1
|
Zhang Q, Xia Y, Wang L, Wang Y, Bao Y, Zhao GS. Targeted anti-angiogenesis therapy for advanced osteosarcoma. Front Oncol 2024; 14:1413213. [PMID: 39252946 PMCID: PMC11381227 DOI: 10.3389/fonc.2024.1413213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
To date, despite extensive research, the prognosis of advanced osteosarcoma has not improved significantly. Thus, patients experience a reduced survival rate, suggesting that a reevaluation of current treatment strategies is required. Recently, in addition to routine surgery, chemotherapy and radiotherapy, researchers have explored more effective and safer treatments, including targeted therapy, immunotherapy, anti-angiogenesis therapy, metabolic targets therapy, and nanomedicine therapy. The tumorigenesis and development of osteosarcoma is closely related to angiogenesis. Thus, anti-angiogenesis therapy is crucial to treat osteosarcoma; however, recent clinical trials found that it has insufficient efficacy. To solve this problem, the causes of treatment failure and improve treatment strategies should be investigated. This review focuses on summarizing the pathophysiological mechanisms of angiogenesis in osteosarcoma and recent advances in anti-angiogenesis treatment of osteosarcoma. We also discuss some clinical studies, with the aim of providing new ideas to improve treatment strategies for osteosarcoma and the prognosis of patients.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Pain and Rehabilitation, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuxuan Xia
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - LiYuan Wang
- Department of Spine Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo-Sheng Zhao
- Department of Spine Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Zhang Q, Zhu J, Xie J, Gu Y, Chen L. USP22 as a key regulator of glycolysis pathway in osteosarcoma: insights from bioinformatics and experimental approaches. PeerJ 2024; 12:e17397. [PMID: 38784391 PMCID: PMC11114114 DOI: 10.7717/peerj.17397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Background Osteosarcoma is the most common primary malignant bone tumor, but its pathogenesis remains unclear. Ubiquitin-specific processing peptidase 22 (USP22) is reported to be highly expressed and associated with tumor malignancy and prognosis in cancers. However, the role and mechanism of USP22 in osteosarcoma is not fully understood. This study aims to investigate the function and potential mechanism of USP22 in osteosarcoma using bioinformatics analysis combined with experimental validation. Methods We first integrated transcriptomic datasets and clinical information of osteosarcoma from GEO and TCGA databases to assess the expression and prognostic value of USP22 in osteosarcoma. Then, differential expression analysis and weighted gene co-expression network analysis (WGCNA) were conducted to identify USP22-related co-expressed genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the biological functions and signaling pathways of USP22 co-expressed genes. To validate the accuracy of bioinformatics analyses, we downregulated USP22 expression in osteosarcoma cell line Sao-2 using siRNA and assessed its effect on cell proliferation, migration, invasion, apoptosis, and regulation of key signaling pathways. Results We found that USP22 was highly expressed in osteosarcoma tissues and correlated with poor prognosis in osteosarcoma patients. USP22 also showed potential as a diagnostic marker for osteosarcoma. In addition, 344 USP22-related co-expressed genes were identified, mainly involved in signaling pathways such as glycolysis, oxidative phosphorylation, spliceosome, thermogenesis, and cell cycle. The in vitro experiments confirmed the accuracy and reliability of bioinformatics analyses. We found that downregulation of USP22 could inhibit Sao-2 cell proliferation, migration, invasion, and induce apoptosis. Furthermore, downregulation of USP22 significantly reduced aerobic glycolysis levels in Sao-2 cells and inhibited the expression of key enzymes and transporters in aerobic glycolysis pathways such as HK2, PKM2, and GLUT1. Conclusions USP22 plays a critical role in the occurrence, development, and prognosis of osteosarcoma. USP22 could influence Sao-2 cell proliferation, apoptosis, migration, and invasion by regulating the glycolysis pathway, thereby promoting osteosarcoma progression. Therefore, USP22 may be a potential therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinwei Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yurong Gu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lu Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Paediatric Strategy Forum for medicinal product development of multi-targeted kinase inhibitors in bone sarcomas: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2022; 173:71-90. [PMID: 35863108 DOI: 10.1016/j.ejca.2022.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
The eighth Paediatric Strategy Forum focused on multi-targeted kinase inhibitors (mTKIs) in osteosarcoma and Ewing sarcoma. The development of curative, innovative products in these tumours is a high priority and addresses unmet needs in children, adolescents and adults. Despite clinical and investigational use of mTKIs, efficacy in patients with bone tumours has not been definitively demonstrated. Randomised studies, currently being planned or in progress, in front-line and relapse settings will inform the further development of this class of product. It is crucial that these are rapidly initiated to generate robust data to support international collaborative efforts. The experience to date has generally indicated that the safety profile of mTKIs as monotherapy, and in combination with chemotherapy or other targeted therapy, is consistent with that of adults and that toxicity is manageable. Increasing understanding of relevant predictive biomarkers and tumour biology is absolutely critical to further develop this class of products. Biospecimen samples for correlative studies and biomarker development should be shared, and a joint academic-industry consortium created. This would result in an integrated collection of serial tumour tissues and a systematic retrospective and prospective analyses of these samples to ensure robust assessment of biologic effect of mTKIs. To support access for children to benefit from these novel therapies, clinical trials should be designed with sufficient scientific rationale to support regulatory and payer requirements. To achieve this, early dialogue between academia, industry, regulators, and patient advocates is essential. Evaluating feasibility of combination strategies and then undertaking a randomised trial in the same protocol accelerates drug development. Where possible, clinical trials and development should include children, adolescents, and adults less than 40 years. To respond to emerging science, in approximately 12 months, a multi-stakeholder group will meet and review available data to determine future directions and priorities.
Collapse
|
4
|
Osteosarcoma in Children: Not Only Chemotherapy. Pharmaceuticals (Basel) 2021; 14:ph14090923. [PMID: 34577623 PMCID: PMC8471047 DOI: 10.3390/ph14090923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is the most severe bone malignant tumor, responsible for altered osteoid deposition and with a high rate of metastasis. It is characterized by heterogeneity, chemoresistance and its interaction with bone microenvironment. The 5-year survival rate is about 67% for patients with localized OS, while it remains at 20% in case of metastases. The standard therapy for OS patients is represented by neoadjuvant chemotherapy, surgical resection, and adjuvant chemotherapy. The most used chemotherapy regimen for children is the combination of high-dose methotrexate, doxorubicin, and cisplatin. Considered that the necessary administration of high-dose chemotherapy is responsible for a lot of acute and chronic side effects, the identification of novel therapeutic strategies to ameliorate OS outcome and the patients' life expectancy is necessary. In this review we provide an overview on new possible innovative therapeutic strategies in OS.
Collapse
|
5
|
The smac mimetic LCL161 targets established pulmonary osteosarcoma metastases in mice. Clin Exp Metastasis 2021; 38:441-449. [PMID: 34398333 DOI: 10.1007/s10585-021-10116-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Osteosarcoma is the most common form of primary bone cancer and frequently metastasizes to the lungs. Current therapies fail to successfully treat over two thirds of patients with metastatic osteosarcoma, so there is an urgent imperative to develop therapies that effectively target established metastases. Smac mimetics are drugs that work by inhibiting the pro-survival activity of IAP proteins such as cIAP1 and cIAP2, which can be overexpressed in osteosarcomas. In vitro, osteosarcoma cells are sensitive to a range of Smac mimetics in combination with TNFα. This sensitivity has also been demonstrated in vivo using the Smac mimetic LCL161, which inhibited the growth of subcutaneous and intramuscular osteosarcomas. Here, we evaluated the efficacy of LCL161 using mice bearing osteosarcoma metastases without the presence of a primary tumor, modeling the scenario in which a patient's primary tumor had been surgically removed. We demonstrated the ability of LCL161 as a single agent and in combination with doxorubicin to inhibit the growth of, and in some cases eliminate, established pulmonary osteosarcoma metastases in vivo. Resected lung metastases from treated and untreated mice remained sensitive to LCL161 in combination with TNFα ex vivo. This suggested that there was little to no acquired resistance to LCL161 treatment in surviving osteosarcoma cells and implied that tumor microenvironmental factors underlie the observed variation in responses to LCL161.
Collapse
|
6
|
Systems Biology Approach Identifies Prognostic Signatures of Poor Overall Survival and Guides the Prioritization of Novel BET-CHK1 Combination Therapy for Osteosarcoma. Cancers (Basel) 2020; 12:cancers12092426. [PMID: 32859084 PMCID: PMC7564419 DOI: 10.3390/cancers12092426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/01/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) patients exhibit poor overall survival, partly due to copy number variations (CNVs) resulting in dysregulated gene expression and therapeutic resistance. To identify actionable prognostic signatures of poor overall survival, we employed a systems biology approach using public databases to integrate CNVs, gene expression, and survival outcomes in pediatric, adolescent, and young adult OS patients. Chromosome 8 was a hotspot for poor prognostic signatures. The MYC-RAD21 copy number gain (8q24) correlated with increased gene expression and poor overall survival in 90% of the patients (n = 85). MYC and RAD21 play a role in replication-stress, which is a therapeutically actionable network. We prioritized replication-stress regulators, bromodomain and extra-terminal proteins (BETs), and CHK1, in order to test the hypothesis that the inhibition of BET + CHK1 in MYC-RAD21+ pediatric OS models would be efficacious and safe. We demonstrate that MYC-RAD21+ pediatric OS cell lines were sensitive to the inhibition of BET (BETi) and CHK1 (CHK1i) at clinically achievable concentrations. While the potentiation of CHK1i-mediated effects by BETi was BET-BRD4-dependent, MYC expression was BET-BRD4-independent. In MYC-RAD21+ pediatric OS xenografts, BETi + CHK1i significantly decreased tumor growth, increased survival, and was well tolerated. Therefore, targeting replication stress is a promising strategy to pursue as a therapeutic option for this devastating disease.
Collapse
|
7
|
McGuire JJ, Nerlakanti N, Lo CH, Tauro M, Utset-Ward TJ, Reed DR, Lynch CC. Histone deacetylase inhibition prevents the growth of primary and metastatic osteosarcoma. Int J Cancer 2020; 147:2811-2823. [PMID: 32599665 DOI: 10.1002/ijc.33046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/18/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Overall survival rates for patients with advanced osteosarcoma have remained static for over three decades. An in vitro analysis of osteosarcoma cell lines for sensitivity to an array of approved cancer therapies revealed that panobinostat, a broad spectrum histone deacetalyase (HDAC) inhibitor, is highly effective at triggering osteosarcoma cell death. Using in vivo models of orthotopic and metastatic osteosarcoma, here we report that panobinostat impairs the growth of primary osteosarcoma in bone and spontaneous metastasis to the lung, the most common site of metastasis for this disease. Further, pretreatment of mice with panobinostat prior to tail vein inoculation of osteosarcoma prevents the seeding and growth of lung metastases. Additionally, panobinostat impaired the growth of established lung metastases and improved overall survival, and these effects were also manifest in the lung metastatic SAOS2-LM7 model. Mechanistically, the efficacy of panobinostat was linked to high expression of HDAC1 and HDAC2 in osteosarcoma, and silencing of HDAC1 and 2 greatly reduced osteosarcoma growth in vitro. In accordance with these findings, treatment with the HDAC1/2 selective inhibitor romidepsin compromised the growth of osteosarcoma in vitro and in vivo. Analysis of patient-derived xenograft osteosarcoma cell lines further demonstrated the sensitivity of the disease to panobinostat or romidepsin. Collectively, these studies provide rationale for clinical trials in osteosarcoma patients using the approved therapies panobinostat or romidepsin.
Collapse
Affiliation(s)
- Jeremy J McGuire
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Niveditha Nerlakanti
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Chen Hao Lo
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Marilena Tauro
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Thomas J Utset-Ward
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Orthopaedic Surgery and Rehabilitation Medicine, University of Chicago, Chicago, Illinois, USA
| | - Damon R Reed
- Sarcoma Department & Department of Interdisciplinary Cancer Management (DICaM), H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
8
|
Li M, Yin L, Wu L, Zhu Y, Wang X. Paclitaxel inhibits proliferation and promotes apoptosis through regulation ROS and endoplasmic reticulum stress in osteosarcoma cell. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00093-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Harris MA, Miles MA, Shekhar TM, Cerra C, Georgy SR, Ryan SD, Cannon CM, Hawkins CJ. The Proteasome Inhibitor Ixazomib Inhibits the Formation and Growth of Pulmonary and Abdominal Osteosarcoma Metastases in Mice. Cancers (Basel) 2020; 12:cancers12051207. [PMID: 32403415 PMCID: PMC7281181 DOI: 10.3390/cancers12051207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma is the most common form of primary bone cancer. Over 20% of osteosarcoma patients present with pulmonary metastases at diagnosis, and nearly 70% of these patients fail to respond to treatment. Previous work revealed that human and canine osteosarcoma cell lines are extremely sensitive to the therapeutic proteasome inhibitor bortezomib in vitro. However, bortezomib has proven disappointingly ineffective against solid tumors including sarcomas in animal experiments and clinical trials. Poor tumor penetration has been speculated to account for the inconsistency between in vitro and in vivo responses of solid tumors to bortezomib. Here we show that the second-generation proteasome inhibitor ixazomib, which reportedly has enhanced solid tumor penetration compared to bortezomib, is toxic to human and canine osteosarcoma cells in vitro. We used experimental osteosarcoma metastasis models to compare the efficacies of ixazomib and bortezomib against primary tumors and metastases derived from luciferase-expressing KRIB or 143B human osteosarcoma cell lines in athymic mice. Neither proteasome inhibitor reduced the growth of primary intramuscular KRIB tumors, however both drugs inhibited the growth of established pulmonary metastases created via intravenous inoculation with KRIB cells, which were significantly better vascularized than the primary tumors. Only ixazomib slowed metastases from KRIB primary tumors and inhibited the growth of 143B pulmonary and abdominal metastases, significantly enhancing the survival of mice intravenously injected with 143B cells. Taken together, these results suggest ixazomib exerts better single agent activity against osteosarcoma metastases than bortezomib. These data provide hope that incorporation of ixazomib, or other proteasome inhibitors that penetrate efficiently into solid tumors, into current regimens may improve outcomes for patients diagnosed with metastatic osteosarcoma.
Collapse
Affiliation(s)
- Michael A. Harris
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Victoria, Australia; (M.A.H.); (M.A.M.); (T.M.S.); (C.C.)
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Victoria, Australia; (M.A.H.); (M.A.M.); (T.M.S.); (C.C.)
| | - Tanmay M. Shekhar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Victoria, Australia; (M.A.H.); (M.A.M.); (T.M.S.); (C.C.)
| | - Carmelo Cerra
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Victoria, Australia; (M.A.H.); (M.A.M.); (T.M.S.); (C.C.)
| | - Smitha R. Georgy
- Department of Anatomic Pathology, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 3010 Victoria, Australia;
| | - Stewart D. Ryan
- Translational Research and Animal Clinical Trial Study Group (TRACTS), Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 3010 Melbourne, Australia; (S.D.R.); (C.M.C.)
| | - Claire M. Cannon
- Translational Research and Animal Clinical Trial Study Group (TRACTS), Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 3010 Melbourne, Australia; (S.D.R.); (C.M.C.)
| | - Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Victoria, Australia; (M.A.H.); (M.A.M.); (T.M.S.); (C.C.)
- Correspondence: ; Tel.: +61-3-9479-2339
| |
Collapse
|
10
|
Zhang L, Zhao G, Ji S, Yuan Q, Zhou H. Downregulated Long Non-Coding RNA MSC-AS1 Inhibits Osteosarcoma Progression and Increases Sensitivity to Cisplatin by Binding to MicroRNA-142. Med Sci Monit 2020; 26:e921594. [PMID: 32155139 PMCID: PMC7081928 DOI: 10.12659/msm.921594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Osteosarcoma (OS) is the most prevalent malignant primary bone tumor, resulting from severe transformation of primitive mesenchymal cells, which induces osteogenesis. Long non-coding RNA (lncRNA) MSC-AS1 triggers osteogenic differentiation by sponging microRNA (miR)-140-5p. The present study assessed the mechanism of lncRNA MSC-AS1 in OS biological features and sensitivity to cisplatin (DDP) by binding to miR-142. Material/Methods Firstly, lncRNA MSC-AS1 expression in OS tissues and cells was analyzed. OS cells were transfected with silenced MSC-AS1 to determine its role in OS biological behaviors, and we also assessed the effect of MSC-AS1 on OS sensitivity to DDP. Then, website prediction and dual-luciferase reporter gene assay were utilized for verification of the binding site between MSC-AS1 and miR-142. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were performed to determine the effect of MSC-AS1 on expression of miR-142, cyclin-dependent kinase 6 (CDK6), and the PI3K/AKT signaling pathway. Xenograft transplantation was also applied to confirm the in vitro experiments. Results Overexpressed MSC-AS1 was associated with poor prognosis of OS patients. OS cell proliferation, invasion, and migration were reduced after silencing MSC-AS1, while cell apoptosis was enhanced. Moreover, silencing MSC-AS1 made OS cells more sensitive to DDP. Interestingly, MSC-AS1 knockdown induced miR-142 expression and reduced CDK6 levels, thereby decreasing the protein expression of p-PI3K/t-PI3K and p-AKT/t-AKT. Silencing MSC-AS1 repressed OS progression in vivo. Conclusions Our study demonstrated that silencing MSC-AS1 inhibited OS biological behaviors by enhancing miR-142 to decrease CDK6 and inactivating the PI3K/AKT axis. Our results may provide new insights for OS treatment.
Collapse
Affiliation(s)
- Longqiang Zhang
- Department of Orthopedics, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Guangzong Zhao
- Department of Orthopedics, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Shaolin Ji
- Department of Orthopedics, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Qihua Yuan
- Department of Orthopedics, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Haiyan Zhou
- Health Management Center, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| |
Collapse
|
11
|
Sun HB, Wang HY, Wu B, Wang ZF, Wang LZ, Li FQ, Wu JD, Zhang LN. The inhibitory effects of cisplatin-radiation combination treatment on malignant osteosarcoma MG-63 cells and BRCA1-p53 pathways are more efficient than single treatments. Oncol Lett 2019; 18:6385-6396. [PMID: 31807162 PMCID: PMC6876329 DOI: 10.3892/ol.2019.11019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/22/2019] [Indexed: 01/07/2023] Open
Abstract
The poor prognosis of patients with osteosarcoma remains a persistent problem, in particular for patients with unresectable tumors or metastasis. Therefore, combination of radiotherapy and chemotherapy has been considered for patients with metastasis or recurrence, patients unsuitable for surgery and patients refusing surgery. The present study aimed to investigate the effect of the combined treatment with cisplatin and radiation therapy on the biological characteristics of the osteosarcoma cell line MG-63 and the breast cancer 1 (BRCA1)-associated signaling pathways. Cell proliferation was determined using Cell Counting kit-8 assay, and cell apoptosis and cell cycle were assessed by flow cytometry. Cell migration was examined by Transwell assay. The mRNA and protein expression levels of candidate genes, including BRCA1 and p53, were determined by reverse transcription-quantitative PCR and western blotting, respectively. The results demonstrated that combined treatment with radiation and cisplatin significantly inhibited MG-63 cell proliferation compared with radiation or cisplatin treatment alone. Furthermore, radiation, cisplatin or the combined treatment with radiation and cisplatin increased the apoptosis rate of MG-63 cells, which resulted in G2 phase arrest, and significantly decreased the migratory capacity of MG-63 cells. In addition, the apoptosis rate of MG-63 cells following combined radiation and cisplatin treatment was higher compared with the cisplatin group, but lower compared with the radiation group. Furthermore, combined treatment with radiation and cisplatin decreased the mRNA and protein expression levels of BRCA1 and p53. Additionally, combined treatment with radiation and cisplatin had a more potent inhibitory effect on p53 expression than on BRCA1 expression. In addition, combination of radiation and cisplatin had a higher inhibitory effect on Bax protein level and a higher inductive effect on Bcl-2 protein level compared with treatments with radiation and cisplatin alone. The results demonstrated that combined treatment of radiation and cisplatin exhibited superior therapeutic effects on osteosarcoma MG-63 cells compared with radiation or cisplatin treatment alone, which may be mediated by the BRCA1-p53 signaling pathway.
Collapse
Affiliation(s)
- Hong-Bin Sun
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - He-Yuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bing Wu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhong-Feng Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Li-Zhe Wang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fu-Qiang Li
- Eye Center of The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jun-Duo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Le-Ning Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
12
|
Shekhar TM, Burvenich IJG, Harris MA, Rigopoulos A, Zanker D, Spurling A, Parker BS, Walkley CR, Scott AM, Hawkins CJ. Smac mimetics LCL161 and GDC-0152 inhibit osteosarcoma growth and metastasis in mice. BMC Cancer 2019; 19:924. [PMID: 31521127 PMCID: PMC6744692 DOI: 10.1186/s12885-019-6103-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Current therapies fail to cure over a third of osteosarcoma patients and around three quarters of those with metastatic disease. "Smac mimetics" (also known as "IAP antagonists") are a new class of anti-cancer agents. Previous work revealed that cells from murine osteosarcomas were efficiently sensitized by physiologically achievable concentrations of some Smac mimetics (including GDC-0152 and LCL161) to killing by the inflammatory cytokine TNFα in vitro, but survived exposure to Smac mimetics as sole agents. METHODS Nude mice were subcutaneously or intramuscularly implanted with luciferase-expressing murine 1029H or human KRIB osteosarcoma cells. The impacts of treatment with GDC-0152, LCL161 and/or doxorubicin were assessed by caliper measurements, bioluminescence, 18FDG-PET and MRI imaging, and by weighing resected tumors at the experimental endpoint. Metastatic burden was examined by quantitative PCR, through amplification of a region of the luciferase gene from lung DNA. ATP levels in treated and untreated osteosarcoma cells were compared to assess in vitro sensitivity. Immunophenotyping of cells within treated and untreated tumors was performed by flow cytometry, and TNFα levels in blood and tumors were measured using cytokine bead arrays. RESULTS Treatment with GDC-0152 or LCL161 suppressed the growth of subcutaneously or intramuscularly implanted osteosarcomas. In both models, co-treatment with doxorubicin and Smac mimetics impeded average osteosarcoma growth to a greater extent than either drug alone, although these differences were not statistically significant. Co-treatments were also more toxic. Co-treatment with LCL161 and doxorubicin was particularly effective in the KRIB intramuscular model, impeding primary tumor growth and delaying or preventing metastasis. Although the Smac mimetics were effective in vivo, in vitro they only efficiently killed osteosarcoma cells when TNFα was supplied. Implanted tumors contained high levels of TNFα, produced by infiltrating immune cells. Spontaneous osteosarcomas that arose in genetically-engineered immunocompetent mice also contained abundant TNFα. CONCLUSIONS These data imply that Smac mimetics can cooperate with TNFα secreted by tumor-associated immune cells to kill osteosarcoma cells in vivo. Smac mimetics may therefore benefit osteosarcoma patients whose tumors contain Smac mimetic-responsive cancer cells and TNFα-producing infiltrating cells.
Collapse
Affiliation(s)
- Tanmay M. Shekhar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Ingrid J. G. Burvenich
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Michael A. Harris
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Damien Zanker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Alex Spurling
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Belinda S. Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Carl R. Walkley
- St. Vincent’s Institute, Fitzroy, Victoria 3065 Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065 Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria 3000 Australia
| | - Andrew M. Scott
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Departments of Medical Oncology and Molecular Imaging & Therapy, Austin Health, Heidelberg, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| |
Collapse
|
13
|
Li X, Wang W, Fan Y, Wei Y, Yu LQ, Wei JF, Wang YF. Anticancer efficiency of cycloartane triterpenoid derivatives isolated from Cimicifuga yunnanensis Hsiao on triple-negative breast cancer cells. Cancer Manag Res 2018; 10:6715-6729. [PMID: 30584366 PMCID: PMC6289211 DOI: 10.2147/cmar.s185387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background The roots and rhizomes of Cimicifuga yunnanensis Hsiao are commonly used as anti-inflammatory, antipyretic, and analgesic remedies and detoxification agents in traditional Chinese medicine (TCM). Although C. yunnanensis has been considered as supplementary medicine for several disorders, the antitumor effect of this herb and its key components has not been explored. Materials and methods The rhizomes of C. yunnanensis were isolated by chromatographic techniques. Structures of isolated compounds were identified based on spectroscopic methods and comparison with published data. The in vitro anticancer activities of purified components were also performed by MTT experiments. The in vivo anticancer activities were examined by subcutaneous tumor model or a breast cancer liver metastasis model. Results In this study, we aimed to identify and characterize the effective antitumor components from the rhizomes of C. yunnanensis. By bioassay-guided fractionation techniques and chemical characterization, 12 cycloartane triterpenes and four chromones were isolated, among them, 11 compounds were identified in this genus at first. The identified two compounds showed dramatic inhibitory activities against breast cancer cells: compound 4 (23-epi-26-deoxyactein) and compound 13 (cimigenol). Then, we examined the antitumor effect of these two selective candidate chemicals on triple-negative breast cancer (TNBC) cells in vivo and found that they could reduce tumor growth in subcutaneous tumor model or breast cancer liver metastasis model. Conclusion These results suggested that the selective compounds isolated from C. yunnanensis Hsiao could be the promising new agents for TNBC treatment.
Collapse
Affiliation(s)
- Xiao Li
- Biotechnology Developing Center of Henan Academy of Sciences, Henan Academy of Sciences, Zhengzhou 450002, Henan, People's Republic of China.,State Key Laboratory of Photochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China,
| | - Wei Wang
- Biotechnology Developing Center of Henan Academy of Sciences, Henan Academy of Sciences, Zhengzhou 450002, Henan, People's Republic of China
| | - Yi Fan
- Biotechnology Developing Center of Henan Academy of Sciences, Henan Academy of Sciences, Zhengzhou 450002, Henan, People's Republic of China
| | - Yue Wei
- Biotechnology Developing Center of Henan Academy of Sciences, Henan Academy of Sciences, Zhengzhou 450002, Henan, People's Republic of China
| | - Li-Qin Yu
- Biotechnology Developing Center of Henan Academy of Sciences, Henan Academy of Sciences, Zhengzhou 450002, Henan, People's Republic of China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, People's Republic of China,
| | - Yi-Fen Wang
- State Key Laboratory of Photochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China,
| |
Collapse
|
14
|
Martella E, Ferroni C, Guerrini A, Ballestri M, Columbaro M, Santi S, Sotgiu G, Serra M, Donati DM, Lucarelli E, Varchi G, Duchi S. Functionalized Keratin as Nanotechnology-Based Drug Delivery System for the Pharmacological Treatment of Osteosarcoma. Int J Mol Sci 2018; 19:ijms19113670. [PMID: 30463350 PMCID: PMC6274803 DOI: 10.3390/ijms19113670] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma therapy might be moving toward nanotechnology-based drug delivery systems to reduce the cytotoxicity of antineoplastic drugs and improve their pharmacokinetics. In this paper, we present, for the first time, an extensive chemical and in vitro characterization of dual-loaded photo- and chemo-active keratin nanoparticles as a novel drug delivery system to treat osteosarcoma. The nanoparticles are prepared from high molecular weight and hydrosoluble keratin, suitably functionalized with the photosensitizer Chlorin-e6 (Ce6) and then loaded with the chemotherapeutic drug Paclitaxel (PTX). This multi-modal PTX-Ce6@Ker nanoformulation is prepared by both drug-induced aggregation and desolvation methods, and a comprehensive physicochemical characterization is performed. PTX-Ce6@Ker efficacy is tested on osteosarcoma tumor cell lines, including chemo-resistant cells, using 2D and 3D model systems. The single and combined contributions of PTX and Ce6 is evaluated, and results show that PTX retains its activity while being vehiculated through keratin. Moreover, PTX and Ce6 act in an additive manner, demonstrating that the combination of the cytostatic blockage of PTX and the oxidative damage of ROS upon light irradiation have a far superior effect compared to singularly administered PTX or Ce6. Our findings provide the proof of principle for the development of a novel, nanotechnology-based drug delivery system for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Elisa Martella
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| | - Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| | - Andrea Guerrini
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| | - Marco Ballestri
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| | - Marta Columbaro
- Laboratory of Musculoskeletal Cell Biology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Spartaco Santi
- Institute of Molecular Genetics, National Research Council of Italy, 40136 Bologna, Italy.
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Giovanna Sotgiu
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| | - Massimo Serra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Davide Maria Donati
- 3rd Orthopaedic and Traumatologic Clinic prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via Ugo Foscolo 9, 40123 Bologna, Italy.
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, 3rd Orthopaedic and Traumatologic Clinic prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, 3rd Orthopaedic and Traumatologic Clinic prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| | - Serena Duchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| |
Collapse
|
15
|
Punzo F, Tortora C, Di Pinto D, Pota E, Argenziano M, Di Paola A, Casale F, Rossi F. Bortezomib and endocannabinoid/endovanilloid system: a synergism in osteosarcoma. Pharmacol Res 2018; 137:25-33. [PMID: 30267762 DOI: 10.1016/j.phrs.2018.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
Osteosarcoma is the most common primary malignant tumor of bone in children and adolescents. Bortezomib (BTZ) is an approved anticancer drug, classified as a selective reversible inhibitor of the ubiquitin-dependent proteasome system, that leads to cancer cell cycle arrest and apoptosis reducing the invasion ability of Osteosarcoma cells in vitro. It also regulates the RANK/RANKL/OPG system, involved in the pathogenesis of bone tumors and in cell migration. A side effect of BTZ is to induce painful sensory peripheral neuropathy which lead to cessation of therapy or dose reduction. Recently BTZ has been evaluated in combination with Cannabinoids targeting CB1 receptor, demonstrating a promising synergic effect. The Endocannabinoid/Endovanilloid (EC/EV) system includes two G protein-coupled receptors (CB1 and CB2), the Transient Potential Vanilloid 1 (TRPV1) channel and their endogenous ligands and enzymes. CB1 and CB2 are expressed mainly in Central Nervous System and Immune Peripheral cells respectively. TRPV1 is also expressed in primary sensory neurons and is involved in pain modulation. EC/EV system induces apoptosis, reduces invasion and cell proliferation in Osteosarcoma cell lines and is involved in bone metabolism. We analyzed the effects of BTZ, alone and in combination with selective agonists at CB2 (JWH-133) and TRPV1 (RTX) receptors, in the Osteosarcoma cell line (HOS) on Apoptosis, Cell Cycle progression, migration and bone balance. We observed that the stimulation of CB2 and TRPV1 receptors increase the efficacy of BTZ in inducing apoptosis and reducing invasion, cell cycle progression and by modulating bone balance. These data suggest the possibility to use BTZ, in combination with EC/EV agonists, in Osteosarcoma therapy reducing its dose and its side effects.
Collapse
Affiliation(s)
- Francesca Punzo
- Department of Women, Child and General and Specialist Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Via De Crecchio 4, 80138, Naples, Italy; Department of Experimental Medicine, Division of Pharmacology "Leonardo Donatelli", Università degli Studi della Campania "Luigi Vanvitelli", Via S. Maria di Costantinopoli 14, 80138, Naples, Italy
| | - Chiara Tortora
- Department of Women, Child and General and Specialist Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Via De Crecchio 4, 80138, Naples, Italy
| | - Daniela Di Pinto
- Department of Women, Child and General and Specialist Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Via De Crecchio 4, 80138, Naples, Italy
| | - Elvira Pota
- Department of Women, Child and General and Specialist Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Via De Crecchio 4, 80138, Naples, Italy
| | - Maura Argenziano
- Department of Experimental Medicine, Division of Pharmacology "Leonardo Donatelli", Università degli Studi della Campania "Luigi Vanvitelli", Via S. Maria di Costantinopoli 14, 80138, Naples, Italy
| | - Alessandra Di Paola
- Department of Women, Child and General and Specialist Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Via De Crecchio 4, 80138, Naples, Italy
| | - Fiorina Casale
- Department of Women, Child and General and Specialist Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Via De Crecchio 4, 80138, Naples, Italy
| | - Francesca Rossi
- Department of Women, Child and General and Specialist Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Via De Crecchio 4, 80138, Naples, Italy.
| |
Collapse
|
16
|
miR-216a inhibits osteosarcoma cell proliferation, invasion and metastasis by targeting CDK14. Cell Death Dis 2017; 8:e3103. [PMID: 29022909 PMCID: PMC5682665 DOI: 10.1038/cddis.2017.499] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/18/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023]
Abstract
Osteosarcoma (OS) has emerged as the most common primary musculoskeletal malignant tumour affecting children and young adults. Cyclin-dependent kinases (CDKs) are closely associated with gene regulation in tumour biology. Accumulating evidence indicates that the aberrant function of CDK14 is involved in a broad spectrum of diseases and is associated with clinical outcomes. MicroRNAs (miRNAs) are crucial epigenetic regulators in the development of OS. However, the essential role of CDK14 and the molecular mechanisms by which miRNAs regulate CDK14 in the oncogenesis and progression of OS have not been fully elucidated. Here we found that CDK14 expression was closely associated with poor prognosis and overall survival of OS patients. Using dual-luciferase reporter assays, we also found that miR-216a inhibits CDK14 expression by binding to the 3′-untranslated region of CDK14. Overexpression of miR-216a significantly suppressed cell proliferation, migration and invasion in vivo and in vitro by inhibiting CDK14 production. Overexpression of CDK14 in the miR-216a-transfected OS cells effectively rescued the suppression of cell proliferation, migration and invasion caused by miR-216a. In addition, Kaplan–Meier analysis indicated that miR-216a expression predicted favourable clinical outcomes for OS patients. Moreover, miR-216a expression was downregulated in OS patients and was negatively associated with CDK14 expression. Overall, these data highlight the role of the miR-216a/CDK14 axis as a novel pleiotropic modulator and demonstrate the associated molecular mechanisms, thus suggesting the intriguing possibility that miR-216a activation and CDK14 inhibition may be novel and attractive therapeutic strategies for treating OS patients.
Collapse
|
17
|
Wang Y, Wang W, Qiu E. SPOCK1 promotes the growth of Osteosarcoma cells through mTOR-S6K signaling pathway. Biomed Pharmacother 2017; 95:564-570. [PMID: 28869894 DOI: 10.1016/j.biopha.2017.08.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022] Open
Abstract
SPOCK1 belongs to the SPARC family, which plays an important role in proliferation, invasion and migration of various tumour cells. However, the functions of SPOCK1 in osteosarcoma cell growth and proliferation have not been fully elucidated. In the present study, we found that SPOCK1 is significantly upregulated in osteosarcoma tissue. Moreover, overexpression of SPOCK1 was associated with tumour size, metastasis, Enneking stage and pathological degree. Furthermore, knockdown of SPOCK1 expression suppressed the growth of osteosarcoma cells in vitro and reduced tumourigenicity in nude mice in vivo. Additionally, our data suggest that inactivation of the mTOR-S6K signaling pathway participated in inhibition of SPOCK1-mediated suppression of osteosarcoma cell growth. These findings represent a novel pathogenetic mechanism of osteosarcoma development that provides a potential target for therapeutic strategies for osteosarcoma.
Collapse
Affiliation(s)
- Yuming Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, China.
| | - Wei Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, China
| | - Enduo Qiu
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, China
| |
Collapse
|