitative real-time PCR (qRT-PCR) analysis was conducted to detect the expression levels of the mRNAs. Western blotting was used to detect the candidate protein expression levels. T-5224 was used to inhibit the DNA binding activity of AP-1 in RASMCs. Results: M2Es promote c-KIT expression and softening of nearby VSMCs, hence accelerating the vascular tissue repair process. VSMCs co-cultured in vitro with M2 macrophages presented an increased capacity for de-differentiation and softening, which was exosome dependent. In addition, the isolated M2Es helped to promote VSMC dedifferentiation and softening. Furthermore, the M2Es enhanced vascular tissue repair potency by upregulation of VSMCs c-KIT expression via activation of the c-Jun/activator protein 1 (AP-1) signaling pathway. Conclusions: The findings of this study emphasize the prominent role of M2Es during VSMC dedifferentiation and vascular tissue repair via activation of the c-Jun/AP-1 signaling pathway, which has a profound impact on the therapeutic strategies of coronary stenting techniques.
Collapse
|
15
|
Wu CM, Zheng L, Wang Q, Hu YW. The emerging role of cell senescence in atherosclerosis. Clin Chem Lab Med 2020; 59:27-38. [PMID: 32692694 DOI: 10.1515/cclm-2020-0601] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Cell senescence is a fundamental mechanism of aging and appears to play vital roles in the onset and prognosis of cardiovascular disease, fibrotic pulmonary disease, liver disease and tumor. Moreover, an increasing body of evidence shows that cell senescence plays an indispensable role in the formation and development of atherosclerosis. Multiple senescent cell types are associated with atherosclerosis, senescent human vascular endothelial cells participated in atherosclerosis via regulating the level of endothelin-1 (ET-1), nitric oxide (NO), angiotensin II and monocyte chemoattractant protein-1 (MCP-1), senescent human vascular smooth muscle cells-mediated plaque instability and vascular calcification via regulating the expression level of BMP-2, OPN, Runx-2 and inflammatory molecules, and senescent macrophages impaired cholesterol efflux and promoted the development of senescent-related cardiovascular diseases. This review summarizes the characteristics of cell senescence and updates the molecular mechanisms underlying cell senescence. Moreover, we also discuss the recent advances on the molecular mechanisms that can potentially regulate the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Chang-Meng Wu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Qian Wang
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yan-Wei Hu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.,Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| |
Collapse
|
16
|
Dai S, Zhang J, Xu Z. Silencing CCL8 inhibited the proliferation and migration of PDGF-BB-stimulated human aortic smooth muscle cells. Biosci Biotechnol Biochem 2020; 84:1585-1593. [PMID: 32432500 DOI: 10.1080/09168451.2020.1762160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
C-C motif Chemokine ligand 8 (CCL8) has been found in diseases' pathogenesis. But its molecular mechanism in atherosclerosis (AS) remains to be elucidated. Human aortic smooth muscle cells (HASMCs) were stimulated by PDGF-BB to establish cell model. α-SMA in PDGF-BB-stimulated HASMCs was measured by immunofluorescence staining. Relative gene expressions in PDGF-BB-stimulated HASMCs were detected by quantitative real-time polymerase chain reaction and western blot. HASMCs proliferation, migration, and cell cycle were assessed by cell counting kit-8, wound-healing assay, and flow cytometry. HASMCs viability was increased after PDGF-BB stimulation, with α-SMA downregulation yet CCL8 upregulation. Silencing CCL8 inhibited PDGF-BB-stimulated HASMCs proliferation and migration, and increased cells percentage in G1 phases but decreased those in S phase. Also, silencing CCL8 decreased OPN and cyclinD1 expressions and AKT and ERK1/2 phosphorylation while increased those of α-SMA and Sm22α. However, upregulating CCL8 led to opposite effects, suggesting CCL8 could be an atherosclerosis therapeutic target.
Collapse
Affiliation(s)
- Shipeng Dai
- Department of Cardiology II, Cangzhou Teaching Hospital of Tianjin Medical University , Tianjin, China
| | - Jiangang Zhang
- Department of Cardiology II, Cangzhou Teaching Hospital of Tianjin Medical University , Tianjin, China
| | - Zesheng Xu
- Department of Cardiology II, Cangzhou Teaching Hospital of Tianjin Medical University , Tianjin, China
| |
Collapse
|
17
|
Carvalho MS, Silva JC, Hoff CM, Cabral JMS, Linhardt RJ, Silva CL, Vashishth D. Loss and rescue of osteocalcin and osteopontin modulate osteogenic and angiogenic features of mesenchymal stem/stromal cells. J Cell Physiol 2020; 235:7496-7515. [DOI: 10.1002/jcp.29653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Marta S. Carvalho
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroy New York
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaLisboa Portugal
| | - João C. Silva
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaLisboa Portugal
- Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroy New York
| | - Christopher M. Hoff
- Department of Earth and Environmental SciencesRensselaer Polytechnic InstituteTroy New York
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaLisboa Portugal
| | - Robert J. Linhardt
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroy New York
- Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroy New York
| | - Cláudia L. Silva
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaLisboa Portugal
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroy New York
| |
Collapse
|
18
|
7- O-methylpunctatin, a Novel Homoisoflavonoid, Inhibits Phenotypic Switch of Human Arteriolar Smooth Muscle Cells. Biomolecules 2019; 9:biom9110716. [PMID: 31717401 PMCID: PMC6920859 DOI: 10.3390/biom9110716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Remodeling of arterioles is a pivotal event in the manifestation of many inflammation-based cardio-vasculopathologies, such as hypertension. During these remodeling events, vascular smooth muscle cells (VSMCs) switch from a contractile to a synthetic phenotype. The latter is characterized by increased proliferation, migration, and invasion. Compounds with anti-inflammatory actions have been successful in attenuating this phenotypic switch. While the vast majority of studies investigating phenotypic modulation were undertaken in VSMCs isolated from large vessels, little is known about the effect of such compounds on phenotypic switch in VSMCs of microvessels (microVSMCs). We have recently characterized a novel homoisoflavonoid that we called 7-O-methylpunctatin (MP). In this study, we show that MP decreased FBS-induced cell proliferation, migration, invasion, and adhesion. MP also attenuated adhesion of THP-1 monocytes to microVSMCs, abolished FBS-induced expression of MMP-2, MMP-9, and NF-κB, as well as reduced activation of ERK1/2 and FAK. Furthermore, MP-treated VSMCs showed an increase in early (myocardin, SM-22α, SM-α) and mid-term (calponin and caldesmon) differentiation markers and a decrease in osteopontin, a protein highly expressed in synthetic VSMCs. MP also reduced transcription of cyclin D1, CDK4 but increased protein levels of p21 and p27. Taken together, these results corroborate an anti-inflammatory action of MP on human microVSMCs. Therefore, by inhibiting the synthetic phenotype of microVSMCs, MP may be a promising modulator for inflammation-induced arteriolar pathophysiology.
Collapse
|
19
|
Xin H, Wang Z, Wu S, Wang P, Tao X, Xu C, You L. Calcified decellularized arterial scaffolds impact vascular smooth muscle cell transformation via downregulating α-SMA expression and upregulating OPN expression. Exp Ther Med 2019; 18:705-710. [PMID: 31281450 DOI: 10.3892/etm.2019.7626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
The underlying mechanisms of arterial remodeling (AR) remain unclear. Studies have indicated that decellularized scaffolds stimulate the differentiation of fibroblasts into myofibroblasts and promote the accumulation of the extracellular matrix (ECM). In the present study, the impact of ECM changes following AR on vascular smooth muscle cell (VSMC) phenotypes was investigated. VSMCs were co-cultured with normal or calcified decellularized arterial scaffolds. The expression levels of α-smooth muscle actin (α-SMA) and osteopontin (OPN) were measured at 2, 5, 10, 15 and 21 days following the establishment of the co-culture systems. The expression of α-SMA in the normal co-culture group was significantly increased compared with that in the calcified arterial decellularized scaffold co-culture group (P<0.05 and P<0.001). In addition, the expression of OPN in the AR co-culture group was significantly increased compared with the normal co-culture group (P<0.05 and P<0.001). To conclude, the calcified decellularized arterial scaffolds impact VSMC transformation by downregulating α-SMA expression and upregulating OPN expression (P<0.001). To the best of our knowledge, the present study is the first study that co-cultured VSMCs with normal or calcified decellularized arterial scaffolds.
Collapse
Affiliation(s)
- Huaping Xin
- Department of Geriatrics, The People's Hospital of Yichun City, Yichun, Jiangxi 336000, P.R. China
| | - Zhimin Wang
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Shuwu Wu
- Department of Geriatrics, The People's Hospital of Yichun City, Yichun, Jiangxi 336000, P.R. China
| | - Peng Wang
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Xiaoxiao Tao
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Chenhua Xu
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Liling You
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
20
|
The rs1126616 Single Nucleotide Polymorphism of the Osteopontin Gene Is Independently Associated with Cardiovascular Events in a Chronic Kidney Disease Cohort. J Clin Med 2019; 8:jcm8050592. [PMID: 31036794 PMCID: PMC6571716 DOI: 10.3390/jcm8050592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with a higher risk of cardiovascular events (CVE), partly due to the higher burden of atherosclerosis. Circulating Osteopontin (OPN) levels have been also shown to have a potential role in the development of atherosclerosis. Indeed, CKD patients show an increase in circulating OPN levels, but their effect of CKD-related atherosclerosis is not clear. Polymorphisms in the OPN gene (SPP1) have been studied in atheromatous disease, but reported results show conflictive findings. Thus, the main aim of the present study is to analyze the influence of SPP1 polymorphisms in CVE in CKD patients, taking into account circulating OPN levels. We followed 559 healthy controls and 2445 CKD patients without previous CVE from the National Observatory of Atherosclerosis in Nephrology study (NEFRONA study). After 48 months of follow-up 206 CVE were recorded. Genotyping for rs9138, rs1126616, rs1126772, rs11730582 and rs28357094 polymorphisms of the SPP1 gene was performed along with the measurements of plasma OPN levels. The group of patients with CVE showed higher incidence of atherosclerotic plaque (90.3% vs 64.5%; p < 0.001) and higher OPN levels (p < 0.001) at baseline. Patients with the heterozygous genotype of the rs1126616 polymorphism showed a higher hazard ratio of having a CVE, even after adjustment for multiple potential confounders. After adjustment, OPN levels were no longer associated with the incidence of CVE. We found that the rs1126616 single nucleotide polymorphism (SNP) of the SPP1 gene is independently associated with a higher incidence of CVE in a cohort of CKD patients and that it could be used to predict CVE risk.
Collapse
|
21
|
Carvalho MS, Cabral JM, da Silva CL, Vashishth D. Synergistic effect of extracellularly supplemented osteopontin and osteocalcin on stem cell proliferation, osteogenic differentiation, and angiogenic properties. J Cell Biochem 2018; 120:6555-6569. [PMID: 30362184 DOI: 10.1002/jcb.27948] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
A high demand for functional bone grafts is being observed worldwide, especially due to the increased life expectancy. Osteoinductive components should be incorporated into functional bone grafts, accelerating cell recruitment, cell proliferation, angiogenesis, and new bone formation at a defect site. Noncollagenous bone matrix proteins, especially osteopontin (OPN) and osteocalcin (OC), have been reported to regulate some physiological process, such as cell migration and bone mineralization. However, the effects of OPN and OC on cell proliferation, osteogenic differentiation, mineralization, and angiogenesis are still undefined. Therefore, we assessed the exogenous effect of OPN and OC supplementation on human bone marrow mesenchymal stem/stromal cells (hBM MSC) proliferation and osteogenic differentiation. OPN dose-dependently increased the proliferation of hBM MSC, as well as improved the angiogenic properties of human umbilical vein endothelial cells (HUVEC) by increasing the capillary-like tube formation in vitro. On the other hand, OC enhanced the differentiation of hBM MSC into osteoblasts and demonstrated an increase in extracellular calcium levels and alkaline phosphatase activity, as well as higher messenger RNA levels of mature osteogenic markers osteopontin and osteocalcin. In vivo assessment of OC/OPN-enhanced scaffolds in a critical-sized defect rabbit long-bone model revealed no infection, while new bone was being formed. Taken together, these results suggest that OC and OPN stimulate bone regeneration by inducing stem cell proliferation, osteogenesis and by enhancing angiogenic properties. The synergistic effect of OC and OPN observed in this study can be applied as an attractive strategy for bone regeneration therapeutics by targeting different vital cellular processes.
Collapse
Affiliation(s)
- Marta S Carvalho
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.,Department of Bioengineering, iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim Ms Cabral
- Department of Bioengineering, iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
22
|
Li J, Wu F, Zhang K, He Z, Zou D, Luo X, Fan Y, Yang P, Zhao A, Huang N. Controlling Molecular Weight of Hyaluronic Acid Conjugated on Amine-rich Surface: Toward Better Multifunctional Biomaterials for Cardiovascular Implants. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30343-30358. [PMID: 28836435 DOI: 10.1021/acsami.7b07444] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The molecular weights (MWs) of hyaluronic acid (HA) in extracellular matrix secreted from both vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) play crucial roles in the cardiovascular physiology, as HA with appropriate MW influences important pathways of cardiovascular homeostasis, inhibits VSMC synthetic phenotype change and proliferation, inhibits platelet activation and aggregation, promotes endothelial monolayer repair and functionalization, and prevents inflammation and atherosclerosis. In this study, HA samples with gradients of MW (4 × 103, 1 × 105, and 5 × 105 Da) were prepared by covalent conjugation to a copolymerized film of polydopamine and hexamethylendiamine (PDA/HD) as multifunctional coatings (PDA/HD-HA) with potential to improve the biocompatibility of cardiovascular biomaterials. The coatings immobilized with high-MW-HA (PDA/HD-HA-2: 1 × 105 Da; PDA/HD-HA-3: 5 × 105 Da) exhibited a remarkable suppression of platelet activation/aggregation and thrombosis under 15 dyn/cm2 blood flow and simultaneously suppressed the adhesion and proliferation of VSMC and the adhesion, activation, and inflammatory cytokine release of macrophages. In particular, PDA/HD-HA-2 significantly enhanced VEC adhesion, proliferation, migration, and functional factors release, as well as the captured number of endothelial progenitor cells under dynamic condition. The in vivo results indicated that the multifunctional surface (PDA/HD-HA-2) created a favorable microenvironment of endothelial monolayer formation and functionalization for promoting reendothelialization and reducing restenosis of cardiovascular biomaterials.
Collapse
Affiliation(s)
- Jingan Li
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Feng Wu
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Kun Zhang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
- School of Life Science, Zhengzhou University , 100 Science Road, Zhengzhou 450001, P. R. China
- Center of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Zhengzhou University , 40 University Road, Zhengzhou 450052, P. R. China
| | - Zikun He
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Dan Zou
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Xiao Luo
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Yonghong Fan
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Ping Yang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Ansha Zhao
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Nan Huang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| |
Collapse
|
23
|
Jang MA, Lee SJ, Baek SE, Park SY, Choi YW, Kim CD. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression. PLoS One 2017; 12:e0170699. [PMID: 28114367 PMCID: PMC5256966 DOI: 10.1371/journal.pone.0170699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022] Open
Abstract
α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1-10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538-234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression.
Collapse
Affiliation(s)
- Min A. Jang
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongnam, Republic of Korea
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongnam, Republic of Korea
| | - Seung Jin Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Seung Eun Baek
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongnam, Republic of Korea
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongnam, Republic of Korea
| | - So Youn Park
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongnam, Republic of Korea
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongnam, Republic of Korea
| | - Young Whan Choi
- College of Natural Resources & Life Sciences, Pusan National University, Gyeongnam, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongnam, Republic of Korea
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongnam, Republic of Korea
| |
Collapse
|
24
|
Li J, Zou D, Zhang K, Luo X, Yang P, Jing Y, Zhang Y, Cui G, Huang N. Strong multi-functions based on conjugating chondroitin sulfate onto an amine-rich surface will direct the vascular cell fate for cardiovascular implanted devices. J Mater Chem B 2017; 5:8299-8313. [DOI: 10.1039/c7tb02162c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This research may support potential applications for surface modification of cardiovascular implants to achieve improved multi-functions.
Collapse
Affiliation(s)
- Jingan Li
- Key Laboratory for Advanced Technologies of Materials
- Ministry of Education
- School of Material Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Dan Zou
- Key Laboratory for Advanced Technologies of Materials
- Ministry of Education
- School of Material Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Kun Zhang
- Key Laboratory for Advanced Technologies of Materials
- Ministry of Education
- School of Material Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Xiao Luo
- Key Laboratory for Advanced Technologies of Materials
- Ministry of Education
- School of Material Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Ping Yang
- Key Laboratory for Advanced Technologies of Materials
- Ministry of Education
- School of Material Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Yuying Jing
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yuxuan Zhang
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Guilin Cui
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Nan Huang
- Key Laboratory for Advanced Technologies of Materials
- Ministry of Education
- School of Material Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| |
Collapse
|