1
|
Luo F, Zhang Y, Zhang S, Ji Y, Yan D, Lai M, Yang X, Zhang D, Ji X. Rational design of Near-Infrared fluorescent probe for monitoring HNO in plants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124672. [PMID: 38905899 DOI: 10.1016/j.saa.2024.124672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Nitroxyl (HNO), a reactive nitrogen species (RNS), is essential for plant growth. However, the action of HNO in plants has been difficult to understand due to the lack of highly sensitive and real-time in-situ monitoring tools. Herein, we presented a near-infrared fluorescent probe, DCI-HNO, based on dicyanoisophorone fluorophore, for real-time mapping HNO in plants. The introduction of a phosphine moiety as a specific HNO recognition unit can inhibit the intramolecular charge transfer (ICT) of probe DCI-HNO. However, in the presence of HNO, the ICT process occurred, leading to the emission at 665 nm. Probe DCI-HNO exhibited high sensitivity (97 nM), rapid response time (8 min), large Stokes shift (135 nm) for detection of HNO in plants. The novel developed probe has successfully imaged endogenous HNO produced during NO/H2S cross-talk in plant tissues. Additionally, the up-regulated in HNO levels during tobacco aging and in response to stress has been confirmed. Therefore, probe DCI-HNO has provided a reliable method for monitoring the NO/H2S cross-talk and revealing the role of HNO in plants.
Collapse
Affiliation(s)
- Fei Luo
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Ying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Shiyi Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuhang Ji
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Dingwei Yan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Miao Lai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaopeng Yang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Di Zhang
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xiaoming Ji
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Husni ME, Sun C, Chandrasekharan UM, Hwang ST. Advancing Basic and Translational Science: Highlights From the Basic Science Workshop at the GRAPPA 2023 Annual Meeting. J Rheumatol 2024; 51:84-88. [PMID: 39009391 PMCID: PMC11444898 DOI: 10.3899/jrheum.2024-0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 07/17/2024]
Abstract
Contemporary translational and clinical research advances in psoriatic disease (PsD) were highlighted at the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) 2023 annual meeting basic science workshop. This year's workshop focused on key topics, including the significance of the annual GRAPPA meetings as a platform for collaboration and knowledge exchange. Discussions centered around expanding our understanding of tumor necrosis factor inhibitor (TNFi) treatment in PsD and enhancing early detection strategies for PsD comorbidities, specifically for the timely intervention and management of cardiovascular (CV) comorbidities. Insights on the role of the C-C chemokine receptor type 6 (CCR6) in PsD and psoriatic arthritis were provided, suggesting that blockade of CCR6 can reduce psoriasis-like dermatitis and joint inflammation in mouse models.
Collapse
Affiliation(s)
- M Elaine Husni
- M.E. Husni, MD, MPH, Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, Ohio;
| | - Chris Sun
- C. Sun, Case Western Reserve University, Cleveland, Ohio
| | - Unnikrishnan M Chandrasekharan
- U.M. Chandrasekharan, PhD, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Samuel T Hwang
- S.T. Hwang, MD, PhD, Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
3
|
Ismail EA, El-Sakka AI. An overview of conventional and investigational phosphodiesterase 5 inhibitors for treating erectile dysfunction and other conditions. Expert Opin Investig Drugs 2024; 33:925-938. [PMID: 39096237 DOI: 10.1080/13543784.2024.2388569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION There is a rising concern about developing innovative, efficacious PDE5I molecules that provide better safety, efficacy, and tolerability with less adverse effects. Innovative PDE5I with dual targets have also been defined in the literature. Additionally, some of PDE5I are able to selectively inhibit other enzymes such as histone deacetylase, acetylcholine esterase, and cyclooxygenase or act as nitric oxide donors. This review presents knowledge concerning the advanced trends and perspectives in using PDE5I in treatment of ED and other conditions. AREAS COVERED Pre-clinical and early clinical trials that investigated the safety, efficacy, and tolerability of novel PDE5I such as Udenafil, Mirodenafil, Lodenafil, Youkenafil, Celecoxib, and TPN729 in treatment of ED and other conditions. EXPERT OPINION Preclinical and limited early clinical studies of the new molecules of PDE5I have demonstrated encouraging results; however, safety, efficacy, and tolerability are still issues that necessitate further long-term multicenter clinical studies to ensure justification of their uses in treatment of ED and other conditions. Progress in molecular delivery techniques and tailored patient-specific management and additional therapeutic technology will dramatically improve care for ED and other conditions. The dream of ED and many other conditions becoming more effectively managed may be feasible in the near future.
Collapse
Affiliation(s)
- Ezzat A Ismail
- Department of Urology, Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
4
|
Zhao GP, Cheng WL, Zhang ZH, Li YX, Li YQ, Yang FW, Wang YB. The use of amino acids and their derivates to mitigate against pesticide-induced toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116340. [PMID: 38636261 DOI: 10.1016/j.ecoenv.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Exposure to pesticides induces oxidative stress and deleterious effects on various tissues in non-target organisms. Numerous models investigating pesticide exposure have demonstrated metabolic disturbances such as imbalances in amino acid levels within the organism. One potentially effective strategy to mitigate pesticide toxicity involves dietary intervention by supplementing exogenous amino acids and their derivates to augment the body's antioxidant capacity and mitigate pesticide-induced oxidative harm, whose mechanism including bolstering glutathione synthesis, regulating arginine-NO metabolism, mitochondria-related oxidative stress, and the open of ion channels, as well as enhancing intestinal microecology. Enhancing glutathione synthesis through supplementation of substrates N-acetylcysteine and glycine is regarded as a potent mechanism to achieve this. Selection of appropriate amino acids or their derivates for supplementation, and determining an appropriate dosage, are of the utmost importance for effective mitigation of pesticide-induced oxidative harm. More experimentation is required that involves large population samples to validate the efficacy of dietary intervention strategies, as well as to determine the effects of amino acids and their derivates on long-term and low-dose pesticide exposure. This review provides insights to guide future research aimed at preventing and alleviating pesticide toxicity through dietary intervention of amino acids and their derivates.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Wei-Long Cheng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhi-Hui Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yi-Xuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; National Center of Technology Innovation for Dairy, Inner Mongolia 013757, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Fang-Wei Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan-Bo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
5
|
Zhao M, Lei J, Deng F, Zhao C, Xu T, Ji B, Fu M, Wang X, Sun M, Zhang M, Gao Q. Gestational Hypoxia Impaired Endothelial Nitric Oxide Synthesis Via miR-155-5p/NADPH Oxidase/Reactive Oxygen Species Axis in Male Offspring Vessels. J Am Heart Assoc 2024; 13:e032079. [PMID: 38240225 PMCID: PMC11056123 DOI: 10.1161/jaha.123.032079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Nitric oxide (NO) is the most important vasodilator secreted by vascular endothelial cells, and its abnormal synthesis is involved in the development of cardiovascular disease. The prenatal period is a critical time for development and largely determines lifelong vascular health in offspring. Given the high incidence and severity of gestational hypoxia in mid-late pregnancy, it is urgent to further explore whether it affects the long-term synthesis of NO in offspring vascular endothelial cells. METHODS AND RESULTS Pregnant Sprague-Dawley rats were housed in a normoxic or hypoxic (10.5% O2) chamber from gestation days 10 to 20. The thoracic aortas of fetal and adult male offspring were isolated for experiments. Gestational hypoxia significantly reduces the NO-dependent vasodilation mediated by acetylcholine in both the fetal and adult offspring thoracic aorta rings. Meanwhile, acetylcholine-induced NO synthesis is impaired in vascular endothelial cells from hypoxic offspring thoracic aortas. We demonstrate that gestational hypoxic offspring exhibit a reduced endothelial NO synthesis capacity, primarily due to increased expression of NADPH oxidase 2 and enhanced reactive oxygen species. Additionally, gestational hypoxic offspring show elevated levels of miR-155-5p in vascular endothelial cells, which is associated with increased expression of NADPH oxidase 2 and reactive oxygen species generation, as well as impaired NO synthesis. CONCLUSIONS The present study is the first to demonstrate that gestational hypoxia impairs endothelial NO synthesis via the miR-155-5p/NADPH oxidase 2/reactive oxygen species axis in offspring vessels. These novel findings indicate that the detrimental effects of gestational hypoxia on fetal vascular function can persist into adulthood, providing new insights into the development of vascular diseases.
Collapse
Affiliation(s)
- Meng Zhao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of ChinaMaternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanShandongChina
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of Obstetrics and GynecologyThe Third People’s Hospital of Bengbu Affiliated to Bengbu Medical CollegeBengbuAnhui ProvinceChina
| | - Jiahui Lei
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Fengying Deng
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chenxuan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ting Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Bingyu Ji
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mengyu Fu
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of ChinaMaternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanShandongChina
| | - Miao Sun
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of ChinaMaternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanShandongChina
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health CommissionShandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao UniversityJinanShandongChina
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of ChinaMaternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanShandongChina
| | - Qinqin Gao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of ChinaMaternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanShandongChina
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
6
|
Jurčacková Z, Ciglanová D, Mudroňová D, Bárcenas-Pérez D, Cheel J, Hrčková G. Influence of standard culture conditions and effect of oleoresin from the microalga Haematococcus pluvialis on splenic cells from healthy Balb/c mice - a pilot study. In Vitro Cell Dev Biol Anim 2023; 59:764-777. [PMID: 38062299 PMCID: PMC10739404 DOI: 10.1007/s11626-023-00822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 12/22/2023]
Abstract
In this work, we used splenocytes from healthy mice to study the effects of the two most commonly used cell culture media (A, B) with different compositions of redox reagents. The incubation of cells for 24 h resulted in a significant decrease in viability and metabolic activity of splenocytes, and the negative effects of incubation in medium B were more pronounced. In standard conditions, oxidative stress in cells was manifested by reduced mitochondrial potential, and this effect correlated with the transition of 58.3% of cells to the early stage of apoptosis under reducing conditions of medium A and up to 66.1% of cells under super-reducing conditions in medium B, suggesting altered cell physiology. High levels of ROS/RNS activated transcription factor Nrf2, superoxide dismutase 1, and catalase. The higher mRNA levels of these genes were under the conditions of medium B, whose super-reducing environment in combination with the environment of conventional incubators proved to be less suitable for the cells compared to medium A. Treatment of the cells with a lower concentration (10 µg/ml) of oleoresin obtained from the microalga H. pluvialis partially eliminated the negative effects of cultivation. Higher concentration of oleoresin (40 µg/ml) was slightly cytotoxic, due to the significant antioxidant effect of astaxanthin, the main bioactive component of the extract, which eliminated most of the ROS/RNS acting as signalling molecules. This study shows that the standard culture conditions do not reflect the physiological in vivo cell conditions; therefore, they are not generally suitable for incubation of all cell types.
Collapse
Affiliation(s)
- Zuzana Jurčacková
- Institute of Parasitology, The Slovak Academy of Sciences, Hlinkova 3, 04001, Košice, Slovakia
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 68, 04181, Košice, Slovakia
| | - Denisa Ciglanová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 68, 04181, Košice, Slovakia
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 68, 04181, Košice, Slovakia
| | - Daniela Bárcenas-Pérez
- Laboratory of Algal Biotechnology - Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 37981, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, 1760, 37005, České Budějovice, Czech Republic
| | - José Cheel
- Laboratory of Algal Biotechnology - Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 37981, Třeboň, Czech Republic.
| | - Gabriela Hrčková
- Institute of Parasitology, The Slovak Academy of Sciences, Hlinkova 3, 04001, Košice, Slovakia.
| |
Collapse
|
7
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
8
|
Tang Z, Zhang Z, Wang J, Sun Z, Qaed E, Chi X, Wang J, Jamalat Y, Geng Z, Tang Z, Yao Q. Protective effects of phosphocreatine on human vascular endothelial cells against hydrogen peroxide-induced apoptosis and in the hyperlipidemic rat model. Chem Biol Interact 2023; 383:110683. [PMID: 37648050 DOI: 10.1016/j.cbi.2023.110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Phosphocreatine (PCr) has been shown to have a cardio-protective effect during cardiopulmonary resuscitation (CPR). However, little is known about its impact on atherosclerosis. In this study, we first evaluated the pharmacological effects of PCr on antioxidative defenses and mitochondrial protection against hydrogen peroxide (H2O2) induced human umbilical vascular endothelial cells (HUVECs) damage. Then we investigated the hypolipidemic and antioxidative effects of PCr on hyperlipidemic rat model. Via in vitro studies, H2O2 significantly reduced cell viability and increased apoptosis rate of HUVECs, while pretreatment with PCr abolished its apoptotic effect. PCr could reduce the generation of ROS induced by H2O2. Moreover, PCr could increase the activity of SOD and the content of NO, as well as decrease the activity of LDH and the content of MDA. PCr could also antagonize H2O2-induced up-regulation of Bax, cleaved-caspase3, cleaved-caspase9, and H2O2-induced down-regulation of Bcl-2 and p-Akt/Akt ratio. In addition, PCr reduced U937 cells' adhesion to H2O2-stimulated HUVECs. Via in vivo study, PCr could decrease MDA, TC, TG and LDL-C levels in hyperlipidemic rats. Finally, different-concentration PCr could increase the leaching of TC, HDL, and TG from fresh human atherosclerotic plaques. In conclusion, PCr could suppress H2O2-induced apoptosis in HUVECs and reduce hyperlipidemia through inhibiting ROS generation and modulating dysfunctional mitochondrial system, which might be an effective new therapeutic strategy to further prevent atherosclerosis.
Collapse
Affiliation(s)
- Zhongyuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zonghui Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jiaqi Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengwu Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xinming Chi
- Department of Histology and Embryology, Dalian Medical University, Dalian, 116044, China
| | - Jun Wang
- Department of Pathophysiology, Dalian Medical University, Dalian, China
| | - Yazeed Jamalat
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhaohong Geng
- Department of Cardiology, 2nd Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 467, Dalian, China.
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China.
| | - Qiying Yao
- Department of Physiology, Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Zhao Z, Dong R, You Q, Jiang Z. Medicinal Chemistry Insights into the Development of Small-Molecule Kelch-Like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Protein-Protein Interaction Inhibitors. J Med Chem 2023. [PMID: 37441735 DOI: 10.1021/acs.jmedchem.3c00712] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Oxidative stress has been implicated in a wide range of pathological conditions. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a central role in regulating the cellular defense system against oxidative and electrophilic insults. Nonelectrophilic inhibition of the protein-protein interaction (PPI) between Kelch-like ECH-associated protein 1 (Keap1) and Nrf2 has become a promising approach to activate Nrf2. Recently, multiple drug discovery strategies have facilitated the development of small-molecule Keap1-Nrf2 PPI inhibitors with potent activity and favorable drug-like properties. In this Perspective, we summarize the latest progress of small-molecule Keap1-Nrf2 PPI inhibitors from medicinal chemistry insights and discuss future prospects and challenges in this field.
Collapse
Affiliation(s)
- Ziquan Zhao
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ruitian Dong
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Feairheller DL, Smith M, Carty M, Reeve EH. Blood pressure surge with alarm is reduced after exercise and diet intervention in firefighters. Blood Press Monit 2023; 28:134-143. [PMID: 37070561 PMCID: PMC10132461 DOI: 10.1097/mbp.0000000000000649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Cardiac-related incidents are a public health concern for tactical occupations, and cardiovascular disease rates are higher in these populations compared with civilians. Research is needed to examine blood pressure (BP) responses in firefighters. The pager alert is one occupational hazard, and it is unknown if lifestyle change can reduce the systolic surge response. PURPOSE To measure BP surge with alarm in firefighters to determine whether the magnitude is lower after a 6-week tactical exercise and Mediterranean-diet intervention. METHODS SBP and DBP and BP surge levels, circulating markers, vascular health, and fitness were analyzed. BP surge with alarm was captured during a 12-hour workshift. Exercise and diet were self-reported. Diet was tracked with diet scores based on number of servings. RESULTS Twenty five firefighters (43.4 ± 13.9 years) participated. We found changes in the magnitude of BP surge with alarm (SBP surge from16.7 ± 12.9 to 10.5 ± 11.7 mmHg, P < 0.05; DBP surge from 8.2 ± 10.8 to 4.9 ± 5.6 mmHg, P > 0.05) after intervention. We confirm that clinical (127.6 ± 9.1 to 120 ± 8.2 mmHg) and central (122.7 ± 11.3 to 118.2 ± 10.7 mmHg) SBP levels improve with exercise and diet. We report for the first time in firefighters that oxidative stress markers superoxide dismutase (9.1 ± 1.5 to 11.2 ± 2.2 U/ml) and nitric oxide (40.4 ± 7 to 48.9 ± 16.9 μmol/l) levels improve with an exercise and diet intervention. CONCLUSION These findings have implications toward the benefit that short-term lifestyle changes make toward reducing the alarm stress response in first responders.
Collapse
Affiliation(s)
- Deborah L Feairheller
- Department of Kinesiology, California State University San Marcos, San Marcos, California
| | - Macie Smith
- Department of Kinesiology, California State University San Marcos, San Marcos, California
| | - Megan Carty
- Jefferson College of Population Health, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Emily H Reeve
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
11
|
Jurčacková Z, Ciglanová D, Mudroňová D, Tumová L, Bárcenas-Pérez D, Kopecký J, Koščová J, Cheel J, Hrčková G. Astaxanthin Extract from Haematococcus pluvialis and Its Fractions of Astaxanthin Mono- and Diesters Obtained by CCC Show Differential Antioxidant and Cytoprotective Effects on Naïve-Mouse Spleen Cells. Antioxidants (Basel) 2023; 12:1144. [PMID: 37371874 DOI: 10.3390/antiox12061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Carotenoids are the most abundant lipid-soluble phytochemicals and are used as dietary supplements to protect against diseases caused by oxidative stress. Astaxanthin, a xanthophyll carotenoid, is a very potent antioxidant with numerous beneficial effects on cellular functions and signaling pathways. In this study, using spleen cells from healthy Balb/c mice, we report the bio-functional effects of an astaxanthin-rich extract (EXT) prepared from the microalga Haematococcus pluvialis and its astaxanthin monoesters-rich fraction (ME) and astaxanthin diesters-rich fraction (DE) obtained by fractionation of EXT using countercurrent chromatography (CCC). After incubation under standard culture conditions (humidity, 37 °C, 5% CO2, atmospheric oxygen), the viability of untreated splenocytes, as determined by the trypan blue exclusion assay, the MTT assay, and the neutral red assay, decreases to approximately 75% after 24 h compared with naïve splenocytes. This effect correlated with the decrease in mitochondrial membrane potential and the transition of ~59% of cells to the early stage of apoptosis, as well as with the decreased ROS production, indicating that hyperoxia in cell-culture deteriorates cell functions. They are restored or stimulated by co-cultivation with EXT, ME, and DE up to 10 µg/mL in the order EXT > DE > ME, suggesting that esterification increases bioavailability to cells in vitro. ROS and H2O2 concentrations reflect mRNA transcriptional activity of Nrf2, superoxide dismutase 1 (SOD1), catalase, and glutathione peroxidase 1, as well as SOD-mediated ROS conversion, whereas they inversely correlate with iNOS-mediated NO production. The highest-tested concentration of EXT, ME, and DE (40 µg/mL) is detrimental to cells, probably because of the overwhelming scavenging activity of astaxanthin and its esters for the reactive oxygen/nitrogen species required for cellular functions and signal transduction at low physiological concentrations. In this study, we demonstrate that differential activities of ME and DE contribute to the final antioxidant and cytoprotective effects of astaxanthin extract, which is beneficial in preventing a wide range of ROS-induced adverse effects, with DE being more effective. In addition, the selection of physioxia-like conditions for pharmacological research is highlighted.
Collapse
Affiliation(s)
- Zuzana Jurčacková
- Institute of Parasitology, The Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 68, 04181 Košice, Slovakia
| | - Denisa Ciglanová
- Institute of Parasitology, The Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 68, 04181 Košice, Slovakia
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 68, 04181 Košice, Slovakia
| | - Lenka Tumová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy Hradec Králové, Charles University, Heyrovského 1203, 50165 Hradec Králové, Czech Republic
| | - Daniela Bárcenas-Pérez
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Jiří Kopecký
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Jana Koščová
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - José Cheel
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Gabriela Hrčková
- Institute of Parasitology, The Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
| |
Collapse
|
12
|
Juin SK, Ouseph R, Gondim DD, Jala VR, Sen U. Diabetic Nephropathy and Gaseous Modulators. Antioxidants (Basel) 2023; 12:antiox12051088. [PMID: 37237955 DOI: 10.3390/antiox12051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic nephropathy (DN) remains the leading cause of vascular morbidity and mortality in diabetes patients. Despite the progress in understanding the diabetic disease process and advanced management of nephropathy, a number of patients still progress to end-stage renal disease (ESRD). The underlying mechanism still needs to be clarified. Gaseous signaling molecules, so-called gasotransmitters, such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), have been shown to play an essential role in the development, progression, and ramification of DN depending on their availability and physiological actions. Although the studies on gasotransmitter regulations of DN are still emerging, the evidence revealed an aberrant level of gasotransmitters in patients with diabetes. In studies, different gasotransmitter donors have been implicated in ameliorating diabetic renal dysfunction. In this perspective, we summarized an overview of the recent advances in the physiological relevance of the gaseous molecules and their multifaceted interaction with other potential factors, such as extracellular matrix (ECM), in the severity modulation of DN. Moreover, the perspective of the present review highlights the possible therapeutic interventions of gasotransmitters in ameliorating this dreaded disease.
Collapse
Affiliation(s)
- Subir Kumar Juin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Microbiology & Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rosemary Ouseph
- Division of Nephrology & Hypertension, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Dibson Dibe Gondim
- Department of Pathology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology & Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
13
|
Xu D, Zhu X, Xie X, Huang C, Fang X, Yin T. Concurrent dietary intake to nitrate, thiocyanate, and perchlorate is negatively associated with hypertension in adults in the USA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17573-17584. [PMID: 36197620 DOI: 10.1007/s11356-022-23093-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We aimed to comprehensively evaluate the association of urinary nitrate, thiocyanate, and perchlorate metabolites with hypertension among a nationally representative sample of the US adult population. This cross-sectional study investigated data from 15,717 adults aged more than 20 years obtained from the National Health and Nutritional Examination Survey (NHANES) for the years 2005-2016. In the survey, urinary levels of nitrate, thiocyanate, and perchlorate were measured using ion chromatography combined with electrospray tandem mass spectrometry. Blood pressure was calculated as the mean of three measurements. Hypertension was defined as (a) systolic BP ≥130 and/or diastolic BP ≥80 mmHg and/or (b) self-report. Multivariate logistic regression and weighted quantile sum (WQS) regression models were applied to estimate the association between exposure to multiple inorganic anions and hypertension. Restricted cubic spline (RCS) regressions were fitted to discern the potential relationship between the anion exposure and hypertension. These innovation methods used to support our results. Overall, 7533 (49.95%) people with and 7638 (50.35%) without hypertension were included in this study. In the multivariable-adjusted logistic regression models, urinary nitrate (P < 0.001) and perchlorate (P < 0.001) were independently negatively associated with increased occurrence of hypertension, while urinary thiocyanate was insignificantly associated with hypertension (P = 0.664). The WQS regression index showed that, in combination, the three inorganic anions mixture were negatively correlated with hypertension (adjusted OR 0.89; 95% CI 0.83-0.95, P < 0.001). Urinary nitrate was the most heavily weighted component in the hypertension model (weight = 0.784). RCS regression demonstrated that nitrate (nonlinearity P = 0.205) and perchlorate (nonlinearity P = 0.701) were linearly associated with decreased occurrence of hypertension. Concurrent exposure to nitrate, thiocyanate, and perchlorate is associated with a decreased risk of hypertension, with the greatest influence coming from nitrate probably; urinary specific thiocyanate alone had an insignificant association with hypertension.
Collapse
Affiliation(s)
- Dong Xu
- Department of Vascular Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310000, China
| | - Xu Zhu
- Department of Cardiology, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Xupin Xie
- Department of Vascular Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310000, China
| | - Changpin Huang
- Department of Vascular Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310000, China
| | - Xin Fang
- Department of Vascular Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310000, China
| | - Ting Yin
- Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310000, China.
| |
Collapse
|
14
|
Kumbhakar S, Gupta P, Giri B, Muley A, Karumban KS, Misra A, Maji S. Photolability of NO in ruthenium nitrosyls with pentadentate ligand induces exceptional cytotoxicity towards VCaP, 22Rv1 and A549 cancer cells under therapeutic condition. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Guo J, Yu X, Liu Y, Lu L, Zhu D, Zhang Y, Li L, Zhang P, Gao Q, Lu X, Sun M. Prenatal hypothyroidism diminished exogenous NO-mediated diastolic effects in fetal rat thoracic aorta smooth muscle via increased oxidative stress. Reprod Toxicol 2022; 113:52-61. [PMID: 35970333 DOI: 10.1016/j.reprotox.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Maternal hypothyroidism is an important problem of modern healthcare and is reported to increase the risk of cardiovascular diseases in the offspring later in life. However, it is unclear whether hypothyroidism during pregnancy causes vascular damage in the fetal period. We established the prenatal hypothyroidism rat model and collected the fetuses at the 21th day of gestation (GD21). Thyroid hormone concentrations in maternal and offspring blood serum were assessed by enzyme-linked immunosorbent assay (ELISA). The thoracic aortas of the fetuses were isolated for microvessel functional testing and histochemical stainings. qPCR and Western blot were performed to access mRNA and protein expression. We found that the concentrations of thyroid hormones in the serum of pregnant rats and fetuses were significantly suppressed at GD21. The responses of the fetal thoracic aortas to SNP were significantly attenuated in the PTU group. However, no statistical difference was found between the two groups when treated with either inhibitor (ODQ) or activator (BAY58-2667) of sGC. The production of O2-• in the arterial wall was significantly increased in hypothyroid fetuses. Moreover, the level of NADPH oxidase (NOX) was increased, while superoxide dismutase 2 (SOD2) was down-regulated in the PTU group, ultimately contributing to the increased production of superoxide. Additionally, decreased SNP-mediated vasodilation found in fetal vessels was improved by either NOX inhibitor (Apocynin) or SOD mimic (Tempol). These results indicate that increased oxidative stress is probably the cause of the diminished diastolic effect of exogenous NO in the thoracic artery of prenatal hypothyroidism exposed fetuses.
Collapse
Affiliation(s)
- Jun Guo
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Xi Yu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Yanping Liu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Likui Lu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Dan Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Yingying Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Lingjun Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Pengjie Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Qinqin Gao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Xiyuan Lu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China.
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China.
| |
Collapse
|
16
|
He M, Wang D, Xu Y, Jiang F, Zheng J, Feng Y, Cao J, Zhou X. Nitric Oxide-Releasing Platforms for Treating Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14071345. [PMID: 35890241 PMCID: PMC9317153 DOI: 10.3390/pharmaceutics14071345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the first leading cause of death globally. Nitric oxide (NO) is an important signaling molecule that mediates diverse processes in the cardiovascular system, thereby providing a fundamental basis for NO-based therapy of CVD. At present, numerous prodrugs have been developed to release NO in vivo. However, the clinical application of these prodrugs still faces many problems, including the low payloads, burst release, and non-controlled delivery. To address these, various biomaterial-based platforms have been developed as the carriers to deliver NO to the targeted tissues in a controlled and sustained manner. This review aims to summarize recent developments of various therapeutic platforms, engineered to release NO for the treatment of CVD. In addition, two potential strategies to improve the effectiveness of existing NO therapy are also discussed, including the combination of NO-releasing platforms and either hydrogen sulfide-based therapy or stem cell therapy. Hopefully, some NO-releasing platforms may provide important therapeutic benefits for CVD.
Collapse
Affiliation(s)
- Mingyue He
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Yumei Xu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Fangying Jiang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Jian Zheng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| |
Collapse
|
17
|
Hao T, Qian M, Zhang Y, Liu Q, Midgley AC, Liu Y, Che Y, Hou J, Zhao Q. An Injectable Dual-Function Hydrogel Protects Against Myocardial Ischemia/Reperfusion Injury by Modulating ROS/NO Disequilibrium. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105408. [PMID: 35319828 PMCID: PMC9130918 DOI: 10.1002/advs.202105408] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Acute myocardial infarction (MI) is the leading cause of death worldwide. Exogenous delivery of nitric oxide (NO) to the infarcted myocardium has proven to be an effective strategy for treating MI due to the multiple physiological functions of NO. However, reperfusion of blood flow to the ischemic tissues is accompanied by the overproduction of toxic reactive oxygen species (ROS), which can further exacerbate tissue damage and compromise the therapeutic efficacy. Here, an injectable hydrogel is synthesized from the chitosan modified by boronate-protected diazeniumdiolate (CS-B-NO) that can release NO in response to ROS stimulation and thereby modulate ROS/NO disequilibrium after ischemia/reperfusion (I/R) injury. Furthermore, administration of CS-B-NO efficiently attenuated cardiac damage and adverse cardiac remodeling, promoted repair of the heart, and ameliorated cardiac function, unlike a hydrogel that only released NO, in a mouse model of myocardial I/R injury. Mechanistically, regulation of the ROS/NO balance activated the antioxidant defense system and protected against oxidative stress induced by I/R injury via adaptive regulation of the Nrf2-Keap1 pathway. Inflammation is then reduced by inhibition of the activation of NF-κB signaling. Collectively, these results show that this dual-function hydrogel may be a promising candidate for the protection of tissues and organs after I/R injury.
Collapse
Affiliation(s)
- Tian Hao
- State key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Sustainable Chemical TransformationsKey Laboratory of Bioactive Materials (Ministry of Education)Frontiers Science Center for Cell ResponsesCollege of Life SciencesNankai UniversityTianjin300071China
| | - Meng Qian
- State key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Sustainable Chemical TransformationsKey Laboratory of Bioactive Materials (Ministry of Education)Frontiers Science Center for Cell ResponsesCollege of Life SciencesNankai UniversityTianjin300071China
| | - Yating Zhang
- State key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Sustainable Chemical TransformationsKey Laboratory of Bioactive Materials (Ministry of Education)Frontiers Science Center for Cell ResponsesCollege of Life SciencesNankai UniversityTianjin300071China
| | - Qi Liu
- State key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Sustainable Chemical TransformationsKey Laboratory of Bioactive Materials (Ministry of Education)Frontiers Science Center for Cell ResponsesCollege of Life SciencesNankai UniversityTianjin300071China
| | - Adam C. Midgley
- State key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Sustainable Chemical TransformationsKey Laboratory of Bioactive Materials (Ministry of Education)Frontiers Science Center for Cell ResponsesCollege of Life SciencesNankai UniversityTianjin300071China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| | - Yongzhe Che
- School of MedicineNankai UniversityTianjin300071China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| | - Qiang Zhao
- State key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Sustainable Chemical TransformationsKey Laboratory of Bioactive Materials (Ministry of Education)Frontiers Science Center for Cell ResponsesCollege of Life SciencesNankai UniversityTianjin300071China
| |
Collapse
|
18
|
Dai Y, Chen D, Xu T. DNA Methylation Aberrant in Atherosclerosis. Front Pharmacol 2022; 13:815977. [PMID: 35308237 PMCID: PMC8927809 DOI: 10.3389/fphar.2022.815977] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis (AS) is a pathological process involving lipid oxidation, immune system activation, and endothelial dysfunction. The activated immune system could lead to inflammation and oxidative stress. Risk factors like aging and hyperhomocysteinemia also promote the progression of AS. Epigenetic modifications, including DNA methylation, histone modification, and non-coding RNA, are involved in the modulation of genes between the environment and AS formation. DNA methylation is one of the most important epigenetic mechanisms in the pathogenesis of AS. However, the relationship between the progression of AS and DNA methylation is not completely understood. This review will discuss the abnormal changes of DNA methylation in AS, including genome-wide hypermethylation dominating in AS with an increase of age, hypermethylation links with methyl supply and generating hyperhomocysteinemia, and the influence of oxidative stress with the demethylation process by interfering with the hydroxyl-methylation of TET proteins. The review will also summarize the current status of epigenetic treatment, which may provide new direction and potential therapeutic targets for AS.
Collapse
|
19
|
Crocin Improves Diabetes-Induced Oxidative Stress via Downregulating the Nox-4 in Myocardium of Diabetic Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:275-285. [PMID: 34981484 DOI: 10.1007/978-3-030-73234-9_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Oxidative stress has a crucial role in the pathophysiology of cardiac dysfunction in the diabetic milieu. Crocin is a natural compound that acts as an antioxidant which could potentially ameliorate oxidative damages in various tissues. The potential role of crocin in the myocardial tissue is not clear yet. This study was aimed to evaluate the possible antioxidative properties of crocin in the myocardium of diabetic rats. MATERIALS AND METHODS Male Wistar rats were randomly divided into four groups as normal, normal-treated, diabetic, and diabetic-treated. Diabetes was induced by a single intravenous injection of STZ (40 mg/kg). Two treated groups of animals (diabetic and non-diabetic) were treated with crocin daily for 8 weeks (40 mg/kg/IP). At the end of day 56, animals were sacrificed under deep anesthesia, and blood and tissue samples were collected. After tissue preparation, the level of nitrate, malondialdehyde, and glutathione and the activity of superoxide dismutase and catalase enzymes were measured via standard protocols. In addition, the level of Nox-4 mRNA expression was examined by RT-PCR method. The data were analyzed via one-way ANOVA, and P < 0.05 was considered as a significant difference. RESULTS Diabetes induces oxidative damages by upregulating the Nox-4 enzyme and increasing nitrate and malondialdehyde levels in the myocardium. Diabetes reduced the superoxide dismutase, catalase, and glutathione activities in the myocardial tissues. Treatment with crocin reversed these changes, reduced Nox-4 mRNA expression, and reduced the nitrate and malondialdehyde content in the myocardium of diabetic rats. CONCLUSION Diabetes induces oxidative stress in myocardium via the upregulating Nox-4 enzyme, and the treatment with crocin reversed these changes. Thus, crocin could be considered as a novel agent for potentially protecting myocardial tissues against diabetes-induced oxidative damages.
Collapse
|
20
|
Shariffi B, Dillon K, Gillum T, Boyer W, Sullivan S, Lee E, Kim JK. Effect of Combined Grape Seed Extract and L-Citrulline Supplementation on Hemodynamic Responses to Exercise in Young Males. J Diet Suppl 2022. [DOI: 10.1080/19390211.2021.2023246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Brian Shariffi
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Katherine Dillon
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Trevor Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - William Boyer
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Sean Sullivan
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Esther Lee
- Division of Natural and Mathematical Sciences, California Baptist University, Riverside, CA, USA
| | - Jong-Kyung Kim
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| |
Collapse
|
21
|
Sunderland K, Jiang J, Zhao F. Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. J Cell Physiol 2022; 237:278-300. [PMID: 34486114 PMCID: PMC8810685 DOI: 10.1002/jcp.30569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Aneurysms are malformations within the arterial vasculature brought on by the structural breakdown of the microarchitecture of the vessel wall, with aneurysms posing serious health risks in the event of their rupture. Blood flow within vessels is generally laminar with high, unidirectional wall shear stressors that modulate vascular endothelial cell functionality and regulate vascular smooth muscle cells. However, altered vascular geometry induced by bifurcations, significant curvature, stenosis, or clinical interventions can alter the flow, generating low stressor disturbed flow patterns. Disturbed flow is associated with altered cellular morphology, upregulated expression of proteins modulating inflammation, decreased regulation of vascular permeability, degraded extracellular matrix, and heightened cellular apoptosis. The understanding of the effects disturbed flow has on the cellular cascades which initiate aneurysms and promote their subsequent growth can further elucidate the nature of this complex pathology. This review summarizes the current knowledge about the disturbed flow and its relation to aneurysm pathology, the methods used to investigate these relations, as well as how such knowledge has impacted clinical treatment methodologies. This information can contribute to the understanding of the development, growth, and rupture of aneurysms and help develop novel research and aneurysmal treatment techniques.
Collapse
Affiliation(s)
- Kevin Sunderland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| |
Collapse
|
22
|
Kheirmandparizi M, Keshavarz P, Nowrouzi-Sohrabi P, Hosseini-Bensenjan M, Rezaei S, Kashani SMA, Zeidi N, Tabrizi R, Alkamel A. Effects of garlic extract on lipid profile in patients with coronary artery disease: A systematic review and meta-analysis of randomised clinical trials. Int J Clin Pract 2021; 75:e14974. [PMID: 34627133 DOI: 10.1111/ijcp.14974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
This meta-analysis was conducted to evaluate the effects of garlic extract on total cholesterol (TC), triglycerides (TG), low-density lipoprotein-cholesterol (LDL-c) and high-density lipoprotein-cholesterol (HDL-c), among the patients with coronary artery disease (CAD). Literature searches were conducted in EMBASE, Scopus, PubMed, Web of Science and Cochrane Library until Sep18th, 2020. Inter-study heterogeneity was examined using Cochrane's Q and I2 tests. The random-effect models were utilised to pool the weighted mean differences (WMDs) and the corresponding 95% confidence intervals (CIs). Six articles were enrolled in the current meta-analysis. Garlic consumption significantly reduced TC levels (WMD -16.32 mg/dL; 95% CI -31.22, -1.43; P = .032). We found no significant effects on TG (WMD -10.93 mg/dL; 95% CI -26.19, 4.32; P = .160), HDL-c (WMD 4.55 mg/dL; 95% CI -1.13, 10.23; P = .116) and LDL-c concentrations (WMD -3.65 mg/dL; 95% CI -13.21, 5.92; P = .455). Significant heterogeneity was observed for HDL-c (I2 = 76.8%). However, the findings of sensitivity analysis revealed that upon exclusion of the potential heterogeneity source, the pooled WMD on HDL-c levels were stable. Garlic supplementation may result in a decrease in TC, but will not affect TG, HDL-c and LDL-c levels among CAD patients.
Collapse
Affiliation(s)
| | - Pedram Keshavarz
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Peyman Nowrouzi-Sohrabi
- Department of Biochemistry, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Shahla Rezaei
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nazanin Zeidi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Clinical Research Development Unit, Vali Asr Hospital, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
23
|
Kemp-Harper B. Vasoprotective Actions of Nitroxyl (HNO): A Story of Sibling Rivalry. J Cardiovasc Pharmacol 2021; 78:S13-S18. [PMID: 34840263 DOI: 10.1097/fjc.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Nitroxyl (HNO), the 1 electron-reduced and protonated form of nitric oxide (NO•), has emerged as a nitrogen oxide with a suite of vasoprotective properties and therapeutic advantages over its redox sibling. Although HNO has garnered much attention due to its cardioprotective actions in heart failure, its ability to modulate vascular function, without the limitations of tolerance development and NO• resistance, is desirable in the treatment of vascular disease. HNO serves as a potent vasodilator and antiaggregatory agent and has an ability to limit vascular inflammation and reactive oxygen species generation. In addition, its resistance to scavenging by reactive oxygen species and ability to target distinct vascular signaling pathways (Kv, KATP, and calcitonin gene-related peptide) contribute to its preserved efficacy in hypertension, diabetes, and hypercholesterolemia. In this review, the vasoprotective actions of HNO will be compared with those of NO•, and the therapeutic utility of HNO donors in the treatment of angina, acute cardiovascular emergencies, and chronic vascular disease are discussed.
Collapse
Affiliation(s)
- Barbara Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Muniz Carvalho E, Silva Sousa EH, Bernardes‐Génisson V, Gonzaga de França Lopes L. When NO
.
Is not Enough: Chemical Systems, Advances and Challenges in the Development of NO
.
and HNO Donors for Old and Current Medical Issues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edinilton Muniz Carvalho
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Eduardo Henrique Silva Sousa
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| | - Vania Bernardes‐Génisson
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Luiz Gonzaga de França Lopes
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| |
Collapse
|
25
|
Dent MR, DeMartino AW, Tejero J, Gladwin MT. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Inorg Chem 2021; 60:15918-15940. [PMID: 34313417 PMCID: PMC9167621 DOI: 10.1021/acs.inorgchem.1c01048] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interdisciplinary research at the interface of chemistry, physiology, and biomedicine have uncovered pivotal roles of nitric oxide (NO) as a signaling molecule that regulates vascular tone, platelet aggregation, and other pathways relevant to human health and disease. Heme is central to physiological NO signaling, serving as the active site for canonical NO biosynthesis in nitric oxide synthase (NOS) enzymes and as the highly selective NO binding site in the soluble guanylyl cyclase receptor. Outside of the primary NOS-dependent biosynthetic pathway, other hemoproteins, including hemoglobin and myoglobin, generate NO via the reduction of nitrite. This auxiliary hemoprotein reaction unlocks a "second axis" of NO signaling in which nitrite serves as a stable NO reservoir. In this Forum Article, we highlight these NO-dependent physiological pathways and examine complex chemical and biochemical reactions that govern NO and nitrite signaling in vivo. We focus on hemoprotein-dependent reaction pathways that generate and consume NO in the presence of nitrite and consider intermediate nitrogen oxides, including NO2, N2O3, and S-nitrosothiols, that may facilitate nitrite-based signaling in blood vessels and tissues. We also discuss emergent therapeutic strategies that leverage our understanding of these key reaction pathways to target NO signaling and treat a wide range of diseases.
Collapse
Affiliation(s)
- Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
26
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble Guanylate Cyclase Stimulators and Activators. Handb Exp Pharmacol 2021; 264:355-394. [PMID: 30689085 DOI: 10.1007/164_2018_197] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When Furchgott, Murad, and Ignarro were honored with the Nobel prize for the identification of nitric oxide (NO) in 1998, the therapeutic implications of this discovery could not be fully anticipated. This was due to the fact that available therapeutics like NO donors did not allow a constant and long-lasting cyclic guanylyl monophosphate (cGMP) stimulation and had a narrow therapeutic window. Now, 20 years later, the stimulator of soluble guanylate cyclase (sGC), riociguat, is on the market and is the only drug approved for the treatment of two forms of pulmonary hypertension (PAH/CTEPH), and a variety of other sGC stimulators and sGC activators are in preclinical and clinical development for additional indications. The discovery of sGC stimulators and sGC activators is a milestone in the field of NO/sGC/cGMP pharmacology. The sGC stimulators and sGC activators bind directly to reduced, heme-containing and oxidized, heme-free sGC, respectively, which results in an increase in cGMP production. The action of sGC stimulators at the heme-containing enzyme is independent of NO but is enhanced in the presence of NO whereas the sGC activators interact with the heme-free form of sGC. These highly innovative pharmacological principles of sGC stimulation and activation seem to have a very broad therapeutic potential. Therefore, in both academia and industry, intensive research and development efforts have been undertaken to fully exploit the therapeutic benefit of these new compound classes. Here we summarize the discovery of sGC stimulators and sGC activators and the current developments in both compound classes, including the mode of action, the chemical structures, and the genesis of the terminology and nomenclature. In addition, preclinical studies exploring multiple aspects of their in vitro, ex vivo, and in vivo pharmacology are reviewed, providing an overview of multiple potential applications. Finally, the clinical developments, investigating the treatment potential of these compounds in various diseases like heart failure, diabetic kidney disease, fibrotic diseases, and hypertension, are reported. In summary, sGC stimulators and sGC activators have a unique mode of action with a broad treatment potential in cardiovascular diseases and beyond.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany. .,Department of Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | - Markus Follmann
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany
| | - Adrian Hobbs
- Barts and the London School of Medicine and Dentistry QMUL, London, UK
| | - Johannes-Peter Stasch
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany.,Institute of Pharmacy, University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
28
|
Koodalingam A, Rajalakshmi A, Parthiban E. Cytotoxicity and anti-inflammatory effects of polyherbal formulations, Joint Pain Spl and Rumalaya Forte on lipopolysaccharide induced inflammation in IC-21 macrophages. Antiinflamm Antiallergy Agents Med Chem 2021; 20:290-301. [PMID: 33397275 DOI: 10.2174/1871523019999210104203252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
AIM To test the effectiveness of marketed polyherbal formulations on lipopolysaccharide induced inflammatory conditions in macrophages. BACKGROUND Usage of herbal compounds among patients suffered by arthritis and cancer is increasing every year. Many anti-inflammatory herbal products available in the market should be screened thoroughly for their possible mechanism of action. OBJECTIVE Joint Pain Spl (JPS) is a polyherbal dietary food supplement composed of 13 herbal plants and Rumalaya Forte (RF) is a polyherbal formulation comprising of 6 herbal plants were tested for its cytotoxicity, as well as antioxidant and anti-inflammatory activity in LPS treated IC-21 peritoneal macrophages. METHODS Commercially available JPS and RF powder was used to prepare the extract. The aqueous and methanol extracts were quantified for the presence of phenolic and flavonoid compound and confirmed with HPLC. In vitro DPPH free scavenging activity was performed. Cytotoxicity was tested by MTT assay. Anti-inflammatory activity was tested using lipopolysaccharide stimulated IC-21 peritoneal macrophage cells. RESULTS The phytochemical screening showed the presence of phenolic and flavonoid compounds in JPS and RF. The aqueous and methanol extracts of JPS and RF possesses significant DPPH free radical scavenging activity. MTT assay revealed that 90.64% (aqueous extract) and 92.21% (methanol extract) of exposed macrophages are viable even after 24h exposure of maximal tested concentrations of herbal formulations. Pre-treatment of JPS and RF on LPS induced IC-21 macrophages showed an reduction in nitric oxide production (maximal 79.95%) and high level of superoxide anion scavenging activity (maximal 82.5%) over control. CONCLUSION The two tested poly herbal formulations such as JPS and RF possesses anti-inflammatory activity by modulating free radical generation in IC-21 macrophages. Thus the presence of the phenolic and flavonoid compounds may contribute to the antioxidant activity.
Collapse
Affiliation(s)
- Arunagirinathan Koodalingam
- PG & Research Department of Zoology, Sir Theagaraya College, Old Washermenpet, Chennai - 600 021, Tamilnadu,. India
| | - Arumugam Rajalakshmi
- Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram- 631 561, Tamilnadu,. India
| | - Ezhumalai Parthiban
- Department of Zoology, University of Madras, Guindy Campus, Chennai - 600 025,. India
| |
Collapse
|
29
|
Shi Y, Yang W, Tang X, Yan Q, Cai X, Wu F. Keshan Disease: A Potentially Fatal Endemic Cardiomyopathy in Remote Mountains of China. Front Pediatr 2021; 9:576916. [PMID: 33768083 PMCID: PMC7985175 DOI: 10.3389/fped.2021.576916] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Keshan disease (KD) as an endemic, highly lethal cardiomyopathy, first reported in northeast China's Keshan County in 1935. The clinical manifestations of patients with KD include primarily congestive heart failure, acute heart failure, and cardiac arrhythmia. Even though some possible etiologies, such as viral infection, fungal infection, microelement deficiency, and malnutrition, have been reported, the exact causes of KD remain poorly known. The endemic areas where KD is found are remote and rural, and many are poor and mountainous places where people are the most socioeconomically disadvantaged in terms of housing, income, education, transportation, and utilization of health services. To date, KD is a huge burden to and severely restricts the economic development of the local residents and health systems of the endemic areas. Although efforts have been made by the government to control, treat, and interrupt disease transmission, the cure for or complete eradication of KD still requires global attention. For this reason, in this review, we systematically describe the etiological hypothesis, clinical manifestations, incidence characteristics, and treatment of KD, to facilitate the better understanding of and draw more attention to this non-representative cardiovascular disease, with the aim of accelerating its elimination.
Collapse
Affiliation(s)
- Ying Shi
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Wei Yang
- Department of Physical Examination, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Xianwen Tang
- Department of Cardiovascular Medicine, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Quanhao Yan
- Department of Cardiovascular Medicine, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Xiaojing Cai
- Department of Cardiovascular Medicine, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Fenfang Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
30
|
Phosphodiesterase 5 (PDE5): Structure-function regulation and therapeutic applications of inhibitors. Biomed Pharmacother 2020; 134:111128. [PMID: 33348311 DOI: 10.1016/j.biopha.2020.111128] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Phosphodiesterase 5 (PDE5) is one of the most well-studied phosphodiesterases (PDEs) that specifically targets cGMP typically generated by nitric oxide (NO)-mediated activation of the soluble guanylyl cyclase. Given the crucial role of cGMP generated through the activation of this cellular signaling pathway in a variety of physiologically processes, pharmacological inhibition of PDE5 has been demonstrated to have several therapeutic applications including erectile dysfunction and pulmonary arterial hypertension. While they are designed to inhibit PDE5, the inhibitors show different affinities and specificities against all PDE subtypes. Additionally, they have been shown to induce allosteric structural changes in the protein. These are mostly attributed to their chemical structure and, therefore, binding interactions with PDE catalytic domains. Therefore, understanding how these inhibitors interact with PDE5 and the structural basis of their selectivity is critically important for the design of novel, highly selective PDE5 inhibitors. Here, we review the structure of PDE5, how its function is regulated, and discuss the clinically available inhibitors that target phosphodiesterase 5, aiming to better understand the structural bases of their affinity and specificity. We also discuss the therapeutic indications of these inhibitors and the potential of repurposing for a wider range of clinical applications.
Collapse
|
31
|
Nox1/4 inhibition exacerbates age dependent perivascular inflammation and fibrosis in a model of spontaneous hypertension. Pharmacol Res 2020; 161:105235. [PMID: 33131726 PMCID: PMC8316606 DOI: 10.1016/j.phrs.2020.105235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Hypertension is associated with oxidative stress and perivascular inflammation, critical contributors to perivascular fibrosis and accelerated vascular ageing. Oxidative stress can promote vascular inflammation, creating options for potential use of NADPH oxidase inhibitors in pharmacological targeting of perivascular inflammation and its consequences. Accordingly, we characterized age-related changes in oxidative stress and immune cell infiltration in normotensive (WKY) and spontaneously hypertensive rats (SHRs). Subsequently, we used pharmacological inhibitors of Nox1 (ML171) and Nox1/Nox4 (GKT137831; 60 mg/kg), to modulate NADPH oxidase activity at the early stage of spontaneous hypertension and investigated their effects on perivascular inflammation and fibrosis. Results Ageing was associated with a progressive increase of blood pressure as well as an elevation of the total number of leukocytes, macrophages and NK cells infiltrating perivascular adipose tissue (PVAT) in SHRs but not in WKY. At 1 month of age, when blood pressure was not yet different, only perivascular NK cells were significantly higher in SHR. Spontaneous hypertension was also accompanied by the higher perivascular T cell accumulation, although this increase was age independent. Aortic Nox1 and Nox2 mRNA expression increased with age only in SHR but not in WKY, while age-related increase of Nox4 mRNA in the vessels has been observed in both groups, it was more pronounced in SHRs. At early stage of hypertension (3-months) the most pronounced differences were observed in Nox1 and Nox4. Surprisingly, GKT137831, dual inhibitor of Nox1/4, therapy increased both blood pressure and perivascular macrophage infiltration. Mechanistically, this was linked to increased expression of proinflammatory chemokines expression (CCL2 and CCL5) in PVAT. This inflammatory response translated to increased perivascular fibrosis. This effect was likely Nox4 dependent as the Nox1 inhibitor ML171 did not affect the development of spontaneous hypertension, perivascular macrophage accumulation, chemokine expression nor adventitial collagen deposition. In summary, spontaneous hypertension promotes ageing-associated perivascular inflammation which is exacerbated by Nox4 but not Nox1 pharmacological inhibition.
Collapse
|
32
|
Sun HJ, Wu ZY, Cao L, Zhu MY, Nie XW, Huang DJ, Sun MT, Bian JS. Role of nitroxyl (HNO) in cardiovascular system: From biochemistry to pharmacology. Pharmacol Res 2020; 159:104961. [DOI: 10.1016/j.phrs.2020.104961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
|
33
|
Cardiovascular Therapeutic Potential of the Redox Siblings, Nitric Oxide (NO•) and Nitroxyl (HNO), in the Setting of Reactive Oxygen Species Dysregulation. Handb Exp Pharmacol 2020; 264:311-337. [PMID: 32813078 DOI: 10.1007/164_2020_389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) dysregulation is a hallmark of cardiovascular disease, characterised by an imbalance in the synthesis and removal of ROS. ROS such as superoxide (•O2-), hydrogen peroxide (H2O2), hydroxyl (OH•) and peroxynitrite (ONOO-) have a marked impact on cardiovascular function, contributing to the vascular impairment and cardiac dysfunction associated with diseases such as angina, hypertension, diabetes and heart failure. Central to the vascular dysfunction is a reduction in bioavailability and/or physiological effects of vasoprotective nitric oxide (NO•), leading to vasoconstriction, inflammation and vascular remodelling. In a cardiac context, increased ROS generation can also lead to modification of key proteins involved in cardiac contractility. Whilst playing a key role in the pathogenesis of cardiovascular disease, ROS dysregulation also limits the clinical efficacy of current therapies, such as nitrosovasodilators. As such, alternate therapies are sought. This review will discuss the impact of ROS dysregulation on the therapeutic utility of NO• and its redox sibling, nitroxyl (HNO). Both nitric oxide (NO) and nitroxyl (HNO) donors signal through soluble guanylyl cyclase (sGC). NO binds to the Fe(II) form of sGC and nitroxyl possibly to both sGC heme and thiol groups. In the vasculature, nitroxyl can also signal through voltage-dependent (Kv) and ATP-sensitive (KATP) K+ channels as well as calcitonin gene-related peptide (CGRP). In the heart, HNO directly targets critical thiols to increase myocardial contractility, an effect not seen with NO. The qualitative effects via elevation of cGMP are similar, i.e. lusitropic in the heart and inhibitory on vasoconstriction, inflammation, aggregation and vascular remodelling. Of pathophysiological significance is the fact the efficacy of NO donors is impaired by ROS, e.g. through chemical scavenging of NO, to generate reactive nitrogen oxide species (RNOS), whilst nitroxyl is apparently not.
Collapse
|
34
|
Pechanova O, Dayar E, Cebova M. Therapeutic Potential of Polyphenols-Loaded Polymeric Nanoparticles in Cardiovascular System. Molecules 2020; 25:molecules25153322. [PMID: 32707934 PMCID: PMC7435870 DOI: 10.3390/molecules25153322] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous studies document an increased production of reactive oxygen species (ROS) with a subsequent decrease in nitric oxide (NO) bioavailability in different cardiovascular diseases, including hypertension, atherosclerosis, and heart failure. Many natural polyphenols have been demonstrated to decrease ROS generation and/or to induce the endogenous antioxidant enzymatic defense system. Moreover, different polyphenolic compounds have the ability to increase the activity/expression of endothelial nitric oxide synthase (eNOS) with a subsequent enhancement of NO generation. However, as a result of low absorption and bioavailability of natural polyphenols, the beneficial effects of these substances are very limited. Recent progress in delivering polyphenols to the targeted tissues revealed new possibilities for the use of polymeric nanoparticles in increasing the efficiency and reducing the degradability of natural polyphenols. This review focuses on the effects of different natural polyphenolic substances, especially resveratrol, quercetin, curcumin, and cherry extracts, and their ability to bind to polymeric nanoparticles, and summarizes the effects of polyphenol-loaded nanoparticles, mainly in the cardiovascular system.
Collapse
|
35
|
Kitagawa A, Kizub I, Jacob C, Michael K, D'Alessandro A, Reisz JA, Grzybowski M, Geurts AM, Rocic P, Gupte R, Miano JM, Gupte SA. CRISPR-Mediated Single Nucleotide Polymorphism Modeling in Rats Reveals Insight Into Reduced Cardiovascular Risk Associated With Mediterranean G6PD Variant. Hypertension 2020; 76:523-532. [PMID: 32507041 DOI: 10.1161/hypertensionaha.120.14772] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidemiological studies suggest that individuals in the Mediterranean region with a loss-of-function, nonsynonymous single nucleotide polymorphism (S188F), in glucose-6-phosphate dehydrogenase (G6pd) are less susceptible to vascular diseases. However, this association has not yet been experimentally proven. Here, we set out to determine whether the Mediterranean mutation confers protection from vascular diseases and to discover the underlying protective mechanism. We generated a rat model with the Mediterranean single nucleotide polymorphism (G6PDS188F) using CRISPR-Cas9 genome editing. In rats carrying the mutation, G6PD activity, but not expression, was reduced to 20% of wild-type (WT) littermates. Additionally, unbiased metabolomics analysis revealed that the pentose phosphate pathway and other ancillary metabolic pathways connected to the pentose phosphate pathway were reduced (P<0.05) in the arteries of G6PDS188F versus WT rats. Intriguingly, G6PDS188F mutants, as compared with WT rats, developed less large arterial stiffness and hypertension evoked by high-fat diet and nitric oxide synthase inhibition with L-NG-nitroarginine methyl ester. Intravenous injection of a voltage-gated L-type Ca2+ channel agonist (methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate; Bay K8644) acutely increased blood pressure in WT but not in G6PDS188F rats. Finally, our results suggested that (1) lower resting membrane potential of smooth muscle caused by increased expression of K+ channel proteins and (2) decreased voltage-gated Ca2+ channel activity in smooth muscle contributed to reduced hypertension and arterial stiffness evoked by L-NG-nitroarginine methyl ester and high-fat diet to G6PDS188F mutants as compared with WT rats. In summary, a mutation resulting in the replacement of a single amino acid (S188F) in G6PD, the rate-limiting enzyme in the pentose phosphate pathway, ascribed properties to the vascular smooth muscle that shields the organism from risk factors associated with vascular diseases.
Collapse
Affiliation(s)
- Atsushi Kitagawa
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Igor Kizub
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Christina Jacob
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Kevin Michael
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora (A.D., J.A.R.)
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora (A.D., J.A.R.)
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee (M.G., A.M.G.)
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee (M.G., A.M.G.)
| | - Petra Rocic
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | | | - Joseph M Miano
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University (J.M.M.)
| | - Sachin A Gupte
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| |
Collapse
|
36
|
Yan K, Zhang Y, Mu C, Xu Q, Jing X, Wang D, Dang D, Meng L, Ma J. Versatile Nanoplatforms with enhanced Photodynamic Therapy: Designs and Applications. Theranostics 2020; 10:7287-7318. [PMID: 32641993 PMCID: PMC7330854 DOI: 10.7150/thno.46288] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
As an emerging antitumor strategy, photodynamic therapy (PDT) has attracted intensive attention for the treatment of various malignant tumors owing to its noninvasive nature and high spatial selectivity in recent years. However, the therapeutic effect is unsatisfactory on some occasions due to the presence of some unfavorable factors including nonspecific accumulation of PS towards malignant tissues, the lack of endogenous oxygen in tumors, as well as the limited light penetration depth, further hampering practical application. To circumvent these limitations and improve real utilization efficiency, various enhanced strategies have been developed and explored during the past years. In this review, we give an overview of the state-of-the-art advances progress on versatile nanoplatforms for enhanced PDT considering the enhancement from targeting or responsive, chemical and physical effect. Specifically, these effects mainly include organelle-targeting function, tumor microenvironment responsive release photosensitizers (PS), self-sufficient O2 (affinity oxygen and generating oxygen), photocatalytic water splitting, X-rays light stimulate, surface plasmon resonance enhancement, and the improvement by resonance energy transfer. When utilizing these strategies to improve the therapeutic effect, the advantages and limitations are addressed. Finally, the challenges and prospective will be discussed and demonstrated for the future development of advanced PDT with enhanced efficacy.
Collapse
Affiliation(s)
- Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yabin Zhang
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chenglong Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qunna Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xunan Jing
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Daquan Wang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Dongfeng Dang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lingjie Meng
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
37
|
Velagic A, Qin C, Woodman OL, Horowitz JD, Ritchie RH, Kemp-Harper BK. Nitroxyl: A Novel Strategy to Circumvent Diabetes Associated Impairments in Nitric Oxide Signaling. Front Pharmacol 2020; 11:727. [PMID: 32508651 PMCID: PMC7248192 DOI: 10.3389/fphar.2020.00727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes is associated with an increased mortality risk due to cardiovascular complications. Hyperglycemia-induced oxidative stress underlies these complications, leading to an impairment in endogenous nitric oxide (NO•) generation, together with reductions in NO• bioavailability and NO• responsiveness in the vasculature, platelets and myocardium. The latter impairment of responsiveness to NO•, termed NO• resistance, compromises the ability of traditional NO•-based therapeutics to improve hemodynamic status during diabetes-associated cardiovascular emergencies, such as acute myocardial infarction. Whilst a number of agents can ameliorate (e.g. angiotensin converting enzyme [ACE] inhibitors, perhexiline, statins and insulin) or circumvent (e.g. nitrite and sGC activators) NO• resistance, nitroxyl (HNO) donors offer a novel opportunity to circumvent NO• resistance in diabetes. With a suite of vasoprotective properties and an ability to enhance cardiac inotropic and lusitropic responses, coupled with preserved efficacy in the setting of oxidative stress, HNO donors have intact therapeutic potential in the face of diminished NO• signaling. This review explores the major mechanisms by which hyperglycemia-induced oxidative stress drives NO• resistance, and the therapeutic potential of HNO donors to circumvent this to treat cardiovascular complications in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Anida Velagic
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Chengxue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Owen L. Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - John D. Horowitz
- Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Barbara K. Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Moosavian SP, Arab A, Paknahad Z, Moradi S. The effects of garlic supplementation on oxidative stress markers: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2020; 50:102385. [DOI: 10.1016/j.ctim.2020.102385] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/23/2020] [Accepted: 03/16/2020] [Indexed: 01/23/2023] Open
|
39
|
Giri B, Kumbhakar S, Kalai Selvan K, Muley A, Maji S. Formation, reactivity, photorelease, and scavenging of NO in ruthenium nitrosyl complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119360] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Sun HJ, Lee WT, Leng B, Wu ZY, Yang Y, Bian JS. Nitroxyl as a Potential Theranostic in the Cancer Arena. Antioxid Redox Signal 2020; 32:331-349. [PMID: 31617376 DOI: 10.1089/ars.2019.7904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: As one-electron reduced molecule of nitric oxide (NO), nitroxyl (HNO) has gained enormous attention because of its novel physiological or pharmacological properties, ranging from cardiovascular protective actions to antitumoricidal effects. Recent Advances: HNO is emerging as a new entity with therapeutic advantages over its redox sibling, NO. The interests in the chemical, pharmacological, and biological characteristics of HNO have broadened our current understanding of its role in physiology and pathophysiology. Critical Issues: In particular, the experimental evidence suggests the therapeutic potential of HNO in tumor pharmacology, such as neuroblastoma, gastrointestinal tumor, ovarian, lung, and breast cancers. Indeed, HNO donors have been demonstrated to attenuate tumor proliferation and angiogenesis. Future Directions: In this review, the generation and detection of HNO are outlined, and the roles of HNO in cancer progression are further discussed. We anticipate that the completion of this review might give novel insights into the roles of HNO in cancer pharmacology and open up a novel field of cancer therapy based on HNO.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bin Leng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
41
|
Joutel A. Prospects for Diminishing the Impact of Nonamyloid Small-Vessel Diseases of the Brain. Annu Rev Pharmacol Toxicol 2020; 60:437-456. [PMID: 31425001 DOI: 10.1146/annurev-pharmtox-010818-021712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small-vessel diseases (SVDs) of the brain are involved in about one-fourth of ischemic strokes and a vast majority of intracerebral hemorrhages and are responsible for nearly half of dementia cases in the elderly. SVDs are a heavy burden for society, a burden that is expected to increase further in the absence of significant therapeutic advances, given the aging population. Here, we provide a critical appraisal of currently available therapeutic approaches for nonamyloid sporadic SVDs that are largely based on targeting modifiable risk factors. We review what is known about the pathogenic mechanisms of vascular risk factor-related SVDs and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most frequent hereditary SVD, and elaborate on two mechanism-based therapeutic approaches worth exploring in sporadic SVD and CADASIL. We conclude by discussing opportunities and challenges that need to be tackled if efforts to achieve significant therapeutic advances for these diseases are to be successful.
Collapse
Affiliation(s)
- Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris, INSERM UMR1266, Paris Descartes University, 75014 Paris, France; .,DHU NeuroVasc, Sorbonne Paris Cité, 75010 Paris, France.,Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
42
|
Qin CX, Anthonisz J, Leo CH, Kahlberg N, Velagic A, Li M, Jap E, Woodman OL, Parry LJ, Horowitz JD, Kemp-Harper BK, Ritchie RH. Nitric Oxide Resistance, Induced in the Myocardium by Diabetes, Is Circumvented by the Nitric Oxide Redox Sibling, Nitroxyl. Antioxid Redox Signal 2020; 32:60-77. [PMID: 31680536 DOI: 10.1089/ars.2018.7706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim: Impairment of tissue responsiveness to exogenous and endogenous nitric oxide (NO•), known as NO• resistance, occurs in many cardiovascular disease states, prominently in diabetes and especially in the presence of marked hyperglycemia. In this study, we sought to determine in moderate and severe diabetes (i) whether NO• resistance also occurs in the myocardium, and (ii) whether the NO• redox sibling nitroxyl (HNO) circumvents this. Results: The spectrum of acute NO• effects (induced by diethylamine-NONOate), including vasodilation, and enhanced myocardial contraction and relaxation were impaired by moderately diabetic rats ([blood glucose] ∼20 mM). In contrast, acute HNO effects (induced by isopropylamine-NONOate) were preserved even in more severe diabetes ([blood glucose] >28 mM). Intriguingly, the positive inotropic effects of HNO were significantly enhanced in diabetic rat hearts. Further, progressive attenuation of soluble guanylyl cyclase (sGC) contribution to myocardial NO• responses occurred with increasing severity of diabetes. Nevertheless, activation of sGC by HNO remained intact in the myocardium. Innovation: Diabetes is associated with marked attenuation of vascular and myocardial effects of NO and NO donors, and this NO• resistance is circumvented by HNO, suggesting potential therapeutic utility for HNO donors in cardiovascular emergencies in diabetics. Conclusion: These results provide the first evidence that NO• resistance occurs in diabetic hearts, and that HNO largely circumvents this problem. Further, the positive inotropic and lusitropic effects of HNO are enhanced in a severely diabetic myocardium, a finding that warrants further mechanistic interrogation. The results support a potential role for therapeutic HNO administration in acute treatment of ischemia and/or heart failure in diabetics.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| | - Jarryd Anthonisz
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| | - Chen Huei Leo
- School of Biosciences, University of Melbourne, Parkville, Australia.,Science and Maths Cluster, Singapore University of Technology & Design, Singapore Singapore
| | - Nicola Kahlberg
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - Anida Velagic
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - Edwina Jap
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - Owen L Woodman
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia
| | - Laura J Parry
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - John D Horowitz
- Cardiology Unit, The Queen Elizabeth Hospital, Basil Hetzel Institute, The University of Adelaide, Woodville SA, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia.,Department of Medicine (Central Clinical School), Monash University, Melbourne, Australia
| |
Collapse
|
43
|
Huo KG, Richer C, Berillo O, Mahjoub N, Fraulob-Aquino JC, Barhoumi T, Ouerd S, Coelho SC, Sinnett D, Paradis P, Schiffrin EL. miR-431-5p Knockdown Protects Against Angiotensin II-Induced Hypertension and Vascular Injury. Hypertension 2019; 73:1007-1017. [PMID: 30929512 DOI: 10.1161/hypertensionaha.119.12619] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vascular injury is an early manifestation in hypertension and a cause of end-organ damage. MicroRNAs play an important role in cardiovascular disease, but their implication in vascular injury in hypertension remains unclear. This study revealed using an unbiased approach, microRNA and mRNA sequencing with molecular interaction analysis, a microRNA-transcription factor coregulatory network involved in vascular injury in mice made hypertensive by 14-day Ang II (angiotensin II) infusion. A candidate gene approach identified upregulated miR-431-5p encoded in the conserved 12qF1 (14q32 in humans) microRNA cluster, whose expression correlated with blood pressure, and which has been shown to be upregulated in human atherosclerosis, as a potential key regulator in Ang II-induced vascular injury. Gain- and loss-of-function in human vascular smooth muscle cells demonstrated that miR-431-5p regulates in part gene expression by targeting ETS homologous factor. In vivo miR-431-5p knockdown delayed Ang II-induced blood pressure elevation and reduced vascular injury in mice, which demonstrated its potential as a target for treatment of hypertension and vascular injury.
Collapse
Affiliation(s)
- Ku-Geng Huo
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Chantal Richer
- Division of Hematology-Oncology, Research Center, Centre Hospitalier Universitaire Sainte-Justine (C.R., D.S.), Université de Montréal, Montreal, Quebec, Canada
| | - Olga Berillo
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Nada Mahjoub
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Julio C Fraulob-Aquino
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Tlili Barhoumi
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Sofiane Ouerd
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Suellen C Coelho
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Daniel Sinnett
- Division of Hematology-Oncology, Research Center, Centre Hospitalier Universitaire Sainte-Justine (C.R., D.S.), Université de Montréal, Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine (D.S.), Université de Montréal, Montreal, Quebec, Canada
| | - Pierre Paradis
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Ernesto L Schiffrin
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Azizi M, Rossignol P, Hulot JS. Emerging Drug Classes and Their Potential Use in Hypertension. Hypertension 2019; 74:1075-1083. [DOI: 10.1161/hypertensionaha.119.12676] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the availability of multiple antihypertensive drugs targeting the different pathways implicated in its pathophysiology, hypertension remains poorly controlled worldwide, and its prevalence is increasing because of the aging of the population and the obesity epidemic. Although nonadherence to treatment contributes to uncontrolled hypertension, it is likely that not all the pathophysiological mechanisms are neutralized by the various classes of antihypertensive treatment currently available, and, the counter-regulatory mechanisms triggered by these treatments may decrease their blood pressure–lowering effect. The development of new antihypertensive drugs acting on new targets, with different modes of action, therefore, remains essential, to improve blood pressure control and reduce the residual burden of cardiovascular risks further. However, the difficulties encountered in the conception, development, costs, and delivery to the market of new classes of antihypertensive agents highlights the hurdles that must be overcome to release and to evaluate their long-term safety and efficacy for hypertension only, especially because of the market pressure of cheap generic drugs. New chemical entities with blood pressure–lowering efficacy are thus being developed more for heart failure or diabetic kidney disease, 2 diseases pathophysiologically associated with hypertension. These include dual angiotensin II receptor-neprilysin inhibitors, soluble guanylate cyclase stimulators, nonsteroidal dihydropyridine-based mineralocorticoid receptor antagonists, as well as sodium-glucose cotransporter 2 inhibitors. However, centrally acting aminopeptidase A inhibitors and endothelin receptor antagonists have a dedicated program of development for hypertension. All these emergent drug classes and their potential use in hypertension are reviewed here.
Collapse
Affiliation(s)
- Michel Azizi
- From the Université de Paris, CIC1418, INSERM, F-75015 Paris, France (M.A., J.-S.H.)
- Hypertension unit and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France (M.A.)
- F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Paris, France (M.A., J.-S.H.)
| | - Patrick Rossignol
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques-Plurithématique 1433, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France (P.R.)
| | - Jean-Sébastien Hulot
- From the Université de Paris, CIC1418, INSERM, F-75015 Paris, France (M.A., J.-S.H.)
- F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Paris, France (M.A., J.-S.H.)
- Université de Paris, PARCC, INSERM, F-75015 Paris, France (J.-S.H.)
| |
Collapse
|
45
|
Wang Y, Chen Q, Shi C, Jiao F, Gong Z. Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress. Mol Med Rep 2019; 20:4081-4090. [PMID: 31545489 PMCID: PMC6797988 DOI: 10.3892/mmr.2019.10660] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the anti‑ferroptosis effects of the HMGB1 inhibitor glycyrrhizin (GLY). The present study used a cell and animal model of acute liver failure (ALF), induced using tumor necrosis factor‑α, lipopolysaccharide and D‑galactosamine, to investigate the effects of GLY. The expression of glutathione peroxidase 4 (GPX4) and high mobility group protein B1 (HMGB1), heme oxygenase‑1 (HO‑1) and nuclear factor erythroid 2‑related factor 2 (Nrf2) were detected were detected by western blotting in L02 hepatocytes and mouse liver. The expression of GPX4 and HMGB1 in L02 hepatocytes and mouse liver was detected by immunofluorescence. The pathological changes to liver tissues were determined by hematoxylin and eosin staining. The levels of lactate dehydrogenase (LDH), Fe2+, reactive oxygen species (ROS) and glutathione (GSH) were tested using kits. Compared with the normal group, the degree of liver damage and liver function in the model animal group was severe. The protein levels of HMGB1 in L02 cells and liver tissues were significantly increased. The expression of NRF2, HO‑1 and GPX4 was significantly decreased. The levels of LDH, Fe2+, malondialdehyde (MDA) and ROS were increased, whereas the level of GSH was decreased. Treatment with GLY reduced the degree of liver damage, the expression of HMGB1 was decreased, and the levels of Nrf2, HO‑1 and GPX4 were increased. The levels of LDH, Fe2+, MDA, ROS were decreased, while the level of GSH was increased by GLY treatment. The results of the present study indicated that HMGB1 is involved in the process of ferroptosis. The HMGB1 inhibitor GLY significantly reduced the degree of ferroptosis during ALF by inhibiting oxidative stress.
Collapse
Affiliation(s)
- Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fangzhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
46
|
Maeda M, Tsuboi T, Hayashi T. An Inhibitor of Activated Blood Coagulation Factor X Shows Anti-Endothelial Senescence and Anti-Atherosclerotic Effects. J Vasc Res 2019; 56:181-190. [DOI: 10.1159/000499975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/28/2019] [Indexed: 11/19/2022] Open
|
47
|
Fang J, Sureda A, Silva AS, Khan F, Xu S, Nabavi SM. Trends of tea in cardiovascular health and disease: A critical review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Scorsatto M, Rosa G, Raggio Luiz R, da Rocha Pinheiro Mulder A, Junger Teodoro A, Moraes de Oliveira GM. Effect of Eggplant Flour (
Solanum melongena
L.) associated with hypoenergetic diet on antioxidant status in overweight women ‐ a randomised clinical trial. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mauara Scorsatto
- Department of Medicine Federal University of Rio de Janeiro Rio de Janeiro 22430‐210 Brazil
| | - Glorimar Rosa
- Josué de Castro Nutrition Institute Federal University of Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
| | - Ronir Raggio Luiz
- Institute for Collective Health Studies Federal University of Rio de Janeiro Rio de Janeiro 21941‐598 Brazil
| | | | - Anderson Junger Teodoro
- Nutrition Biochemistry Core Laboratory of Functional Foods Federal University of the State of Rio de Janeiro Rio de Janeiro 22290?240 Brazil
| | | |
Collapse
|
49
|
Guo J, Wang J, Feng J. Aspirin resistance mediated by oxidative stress-induced 8-Isoprostaglandin F2. J Clin Pharm Ther 2019; 44:823-828. [PMID: 30989683 DOI: 10.1111/jcpt.12838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Aspirin resistance refers to a patient's poor response to aspirin. There are many factors that can contribute to aspirin resistance, including single-nucleotide polymorphisms, medication compliance, drug-drug interactions and inflammation. COMMENT Recently, oxidative stress-induced 8-isoprostaglandin F2α has attracted considerable attention because it is considered as a mechanism of aspirin resistance in many diseases, including coronary artery disease, neurology system disease, metabolic syndrome, cancer, chronic obstructive pulmonary disease and chronic kidney disease. In these diseases, increased oxidative stress may promote platelet activation and reduce the efficacy of aspirin by producing excessive amounts of 8-isoprostaglandin F2α. WHAT IS NEW AND CONCLUSION Given the wide clinical use of aspirin, it is essential to understand why some patients do not response to it. This article reviews current research on aspirin resistance mediated by oxidative stress-induced 8-isoprostaglandin F2α.
Collapse
Affiliation(s)
- Juan Guo
- Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
50
|
Acikel Elmas M, Cakıcı SE, Dur IR, Kozluca I, Arınc M, Binbuga B, Bingol Ozakpınar O, Kolgazi M, Sener G, Ercan F. Protective effects of exercise on heart and aorta in high-fat diet-induced obese rats. Tissue Cell 2019; 57:57-65. [PMID: 30947964 DOI: 10.1016/j.tice.2019.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Merve Acikel Elmas
- Department of Histology and Embryology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey; Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Seyit Enes Cakıcı
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ismail Rahmi Dur
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ibrahim Kozluca
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Melih Arınc
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Berkant Binbuga
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | | | - Meltem Kolgazi
- Department of Physiology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Goksel Sener
- Department of Pharmacology, Marmara University Faculty of Pharmacy, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey.
| |
Collapse
|