1
|
Navid S, Saadatian Z, Talebi A, Toolee H, Seyedi S. The effect of biological mechanisms of melatonin on the proliferation of spermatogonial stem cells: a systematic review. Anat Cell Biol 2024; 57:163-171. [PMID: 38590095 PMCID: PMC11184433 DOI: 10.5115/acb.23.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 04/10/2024] Open
Abstract
In the last decade, melatonin has gained recognition as a potent scavenger and an effective antioxidant capable of neutralizing free radicals, including reactive oxygen species. Additionally, it exhibits anti-apoptotic properties. In this review, we will examine a compilation of articles that explore the cellular signaling function of melatonin on spermatogonial stem cells (SSCs) and adjacent cells such as Sertoli and Leydig cells. These cells play a crucial role in the proliferation of SSCs both in vitro and in vivo. In this review, we analyze the function of melatonin in the proliferation of SSCs from other aspects. For this purpose, we examine the articles based on the presence of melatonin on SSCs in four groups: As a supplement in SSCs medium culture, SSCs three-dimensional culture system, SSCs freezing medium, and as a therapeutic factor in vivo. Mechanisms of growth and proliferation of SSCs were considered. The purpose of this study is to investigate the potential effects of melatonin as a powerful antioxidant or growth stimulant for SSCs, both in vivo and in vitro.
Collapse
Affiliation(s)
- Shadan Navid
- Department of Anatomy, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Zahra Saadatian
- Department of Anatomy, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Heidar Toolee
- Department of Anatomy, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saba Seyedi
- Department of Medical Laboratory Sciences, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
2
|
Zhou H, Chen N, He B, Ma Z, Liu W, Xu B. Melatonin modulates the differentiation of neural stem cells exposed to manganese via SIRT1/β-catenin signaling. Food Chem Toxicol 2024; 184:114349. [PMID: 38081531 DOI: 10.1016/j.fct.2023.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Excessive exposure of children to manganese (Mn) in the environment has a bearing on developmental neurotoxicity. Although melatonin (Mel) can play a neuroprotective role by modulating the differentiation of neural stem cells (NSCs) in the developing brain, its specific mechanism under Mn overexposure remains to be explored. Here, we cultured primary NSCs as an available model to investigate the relevant molecular mechanism of Mel mitigation on Mn-induced disorder of NSCs differentiation through sirtuin 1 (SIRT1)/β-catenin pathway. It was found that Mel could facilitate the differentiation of Mn-treated NSCs into neurons. Further, our results uncovered that the pro-differentiation mechanism of Mel depended upon ascending the activity of SIRT1, thereby weakening β-catenin acetylation and increasing phosphorylation of β-catenin ser675 in the cytoplasm, which facilitates the nuclear translocation of β-catenin. Furthermore, the role of SIRT1 in Mel-mediated signal transduction was investigated through the pretreatment of NSCs using a highly specific SIRT1 inhibitor, EX527. After EX527 pretreatment, Mel could not maintain its protective effect. Overall, our results revealed that Mel could alleviate Mn-induced disorder of NSCs differentiation through the activation of the SIRT1/β-catenin pathway.
Collapse
Affiliation(s)
- Han Zhou
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Nan Chen
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Bin He
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Zhuo Ma
- Key laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Wei Liu
- Key laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Bin Xu
- Key laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
3
|
Zhang K, Du X, Gao Y, Liu S, Xu Y. Mesenchymal Stem Cells for Treating Alzheimer's Disease: Cell Therapy and Chemical Reagent Pretreatment. J Alzheimers Dis 2023:JAD221253. [PMID: 37125553 DOI: 10.3233/jad-221253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
As the size of the population aged 65 and older continues to grow, the incidence and mortality rates of Alzheimer's disease (AD) are increasing annually. Unfortunately, current treatments only treat symptoms temporarily and do not alter the patients' life expectancy or course of AD. Mesenchymal stem cells (MSCs) have shown a certain therapeutic potential in neurodegenerative diseases including AD due to their neuroinflammatory regulation and neuroprotective effects. However, the low survival and homing rates of MSCs after transplantation seriously affect their therapeutic effectiveness. Therefore, appropriate in vitro preconditioning is necessary to increase the survival and homing rates of MSCs to improve their effectiveness in treating AD. Here we summarize the therapeutic mechanisms of MSCs in AD and the chemical reagents used for the pretreatment of MSCs.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Psychiatry, First Hospital/FirstClinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Department of Psychiatry, First Hospital/FirstClinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yao Gao
- Department of Psychiatry, First Hospital/FirstClinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/FirstClinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Çakan D, Uşaklıoğlu S. The Effect of Melatonin on Nasal Septal Wound Healing in an Experimental Animal Model. Facial Plast Surg 2023; 39:148-154. [PMID: 35882370 DOI: 10.1055/a-1910-0748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
The purpose of our study was to examine the effect of melatonin (MLT) on wound healing in the nasal septum. Twenty-two Sprague-Dawley rats of the male sex were included in this experimental study. Nasal septal perforation (NSP), about 2 mm in diameter, was formed in each rat. MLT was applied topically to the subjects in the study group and saline was applied topically to the subjects in the control group once a day for 14 days. On day 14, the rats were sacrificed and the nasal septums of the subjects were resected for pathological evaluation. In the NSP area, degeneration and regeneration of nasal septal epithelium; degeneration and regeneration of the septal cartilage; number of cells involved in wound healing such as acute inflammatory cells (leukocytes), fibroblast, eosinophil, and giant cell; capillary vessel intensity; granulation tissue formation; and collagen intensity parameters were evaluated histopathologically. The macroscopic size and histopathologic examination results of NSPs were statistically analyzed. In the MLT group, the epithelium regeneration, cartilage regeneration, fibroblast number, collagen density, vascularity, and granulation formation were significantly higher, and the epithelial degeneration and acute inflammatory cells density were significantly lower, in the NSP area (p < 0.05). In addition, macroscopic healing was significantly higher in the MLT group (p = 0.044 and <0.05). Local application of MLT accelerates nasal septal wound healing. With this feature, the usage of MLT can be promising to prevent the formation of NSP.
Collapse
Affiliation(s)
- Doğan Çakan
- ENT Department, Cerrrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Semih Uşaklıoğlu
- ENT Department, University of Health Sciences Istanbul Haseki Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
Extracellular Vesicles and Cellular Ageing. Subcell Biochem 2023; 102:271-311. [PMID: 36600137 DOI: 10.1007/978-3-031-21410-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ageing is a complex process characterized by deteriorated performance at multiple levels, starting from cellular dysfunction to organ degeneration. Stem cell-based therapies aim to administrate stem cells that eventually migrate to the injured site to replenish the damaged tissue and recover tissue functionality. Stem cells can be easily obtained and cultured in vitro, and display several qualities such as self-renewal, differentiation, and immunomodulation that make them suitable candidates for stem cell-based therapies. Current animal studies and clinical trials are being performed to assess the safety and beneficial effects of stem cell engraftments for regenerative medicine in ageing and age-related diseases.Since alterations in cell-cell communication have been associated with the development of pathophysiological processes, new research is focusing on the modulation of the microenvironment. Recent research has highlighted the important role of some microenvironment components that modulate cell-cell communication, thus spreading signals from damaged ageing cells to neighbor healthy cells, thereby promoting systemic ageing. Extracellular vesicles (EVs) are small-rounded vesicles released by almost every cell type. EVs cargo includes several bioactive molecules, such as lipids, proteins, and genetic material. Once internalized by target cells, their specific cargo can induce epigenetic modifications and alter the fate of the recipient cells. Also, EV's content is dependent on the releasing cells, thus, EVs can be used as biomarkers for several diseases. Moreover, EVs have been proposed to be used as cell-free therapies that focus on their administration to slow or even reverse some hallmarks of physiological ageing. It is not surprising that EVs are also under study as next-generation therapies for age-related diseases.
Collapse
|
6
|
Liu WX, Tan SJ, Wang YF, Zhang FL, Feng YQ, Ge W, Dyce PW, Reiter RJ, Shen W, Cheng SF. Melatonin promotes the proliferation of primordial germ cell-like cells derived from porcine skin-derived stem cells: A mechanistic analysis. J Pineal Res 2022; 73:e12833. [PMID: 36106819 DOI: 10.1111/jpi.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
In vitro differentiation of stem cells into functional gametes remains of great interest in the biomedical field. Skin-derived stem cells (SDSCs) are an adult stem cells that provides a wide range of clinical applications without inherent ethical restrictions. In this paper, porcine SDSCs were successfully differentiated into primordial germ cell-like cells (PGCLCs) in conditioned media. The PGCLCs were characterized in terms of cell morphology, marker gene expression, and epigenetic properties. Furthermore, we also found that 25 μM melatonin (MLT) significantly increased the proliferation of the SDSC-derived PGCLCs while acting through the MLT receptor type 1 (MT1). RNA-seq results found the mitogen-activated protein kinase (MAPK) signaling pathway was more active when PGCLCs were cultured with MLT. Moreover, the effect of MLT was attenuated by the use of S26131 (MT1 antagonist), crenolanib (platelet-derived growth factor receptor inhibitor), U0126 (mitogen-activated protein kinase kinase inhibitor), or CCG-1423 (serum response factor transcription inhibitor), suggesting that MLT promotes the proliferation processes through the MAPK pathway. Taken together, this study highlights the role of MLT in promoting PGCLCs proliferation. Importantly, this study provides a suitable in vitro model for use in translational studies and could help to answer numerous remaining questions related to germ cell physiology.
Collapse
Affiliation(s)
- Wen-Xiang Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shao-Jing Tan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu-Feng Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Fa-Li Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu-Qing Feng
- School Hospital, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, Alabama, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, Texas, USA
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Jiao Y, Chen X, Nong B, Luo M, Niu Y, Huang S, Zhang J, Wei A, Huang J. Transplantation of Wharton's jelly mesenchymal stem cells encapsulated with Hydroactive® Gel promotes diabetic wound antifibrotic healing in type 2 diabetic rats. J Mater Chem B 2022; 10:8330-8346. [PMID: 36168995 DOI: 10.1039/d2tb01649d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetic cutaneous ulcers (DCU) are a complication for diabetes patients, mostly occurring in the foot and causing non-healing diabetic foot ulcers. Mesenchymal stem cell (MSC)-based therapy is currently being investigated as a therapeutic avenue for chronic diabetic ulcers. However, poor engraftment, short retention, and low survival still limit the treatment effectiveness. Hydroactive® Gel is a sterile transparent gel made of natural hydrocolloid, which has been widely used for wound management. Whether transplantation of Wharton's jelly mesenchymal stem cells (WJMSCs) encapsulated with Hydroactive® Gel is helpful to diabetic ulcers wound healing remains to be explored. The biocompatibility experiments showed that WJMSCs embedded in Hydroactive® Gel did not influence the cell viability, survival, proliferation, and apoptosis of WJMSCs in vitro. RNA-seq results also implied that Hydroactive® Gel + WJMSCs transplantation activated the "cytokine-cytokine receptor interaction", "mononuclear cell differentiation", "regulation of cell-cell adhesion", and "chemokine receptor activity" to accelerate the inflammatory reaction and epidermis regeneration in diabetic wounds. Histological analysis results demonstrated that Hydroactive® Gel encapsulated WJMSCs transplantation promoted diabetic wound healing and regeneration, indicating improved dermis regeneration, sebaceous gland formation, and type III collagen fiber deposition. Besides, immunohistochemical analysis results showed that Hydroactive® Gel + WJMSCs transplantation also facilitated the transformation of pro-inflammatory M1 macrophages to anti-inflammatory M2 macrophages, cell proliferation, and neovascularization at the wound site. Hydroactive® Gel encapsulation further prolonged the retention time of WJMSCs at the diabetic wound site. Above all, Hydroactive® Gel accelerates WJMSCs-mediated diabetic wound healing by promoting macrophage transformation, facilitating cell proliferation and angiogenesis, and prolonging cell retention time. Our findings may potentially provide a useful therapeutic strategy based on the combination of WJMSCs and biomedical materials for patients with diabetic cutaneous ulcers.
Collapse
Affiliation(s)
- Yiren Jiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Xiaolin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Baoting Nong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Mingxun Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yongxia Niu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Sunxing Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jue Zhang
- Department of Endocrinology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China.
| | - Aisheng Wei
- Department of Endocrinology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Autophagy Dysregulation in Metabolic Associated Fatty Liver Disease: A New Therapeutic Target. Int J Mol Sci 2022; 23:ijms231710055. [PMID: 36077452 PMCID: PMC9456355 DOI: 10.3390/ijms231710055] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is one of the most common causes of chronic liver disease worldwide. To date, there is no FDA-approved treatment, so there is an urgent need to determine its pathophysiology and underlying molecular mechanisms. Autophagy is a lysosomal degradation pathway that removes damaged organelles and misfolded proteins after cell injury through endoplasmic reticulum stress or starvation, which inhibits apoptosis and promotes cell survival. Recent studies have shown that autophagy plays an important role in removing lipid droplets from hepatocytes. Autophagy has also been reported to inhibit the production of pro-inflammatory cytokines and provide energy for the hepatic stellate cells activation during liver fibrosis. Thyroid hormone, irisin, melatonin, hydrogen sulfide, sulforaphane, DA-1241, vacuole membrane protein 1, nuclear factor erythroid 2-related factor 2, sodium-glucose co-transporter type-2 inhibitors, immunity-related GTPase M, and autophagy-related gene 7 have been reported to ameliorate MAFLD via autophagic induction. Lipid receptor CD36, SARS-CoV-2 Spike protein and leucine aminopeptidase 3 play a negative role in the autophagic function. This review summarizes recent advances in the role of autophagy in MAFLD. Autophagy modulates major pathological changes, including hepatic lipid metabolism, inflammation, and fibrosis, suggesting the potential of modulating autophagy for the treatment of MAFLD.
Collapse
|
9
|
Hart DA, Zernicke RF, Shrive NG. Homo sapiens May Incorporate Daily Acute Cycles of “Conditioning–Deconditioning” to Maintain Musculoskeletal Integrity: Need to Integrate with Biological Clocks and Circadian Rhythm Mediators. Int J Mol Sci 2022; 23:ijms23179949. [PMID: 36077345 PMCID: PMC9456265 DOI: 10.3390/ijms23179949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Human evolution required adaptation to the boundary conditions of Earth, including 1 g gravity. The bipedal mobility of Homo sapiens in that gravitational field causes ground reaction force (GRF) loading of their lower extremities, influencing the integrity of the tissues of those extremities. However, humans usually experience such loading during the day and then a period of relative unloading at night. Many studies have indicated that loading of tissues and cells of the musculoskeletal (MSK) system can inhibit their responses to biological mediators such as cytokines and growth factors. Such findings raise the possibility that humans use such cycles of acute conditioning and deconditioning of the cells and tissues of the MSK system to elaborate critical mediators and responsiveness in parallel with these cycles, particularly involving GRF loading. However, humans also experience circadian rhythms with the levels of a number of mediators influenced by day/night cycles, as well as various levels of biological clocks. Thus, if responsiveness to MSK-generated mediators also occurs during the unloaded part of the daily cycle, that response must be integrated with circadian variations as well. Furthermore, it is also possible that responsiveness to circadian rhythm mediators may be regulated by MSK tissue loading. This review will examine evidence for the above scenario and postulate how interactions could be both regulated and studied, and how extension of the acute cycles biased towards deconditioning could lead to loss of tissue integrity.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
- Correspondence:
| | - Ronald F. Zernicke
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109-5328, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48108-1048, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099, USA
| | - Nigel G. Shrive
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 4V8, Canada
| |
Collapse
|
10
|
San‐Miguel B, Fernández‐Palanca P, Mauriz JL, Tuñón MJ, González‐Gallego J. Beneficial effects of melatonin on liver fibrosis: A systematic review of current biological evidence. J Cell Physiol 2022; 237:2740-2757. [PMID: 35404472 PMCID: PMC9542733 DOI: 10.1002/jcp.30735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Hepatic fibrosis is a reversible response to either acute or chronic cellular injury from a wide variety of etiologies, characterized by excessive deposition of extracellular matrix resulting in liver dysfunction and cirrhosis. Melatonin (N‐acetyl‐5‐methoxytryptamine), the main product secreted by the pineal gland, is a multitasking indolamine with important physiological functions such as anti‐inflammatory and antioxidant actions, modulation of circadian rhythms, and immune system enhancement. Among the numerous biological activities of melatonin, its antifibrotic effects have received increasingly more attention. In this study, we performed a systematic review of publications of the last 10 years evaluating the mechanisms of action of melatonin against liver fibrosis. The study protocol was registered at PROSPERO (CRD42022304744). Literature research was performed employing PubMed, Scopus, and Web of Science (WOS) databases, and after screening, 29 articles were included. Results from the selected studies provided denoted the useful actions of melatonin on the development, progression, and evolution of liver fibrosis. Melatonin antifibrotic effects in the liver involved the reduction of profibrogenic markers and modulation of several cellular processes and molecular pathways, mainly acting as an antioxidant and anti‐inflammatory agent. In addition, the indolamine influenced different molecular processes, such as hepatocyte apoptosis, modulation of autophagy and mitophagy, restoration of circadian rhythms, and modulation of microRNAs, among others. Although some limitations have been found regarding variability in the study design, the findings here summarized display the potential role of melatonin in ameliorating the development of liver fibrosis and its possible progression to liver cirrhosis and hepatocarcinoma.
Collapse
Affiliation(s)
- Beatriz San‐Miguel
- Institute of Biomedicine, (IBIOMED) University of León León Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Instituto de Salud Carlos III Madrid Spain
| | - Paula Fernández‐Palanca
- Institute of Biomedicine, (IBIOMED) University of León León Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Instituto de Salud Carlos III Madrid Spain
| | - José L. Mauriz
- Institute of Biomedicine, (IBIOMED) University of León León Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Instituto de Salud Carlos III Madrid Spain
| | - María J. Tuñón
- Institute of Biomedicine, (IBIOMED) University of León León Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Instituto de Salud Carlos III Madrid Spain
| | - Javier González‐Gallego
- Institute of Biomedicine, (IBIOMED) University of León León Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
11
|
Liu Y, Liu N, Li X, Luo Z, Zhang J. Ginsenoside Rb1 Modulates the Migration of Bone-Derived Mesenchymal Stem Cells through the SDF-1/CXCR4 Axis and PI3K/Akt Pathway. DISEASE MARKERS 2022; 2022:5196682. [PMID: 35308137 PMCID: PMC8930258 DOI: 10.1155/2022/5196682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 11/18/2022]
Abstract
Methods Wound-healing assay and Transwell assay were utilized to evaluate the effect of ginsenoside Rb1 on the migration of BMSCs. RT-PCR and Western blotting were performed to evaluate the expression of stromal-derived factor 1 (SDF-1), C-X-C chemokine receptor type 4 (CXCR4), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (PKB; AKT). Results Ginsenoside Rb1 significantly enhanced the migration of BMSCs through the activation of SDF-1, CXCR4, p-PI3K/PI3K, and p-Akt/Akt relative expression. Furthermore, this stimulus was blocked by the pretreatment with AMD3100 and LY294002. Conclusions Ginsenoside Rb1 facilitated the migration of BMSCs through the activation of the SDF-1/CXCR4 axis and PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yimei Liu
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ninghua Liu
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Xiangyang Li
- Department of Nursing, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jing Zhang
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| |
Collapse
|
12
|
Liao N, Su L, Cao Y, Qiu L, Xie R, Peng F, Cai Z, Liu X, Song J, Zeng Y. Tracking Cell Viability for Adipose-Derived Mesenchymal Stem Cell-Based Therapy by Quantitative Fluorescence Imaging in the Second Near-Infrared Window. ACS NANO 2022; 16:2889-2900. [PMID: 35084178 DOI: 10.1021/acsnano.1c09960] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell survival rate determines engraftment efficiency in adipose-derived mesenchymal stem cell (ADSC)-based regenerative medicine. In vivo monitoring of ADSC viability to achieve effective tissue regeneration is a major challenge for ADSC therapy. Here, we developed an activated near-infrared II (NIR-II) fluorescent nanoparticle consisting of lanthanide-based down-conversion nanoparticles (DCNPs) and IR786s (DCNP@IR786s) for cell labeling and real-time tracking of ADSC viability in vivo. In dying ADSCs due to excessive ROS generation, absorption competition-induced emission of IR786s was destroyed, which could turn on the NIR-II fluorescent intensity of DCNPs at 1550 nm by 808 nm laser excitation. In contrast, the NIR-II fluorescent intensity of DCNPs was stable at 1550 nm by 980 nm laser excitation. This ratiometric fluorescent signal was precise and sensitive for tracking ADSC viability in vivo. Significantly, the nanoparticle could be applied to quantitively evaluate stem cell viability in real-time in vivo. Using this method, we successfully sought two small molecules including glutathione and dexamethasone that could improve stem cell engraftment efficiency and enhance ADSC therapy in a liver fibrotic mouse model. Therefore, we provide a potential strategy for real-time in vivo quantitative tracking of stem cell viability in ADSC therapy.
Collapse
Affiliation(s)
- Naishun Liao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350002, P.R. China
| | - Yanbing Cao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350002, P.R. China
| | - Liman Qiu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350002, P.R. China
| | - Rong Xie
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Fang Peng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350002, P.R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P.R. China
| |
Collapse
|
13
|
Chan YH, Ho KN, Lee YC, Chou MJ, Lew WZ, Huang HM, Lai PC, Feng SW. Melatonin enhances osteogenic differentiation of dental pulp mesenchymal stem cells by regulating MAPK pathways and promotes the efficiency of bone regeneration in calvarial bone defects. Stem Cell Res Ther 2022; 13:73. [PMID: 35183254 PMCID: PMC8858457 DOI: 10.1186/s13287-022-02744-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Background Mesenchymal stem cell (MSC)-based tissue engineering plays a major role in regenerative medicine. However, the efficiency of MSC transplantation and survival of engrafted stem cells remain challenging. Melatonin can regulate MSC biology. However, its function in the osteogenic differentiation of dental pulp-derived MSCs (DPSCs) remains unclear. We investigated the effects and mechanisms of melatonin on the osteogenic differentiation and bone regeneration capacities of DPSCs. Methods The biological effects and signaling mechanisms of melatonin with different concentrations on DPSCs were evaluated using a proliferation assay, the quantitative alkaline phosphatase (ALP) activity, Alizarin red staining, a real-time polymerase chain reaction, and a western blot in vitro cell culture model. The in vivo bone regeneration capacities were assessed among empty control, MBCP, MBCP + DPSCs, and MBCP + DPSCs + melatonin preconditioning in four-created calvarial bone defects by using micro-computed tomographic, histological, histomorphometric, and immunohistochemical analyses after 4 and 8 weeks of healing. Results In vitro experiments revealed that melatonin (1, 10, and 100 μM) significantly and concentration-dependently promoted proliferation, surface marker expression (CD 146), ALP activity and extracellular calcium deposition, and osteogenic gene expression of DPSCs (p < 0.05). Melatonin activated the protein expression of ALP, OCN, and RUNX-2 and inhibited COX-2/NF-κB expression. Furthermore, the phosphorylation of mitogen-activated protein kinase (MAPK) p38/ERK signaling was significantly increased in DPSCs treated with 100 μM melatonin, and their inhibitors significantly decreased osteogenic differentiation. In vivo experiments demonstrated that bone defects implanted with MBCP bone-grafting materials and melatonin-preconditioned DPSCs exhibited significantly greater bone volume fraction, trabecular bone structural modeling, new bone formation, and osteogenesis-related protein expression than the other three groups at 4 and 8 weeks postoperatively (p < 0.05). Conclusions These results suggest that melatonin promotes the proliferation and osteogenic differentiation of DPSCs by regulating COX-2/NF-κB and p38/ERK MAPK signaling pathways. Preconditioning DPSCs with melatonin before transplantation can efficiently enhance MSCs function and regenerative capacities.
Collapse
|
14
|
Zhang Z, Zhang M, Zhang Z, Sun Y, Wang J, Chang C, Zhu X, Li M, Liu Y. ADSCs Combined with Melatonin Promote Peripheral Nerve Regeneration through Autophagy. Int J Endocrinol 2022; 2022:5861553. [PMID: 35910940 PMCID: PMC9329031 DOI: 10.1155/2022/5861553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/02/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In the early stage of nerve injury, damaged tissue is cleared by autophagy. ADSCs can promote nerve axon regeneration. However, the microenvironment of the injury was changed, and ADSCs are easily apoptotic after transplantation. Mel plays a role in the apoptosis, proliferation, and differentiation of ADSCs. Therefore, we investigated whether Mel combined with ADSCs promoted peripheral nerve regeneration by enhancing early autophagy of injured nerves. MATERIALS AND METHODS SD rats were randomly split into the control group, model group, Mel group, ADSCs group, ADSCs + Mel group, and 3-MA group. On day 7, autophagy was observed and gait was detected on days 7, 14, 21, and 28. On the 28th day, the sciatic nerve of rats' renewal was detected. RESULTS After 1 w, compare with the model group, the number of autophagosomes and lysosomes and the expressions of protein of LC3-II/LC3-I and Beclin-1 in the ADSCs + Mel group were prominently increased, while the 3-MA group was significantly decreased. After 4 w, the function of the sciatic nerve in ADSCs + Mel was similar to that in the control group. Compared with the model group, the ADSCs + Mel group significantly increased myelin regeneration and the number of motor neurons and reduced gastrocnemius atrophy. CONCLUSIONS It was confirmed that ADSCs combined with Mel could promote sciatic nerve regeneration in rats by changing the early autophagy activity of the injured sciatic nerve.
Collapse
Affiliation(s)
- Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Mengyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Zhixiang Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, China
| | - Yingying Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Jiajia Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Chenhao Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Xinyan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Monan Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| |
Collapse
|
15
|
Al-Otaibi AM, Al-Gebaly AS, Almeer R, Albasher G, Al-Qahtani WS, Abdel Moneim AE. Melatonin pre-treated bone marrow derived-mesenchymal stem cells prompt wound healing in rat models. Biomed Pharmacother 2021; 145:112473. [PMID: 34861635 DOI: 10.1016/j.biopha.2021.112473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 01/16/2023] Open
Abstract
Bone marrow derived-mesenchymal stem cells (BMSCs)-based therapy is an outstanding candidate for cutaneous wound healing. Melatonin (MEL) has been reported for its anti-inflammatory as well as tissue regenerative properties. Existing work aimed to explore the potential healing power of BMSCs pre-treated with MEL in a skin wound model. Adult rats were allocated into control, PIO, BMSCs (1 × 105 cells), and MEL/BMSCs groups. On the 21 days post-wounding, tissues were sampled for analysis. The results demonstrated that compared to the control group, MEL/BMSCs therapy induced noticeable decline in wound area and elevated rate of wound retraction. Furthermore, marked increases in tissue hydroxyproline, as well as tissue content and gene expression level of vascular endothelial growth factor in MEL/BMSCs treated-wounded animals. Compared to the untreated control group, marked increases were found in antioxidant enzymatic activities together with elevated GSH levels in wounded tissues after MEL/BMSCs treatment. Moreover, therapeutically handled wounds with MEL/BMSCs revealed low levels of MDA, NO and protein carbonyls. Combined therapy with MEL/BMSCs relieved the inflammation witnessed by decreasing IL-1β, TNF-α and NF-κB levels in wounded tissues. Furthermore, noteworthy rises in levels of TGF-β and gene expression of α-SMA were noticed after MEL/BMSCs application that reveals their anti-scarring properties. Histologically, noticeable improvement in histopathological skin lesions in wound area and elevated the collagen synthesis and deposition. Collectively, the obtained data depict that the pre-treatment of BMSCs with MEL could potentially be a successful strategy for scaling-up the wound healing outcomes more than using BMSCs monotherapy in rat models.
Collapse
Affiliation(s)
- Aljohara M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Asma S Al-Gebaly
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S Al-Qahtani
- Department of Forensic Sciences, College of Forensic Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
16
|
Jiao Y, Chen X, Niu Y, Huang S, Wang J, Luo M, Shi G, Huang J. Wharton's jelly mesenchymal stem cells embedded in PF-127 hydrogel plus sodium ascorbyl phosphate combination promote diabetic wound healing in type 2 diabetic rat. Stem Cell Res Ther 2021; 12:559. [PMID: 34717751 PMCID: PMC8557497 DOI: 10.1186/s13287-021-02626-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
Background Diabetic cutaneous ulcers (DCU) are a complication of diabetes with diabetic foot ulcers being the most common, and the wounds are difficult to heal, increasing the risk of bacterial infection. Cell-based therapy utilizing mesenchymal stem cells (MSCs) is currently being investigated as a therapeutic avenue for both chronic diabetic ulcers and severe burns. Wharton’s jelly mesenchymal stem cell (WJMSC) with PF-127 hydrogel and sodium ascorbyl phosphate (SAP) improved skin wound healing in mice. Whether this combination strategy is helpful to diabetic ulcers wound healing remains to be explored. Methods Firstly, the WJMSCs embedded in PF-127 and SAP combination were transplanted onto excisional cutaneous wound bed in type 2 diabetic Sprague Dawley (SD) rats. Two weeks after transplantation, the skin tissue was collected for histological and immunohistochemical analysis. Further, overexpressing-EGFP WJMSCs were performed to investigate cell engraftment in the diabetic cutaneous ulcer. The apoptosis of WJMSCs which encapsulated with combination of PF-127 and SAP was detected by TUNEL fluorescence assay and RT-PCR in vitro. And the mitochondrial damage induced by oxidative stress assessed by MitoTracker and CMH2DCFDA fluorescence assay. Results In diabetic cutaneous wound rat model, PF-127 plus SAP-encapsulated WJMSCs transplantation promoted diabetic wound healing, indicating improving dermis regeneration and collagen deposition. In diabetic wound healing, less pro-inflammatory M1 macrophages, more anti-inflammatory M2 tissue-healing macrophages, and neovascularization were observed in PF-127 + SAP + WJMSCs group compared with other groups. SAP supplementation alleviated the apoptosis ratio of WJMSCs embedded in the PF-127 in vitro and promoted cell survival in vivo. Conclusion PF-127 plus SAP combination facilitates WJMSCs-mediated diabetic wound healing in rat through promoting cell survival, the macrophage transformation, and angiogenesis. Our findings may potentially provide a helpful therapeutic strategy for patients with diabetic cutaneous ulcer. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02626-w.
Collapse
Affiliation(s)
- Yiren Jiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaolin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yongxia Niu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Sunxing Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jingwen Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mingxun Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
17
|
Labunets IF, Utko NA, Toporova OK. Effects of Multipotent Mesenchymal Stromal Cells of the Human Umbilical Cord and Their Combination with Melatonin in Adult and Aging Mice with a Toxic Cuprizone Model of Demyelination. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021020077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Benitah SA, Welz PS. Circadian Regulation of Adult Stem Cell Homeostasis and Aging. Cell Stem Cell 2020; 26:817-831. [DOI: 10.1016/j.stem.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Bizzarri M. Advances in Characterizing Recently-Identified Molecular Actions of Melatonin: Clinical Implications. APPROACHING COMPLEX DISEASES 2020. [PMCID: PMC7164543 DOI: 10.1007/978-3-030-32857-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melatonin, N-acetyl-5-methoxy-tryptamine, was discovered to be a product of serotonin metabolism in the mammalian pineal gland where its synthesis is under control of the light:dark cycle. Besides its regulatory pathway involving ganglion cells in the retina, the neural connections between the eyes and the pineal gland include the master circadian clock, the suprachiasmatic nuclei, and the central and peripheral nervous systems. Since pineal melatonin is released into the blood and into the cerebrospinal fluid, it has access to every cell in an organism and it mediates system-wide effects. Subsequently, melatonin was found in several extrapineal organs and, more recently, perhaps in every cell of every organ. In contrast to the pinealocytes, non-pineal cells do not discharge melatonin into the blood; rather it is used locally in an intracrine, autocrine, or paracrine manner. Melatonin levels in non-pineal cells do not exhibit a circadian rhythm and do not depend on circulating melatonin concentrations although when animals are treated with exogenous melatonin it is taken up by presumably all cells. Mitochondria are the presumed site of melatonin synthesis in all cells; the enzymatic machinery for melatonin synthesis has been identified in mitochondria. The association of melatonin with mitochondria, because of its ability to inhibit oxidative stress, is very fortuitous since these organelles are a major site of damaging reactive oxygen species generation. In this review, some of the actions of non-pineal-derived melatonin are discussed in terms of cellular and subcellular physiology.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Khuzhakhmetova LK, Belyaeva MM, Teply DL, Bazhanova ED. The Role of Alpha-Tocopherol and Cycloferon in the Regulation of Apoptosis in Neurons of the Hypothalamic Suprachiasmatic Nucleus and Pinealocytes during Stress and Aging. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019050053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Heo JS, Pyo S, Lim JY, Yoon DW, Kim BY, Kim JH, Kim GJ, Lee SG, Kim J. Biological effects of melatonin on human adipose‑derived mesenchymal stem cells. Int J Mol Med 2019; 44:2234-2244. [PMID: 31573052 PMCID: PMC6844604 DOI: 10.3892/ijmm.2019.4356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into other cell types and exhibit immunomodulatory effects. MSCs are affected by several intrinsic and extrinsic signaling modulators, including growth factors, cytokines, extracellular matrix and hormones. Melatonin, produced by the pineal gland, is a hormone that regulates sleep cycles. Recent studies have shown that melatonin improves the therapeutic effects of stem cells. The present study aimed to investigate whether melatonin enhances the biological activities of human adipose-derived MSCs. The results demonstrated that treatment with melatonin promoted cell proliferation by inducing SRY-box transcription factor 2 gene expression and preventing replicative senescence. In addition, melatonin exerted anti-adipogenic effects on MSCs. PCR analysis revealed that the expression of the CCAAT enhancer binding protein a gene, a key transcription factor in adipogenesis, was decreased following melatonin treatment, resulting in reduced adipogenic differentiation in an in vitro assay. The present study also examined the effect of melatonin on the immunomodulatory response using a co-culture system of human peripheral blood mononuclear cells and MSCs. Activated T cells were strongly inhibited following melatonin exposure compared with those in the control group. Finally, the favorable effects of melatonin on MSCs were confirmed using luzindole, a selective melatonin receptor antagonist. The proliferation-promoting, anti-inflammatory effects of melatonin suggested that melatonin-treated MSCs may be used for effective cell therapy.
Collapse
Affiliation(s)
- June Seok Heo
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Sangshin Pyo
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Ja-Yun Lim
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Dae Wui Yoon
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Geosan, Chungbuk 28024, Republic of Korea
| | - Bo Yong Kim
- Department of Health and Environmental Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, North Chungcheong 28497, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Seung Gwan Lee
- Department of Health and Environmental Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Jinkwan Kim
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Geosan, Chungbuk 28024, Republic of Korea
| |
Collapse
|
22
|
Cruciani S, Santaniello S, Montella A, Ventura C, Maioli M. Orchestrating stem cell fate: Novel tools for regenerative medicine. World J Stem Cells 2019; 11:464-475. [PMID: 31523367 PMCID: PMC6716083 DOI: 10.4252/wjsc.v11.i8.464] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells are undifferentiated cells able to acquire different phenotypes under specific stimuli. In vitro manipulation of these cells is focused on understanding stem cell behavior, proliferation and pluripotency. Latest advances in the field of stem cells concern epigenetics and its role in maintaining self-renewal and differentiation capabilities. Chemical and physical stimuli can modulate cell commitment, acting on gene expression of Oct-4, Sox-2 and Nanog, the main stemness markers, and tissue-lineage specific genes. This activation or repression is related to the activity of chromatin-remodeling factors and epigenetic regulators, new targets of many cell therapies. The aim of this review is to afford a view of the current state of in vitro and in vivo stem cell applications, highlighting the strategies used to influence stem cell commitment for current and future cell therapies. Identifying the molecular mechanisms controlling stem cell fate could open up novel strategies for tissue repairing processes and other clinical applications.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Sara Santaniello
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Operative Unit of Clinical Genetics and Developmental Biology, Sassari 07100, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari 09042, Italy
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
23
|
Lee WJ, Chen LC, Lin JH, Cheng TC, Kuo CC, Wu CH, Chang HW, Tu SH, Ho YS. Melatonin promotes neuroblastoma cell differentiation by activating hyaluronan synthase 3-induced mitophagy. Cancer Med 2019; 8:4821-4835. [PMID: 31274246 PMCID: PMC6712479 DOI: 10.1002/cam4.2389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is the second most common pediatric malignancy and has a high rate of spontaneous remission. Uncovering the mechanisms underlying neuroblastoma cell differentiation is critical for therapeutic purposes. A neuroblastoma cell line (N2a) treated with either serum withdrawal (<2.5%) or melatonin (>0.1 nmol/L) for 24 hours was used as a cell differentiation research model. Interestingly, the hyaluronan synthase 3 (HAS3) protein was induced in differentiated N2a cells. N2a-allografted nude mice received an intraperitoneal injection of melatonin (40 or 80 mg/kg/day for 3 weeks). The mean tumor volume in mice treated with 80 mg/kg melatonin was smaller than that in PBS-treated mice (1416.3 and 3041.3 mm3 , respectively, difference = 1625 mm3 , *P = 0.0003, n = 7 per group). Compared with the vector control group, N2a cells with forced HAS3 overexpression showed significantly increased neuron length (*P = 0.00082) and neurite outgrowth (*P = 0.00059). Intracellular changes in autophagy, including distorted mitochondria with abnormal circular inner membranes, were detected by transmission electron microscopy (TEM). Our study demonstrated that HAS3-mediated signaling activated by physiological concentrations of melatonin (>0.1 nmol/L) triggered significant N2a cell differentiation. These results provide molecular data with potential clinical relevance for therapeutic drug development.
Collapse
Affiliation(s)
- Wen-Jui Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Li-Ching Chen
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Juo-Han Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Tzu-Chun Cheng
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Hsiung Wu
- Department of Surgery, En Chun Kong Hospital, New Taipei City, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Wen Chang
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shih-Hsin Tu
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
24
|
Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, Zhu G, Yin Y, Wang W, Hardeland R, Ren W. Melatonin in macrophage biology: Current understanding and future perspectives. J Pineal Res 2019; 66:e12547. [PMID: 30597604 DOI: 10.1111/jpi.12547] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is a ubiquitous hormone found in various organisms and highly affects the function of immune cells. In this review, we summarize the current understanding of the significance of melatonin in macrophage biology and the beneficial effects of melatonin in macrophage-associated diseases. Enzymes associated with synthesis of melatonin, as well as membrane receptors for melatonin, are found in macrophages. Indeed, melatonin influences the phenotype polarization of macrophages. Mechanistically, the roles of melatonin in macrophages are related to several cellular signaling pathways, such as NF-κB, STATs, and NLRP3/caspase-1. Notably, miRNAs (eg, miR-155/-34a/-23a), cellular metabolic pathways (eg, α-KG, HIF-1α, and ROS), and mitochondrial dynamics and mitophagy are also involved. Thus, melatonin modulates the development and progression of various macrophage-associated diseases, such as cancer and rheumatoid arthritis. This review provides a better understanding about the importance of melatonin in macrophage biology and macrophage-associated diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sijing Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuanyuan Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Congrui Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
25
|
Beriwal N, Namgyal T, Sangay P, Al Quraan AM. Role of immune-pineal axis in neurodegenerative diseases, unraveling novel hybrid dark hormone therapies. Heliyon 2019; 5:e01190. [PMID: 30775579 PMCID: PMC6360340 DOI: 10.1016/j.heliyon.2019.e01190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
The anti-oxidant effects of melatonin and the immune-pineal axis are well established. However, how they play a role in the pathogenesis of neurodegenerative diseases is not well elucidated. A better understanding of this neuro-immuno-endocrinological link can help in the development of novel therapies with higher efficacy to alleviate symptomatology, slow disease progression and improve the quality of life. Recent studies have shown that the immune-pineal axis acts as an immunological buffer, neurohormonal switch and it also intricately links the pathogenesis of neurodegenerative diseases (like Multiple sclerosis, Alzheimer's disease, Parkinson's disease) and inflammation at a molecular level. Furthermore, alteration in circadian melatonin production is seen in neurodegenerative diseases. This review will summarise the mechanics by which the immune-pineal axis and neuro-immuno-endocrinological disturbances affect the pathogenesis and progression of neurodegenerative diseases. It will also explore, how this understanding will help in the development of novel hybrid melatonin hormone therapies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nitya Beriwal
- Department of Research, California Institute of Behavioral Neurosciences and Psychology, 4751, Mangels Boulevard, Fairfield, 94534, CA, USA
| | | | | | | |
Collapse
|
26
|
The multiple functions of melatonin in regenerative medicine. Ageing Res Rev 2018; 45:33-52. [PMID: 29630951 DOI: 10.1016/j.arr.2018.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Melatonin research has been experiencing hyper growth in the last two decades; this relates to its numerous physiological functions including anti-inflammation, oncostasis, circadian and endocrine rhythm regulation, and its potent antioxidant activity. Recently, a large number of studies have focused on the role of melatonin in the regeneration of cells or tissues after their partial loss. In this review, we discuss the recent findings on the molecular involvement of melatonin in the regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others.
Collapse
|
27
|
Roohbakhsh A, Shamsizadeh A, Hayes A, Reiter RJ, Karimi G. Melatonin as an endogenous regulator of diseases: The role of autophagy. Pharmacol Res 2018; 133:265-276. [DOI: 10.1016/j.phrs.2018.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/17/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
|
28
|
Zhang H, Liu X, Chen T, Ji Y, Shi K, Wang L, Zheng X, Kong J. Melatonin in Apples and Juice: Inhibition of Browning and Microorganism Growth in Apple Juice. Molecules 2018; 23:E521. [PMID: 29495435 PMCID: PMC6017754 DOI: 10.3390/molecules23030521] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/08/2023] Open
Abstract
Synthetic melatonin (N-acetyl-5-methoxytryptamine, MT) is popular in the US and Asian markets as a health supplement. Here, we identified a naturally occurring melatonin source in apple juice. Melatonin was present in all 18 apple cultivars tested. The highest melatonin level of the edible part of apple was detected in the apple peel. The melatonin content in 'Fuji' apple juice is comparable to the level of its flesh. Melatonin was consumed during the process of juicing due to its interaction with the oxidants. Melatonin addition significantly reduced the juice color change to brown (browning). The mechanism is that melatonin scavenges the free radicals, which was indicated by the ASBT analysis; therefore, inhibiting the conversion of o-diphenolic compounds into quinones. Most importantly, melatonin exhibited powerful anti-microorganism activity in juice. The exact mechanisms of this action are currently unknown. These effects of melatonin can preserve the quality and prolong the shelf life of apple juice. The results provide valuable information regarding commerciall apple juice processing and storage.
Collapse
Affiliation(s)
- Haixia Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xuan Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ting Chen
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Yazhen Ji
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Lee S, Le NH, Kang D. Melatonin alleviates oxidative stress-inhibited osteogenesis of human bone marrow-derived mesenchymal stem cells through AMPK activation. Int J Med Sci 2018; 15:1083-1091. [PMID: 30013450 PMCID: PMC6036161 DOI: 10.7150/ijms.26314] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/08/2018] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of aging-related osteoporosis through the increased bone resorption or reduced bone formation. Melatonin, which can exert beneficial actions through antioxidant, anti-inflammatory, and bone-preserving effects, shows promise in preventing oxidative stress-inhibited osteogenesis. However, specific mechanisms by which melatonin rescues oxidative stress-inhibited osteogenesis of human mesenchymal stem cells (MSCs) have not been fully elucidated yet. We therefore investigated whether activation of AMPK by melatonin regulates the antagonistic crosstalk between oxidative stress and osteogenic differentiation in human MSCs. Melatonin treatment significantly enhanced osteogenic differentiation of human MSCs through activation of AMPK and upregulation of FOXO3a and RUNX2 which were known as master transcription factors responsible for the mechanistic link between oxidative stress and osteogenic phenotype. Osteogenic differentiation determined by calcium deposition was significantly increased by melatonin treatment against oxidative stress. In addition, melatonin treatment reconstituted activation of AMPK and expression of FOXO3a and RUNX2 inhibited by oxidative stress. Overall, these results demonstrate that melatonin enhances osteogenic differentiation of human MSCs and restores oxidative stress-inhibited osteogenesis through AMPK activation in human MSCs, suggesting that activation of AMPK by melatonin may represent a promising new therapeutic strategy for treating metabolic bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Sooho Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea
| | - Nhu Huynh Le
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea.,Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Dongchul Kang
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea.,Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon, Gangwon-do 24252, Republic of Korea
| |
Collapse
|
30
|
Radwan RR, Mohamed HA. Nigella sativa oil modulates the therapeutic efficacy of mesenchymal stem cells against liver injury in irradiated rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:447-456. [PMID: 29216568 DOI: 10.1016/j.jphotobiol.2017.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/17/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023]
Abstract
Stem cell transplantation is a novel strategy for regenerative medicine in liver disease. This study was conducted to explore the modulatory effect of Nigella sativa oil (NSO) on the therapeutic potential of mesenchymal stem cells (MSCs) against irradiation-induced liver damage in rats. Liver damage was induced by a total body exposure to a single dose of 7Gy. NSO (2mg/kg/day) was then given orally for 4 consecutive weeks starting 24h after irradiation with or without a single intravenous MSCs administration, then rats were sacrificed four weeks after exposure to γ radiation. Data revealed that irradiation elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities in serum, increased hepatic malondialdehyde (MDA) content and reduced hepatic superoxide dismutase (SOD) activity. Furthermore, it caused elevation in pro-inflammatory mediators such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) associated with reduction in anti-inflammatory cytokine interleukin-10 (IL-10) and it increased fibrogenic marker transforming growth factor-β (TGF-β) in liver tissues. It was observed that combined NSO/MSCs therapy provided more beneficial tissue repair comparable to MSCs alone as demonstrated by modulating the tested parameters. Finally, these results were confirmed by histopathological examination. In conclusion, dual therapy with NSO and MSCs could serve as a promising approach for alleviating radiation-induced liver injury in patients with radiotherapy.
Collapse
Affiliation(s)
- Rasha R Radwan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo, Egypt.
| | - Heba A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
31
|
Dupré C, Bruno O, Bonnaud A, Giganti A, Nosjean O, Legros C, Boutin JA. Assessments of cellular melatonin receptor signaling pathways: β-arrestin recruitment, receptor internalization, and impedance variations. Eur J Pharmacol 2017; 818:534-544. [PMID: 29154938 DOI: 10.1016/j.ejphar.2017.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
Abstract
Melatonin receptors belong to the family of G-protein coupled receptors. Agonist-induced receptor activation is terminated with the recruitment of β-arrestin, which leads to receptor internalization. Furthermore, agonist binding induces a shift in cellular shape that translates into a change in the electric impedance of the cell. In the present study, we employed engineered cells to study these internalization-related processes in the context of the two melatonin receptors, MT1 and MT2. To assess these three receptor internalization-related functions and validate the results, we employed four classical ligands of melatonin receptors: the natural agonist melatonin; the super-agonist 2-iodo-melatonin and the two antagonists luzindole and 4-phenyl-2-propionamidotetralin. The assessments confirmed the nature of the agonistic ligands but showed that 4-phenyl-2-propionamidotetralin, a described antagonist, is a biased partial agonist at MT2 with poorer affinity for MT1. The methods are now available to be applied to any receptor system for which multiple signaling pathways must be evaluated for new molecules.
Collapse
Affiliation(s)
- Clémence Dupré
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Olivier Bruno
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Anne Bonnaud
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Adeline Giganti
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Olivier Nosjean
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Céline Legros
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France
| | - Jean A Boutin
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 125, Chemin De Ronde, 78290 Croissy-sur-Seine, France.
| |
Collapse
|
32
|
Shi X, Li W, Liu H, Yin D, Zhao J. The ROS/NF-κB/NR4A2 pathway is involved in H 2O 2 induced apoptosis of resident cardiac stem cells via autophagy. Oncotarget 2017; 8:77634-77648. [PMID: 29100414 PMCID: PMC5652805 DOI: 10.18632/oncotarget.20747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/06/2017] [Indexed: 01/15/2023] Open
Abstract
Cardiac stem cells (CSCs)-based therapy provides a promising avenue for the management of ischemic heart diseases. However, engrafted CSCs are subjected to acute cell apoptosis in the ischemic microenvironment. Here, stem cell antigen 1 positive (Sca-1+) CSCs proved to own therapy potential were cultured and treated with H2O2 to mimic the ischemia situation. As autophagy inhibitor, 3-methyladenine (3MA), inhibited H2O2-induced CSCs apoptosis, thus we demonstrated that H2O2 induced autophagy-dependent apoptosis in CSCs, and continued to find key proteins responsible for the crosstalk between autophagy and apoptosis. Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2), increased upon cardiomyocyte injury with unknown functions in CSCs, was increased by H2O2. NR4A2 siRNA attenuated H2O2 induced autophagy and apoptosis in CSCs, which suggested an important role of NR4A2 in CSCs survival in ischemia conditions. Reactive oxygen species (ROS) and NF-κB (P65) subunit were both increased by H2O2. Either the ROS scavenger, N-acetyl-l-cysteine (NAC) or NF-κB signaling inhibitor, bay11-7082 could attenuate H2O2-induced autophagy and apoptosis in CSCs, which suggested they were involved in this process. Furthermore, NAC inhibited NF-κB activities, while bay11-7082 inhibited NR4A2 expression, which revealed a ROS/NF-κB/NR4A2 pathway responsible for H2O2-induced autophagy and apoptosis in CSCs. Our study supports a new clue enhancing the survival rate of CSCs in the infarcted myocardium for cell therapy in ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Xingxing Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Wenjing Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Honghong Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Deling Yin
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.,Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| |
Collapse
|
33
|
AA-NAT, MT1 and MT2 Correlates with Cancer Stem-Like Cell Markers in Colorectal Cancer: Study of the Influence of Stage and p53 Status of Tumors. Int J Mol Sci 2017; 18:ijms18061251. [PMID: 28604612 PMCID: PMC5486074 DOI: 10.3390/ijms18061251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 12/15/2022] Open
Abstract
The characterization of colon cancer stem cells (CSCs) may help to develop novel diagnostic and therapeutic procedures. p53 loss increases the pool of CSCs in colorectal cancer (CRC). Recent reports suggest that the oncostatic effects of melatonin could be related to its ability to kill CSCs. Although there are no data linking the loss of p53 function and melatonin synthesis or signaling in cancer, melatonin does activate the p53 tumor-suppressor pathway in this disease. In this work, we analyze whether the expression of melatonin synthesis and signaling genes are related to the expression of CSC markers and the implication of p53 status in samples from patients with CRC. Arylalkylamine N-acetyltransferase (AA-NAT), MT1, and MT2 expression decreased in tumor samples versus normal mucosa samples in mutated p53 (mtp53) tumors versus those with wild-type p53 (wtp53). Further, AA-NAT and MT2 expression were lower in advanced stages of the disease in wtp53 tumors. On the contrary, CD44 and CD66c expression was higher in tumor versus normal mucosa in wtp53 tumors. Additionally, CD44 expression was higher in advanced stages of the disease regardless of the p53 status. Patients with CD44highCD66chigh and wtp53 tumors in advanced stages showed low expression of AA-NAT and MT2 in wtp53 tumors. These results could indicate a possible interaction of these pathways in CRC.
Collapse
|