1
|
Dilday T, Abt M, Ramos-Solís N, Dayal N, Larocque E, Oblak AL, Sintim HO, Yeh ES. Identification and characterization of a potent and selective HUNK inhibitor for treatment of HER2+ breast cancer. Cell Chem Biol 2024; 31:989-999.e7. [PMID: 38307028 PMCID: PMC11102337 DOI: 10.1016/j.chembiol.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2)-targeted agents have proven to be effective, however, the development of resistance to these agents has become an obstacle in treating HER2+ breast cancer. Evidence implicates HUNK as an anti-cancer target for primary and resistant HER2+ breast cancers. In this study, a selective inhibitor of HUNK is characterized alongside a phosphorylation event in a downstream substrate of HUNK as a marker for HUNK activity in HER2+ breast cancer. Rubicon has been established as a substrate of HUNK that is phosphorylated at serine (S) 92. Findings indicate that HUNK-mediated phosphorylation of Rubicon at S92 promotes both autophagy and tumorigenesis in HER2/neu+ breast cancer. HUNK inhibition prevents Rubicon S92 phosphorylation in HER2/neu+ breast cancer models and inhibits tumorigenesis. This study characterizes a downstream phosphorylation event as a measure of HUNK activity and identifies a selective HUNK inhibitor that has meaningful efficacy toward HER2+ breast cancer.
Collapse
Affiliation(s)
- Tinslee Dilday
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Melissa Abt
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Nicole Ramos-Solís
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Neetu Dayal
- Purdue Institute for Drug Discovery and Purdue Institute for Cancer Research, Purdue University, Lafayette, IN 47907, USA
| | - Elizabeth Larocque
- Purdue Institute for Drug Discovery and Purdue Institute for Cancer Research, Purdue University, Lafayette, IN 47907, USA
| | - Adrian L Oblak
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN 46202, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery and Purdue Institute for Cancer Research, Purdue University, Lafayette, IN 47907, USA
| | - Elizabeth S Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine (IUSM), Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
HUNK Gene Alterations in Breast Cancer. Biomedicines 2022; 10:biomedicines10123072. [PMID: 36551828 PMCID: PMC9775318 DOI: 10.3390/biomedicines10123072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Hormonally upregulated neu-associated kinase (HUNK) is a serine/threonine (S/T) protein kinase related to the adenosine monophosphate-activated protein kinase (AMPK) family of kinases. HUNK was originally discovered using a screen to identify kinases expressed in the mouse mammary gland. Therefore, the majority of studies to date have been carried out in models specific to this tissue, and the kinase was named to reflect its mammary gland-specific physiology and pathology. Prior studies show a clear pathogenic role for HUNK in breast cancer. HUNK is upregulated in response to oncogenic HER2/neu and Akt, and there is strong evidence that HUNK is critical for the survival of breast cancer cells. Further evidence shows that inhibiting HUNK using a variety of breast cancer models, including those that are resistant, inhibits tumorigenesis and metastasis. However, HUNK alterations are infrequent. Here, the incidence and consequence of HUNK alterations in breast cancer is reviewed using data mined from the online database cBioPortal and considered in relation to prior research studies.
Collapse
|
3
|
Angel PM, Schwamborn K, Comte-Walters S, Clift C, Ball LE, Mehta AS, Drake RR. Extracellular Matrix Imaging of Breast Tissue Pathologies by MALDI-Imaging Mass Spectrometry. Proteomics Clin Appl 2019; 13:e1700152. [PMID: 30251340 PMCID: PMC6730639 DOI: 10.1002/prca.201700152] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/31/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE A new method accessing proteins from extracellular matrix by imaging mass spectrometry (ECM IMS) has been recently reported. ECM IMS is evaluated for use in exploring breast tissue pathologies. EXPERIMENTAL DESIGN A tissue microarray (TMA) is analyzed that has 176 cores of biopsies and lumpectomies spanning breast pathologies of inflammation, hyperplasia, fibroadenoma, invasive ductal carcinoma, and invasive lobular carcinoma and normal adjacent to tumor (NAT). NAT is compared to subtypes by area under the receiver operating curve (ROC) >0.7. A lumpectomy is also characterized for collagen organization by microscopy and stromal protein distribution by IMS. LC-based high-resolution accurate mass (HRAM) proteomics is used to identify proteins from the lumpectomy. RESULTS TMA analysis shows distinct spectral signatures reflecting a heterogeneous tissue microenvironment. Ninety-four peaks show an ROC > 0.7 compared to NAT; NAT has overall higher intensities. Lumpectomy analysis by IMS visualizes a complex central tumor region with distal tumor regions. A total of 39 stromal proteins are identified by HRAM LC-based proteomics. Accurate mass matches between image data and LC-based proteomics demonstrate a heterogeneous collagen type environment in the central tumor. CONCLUSIONS Data portray the heterogeneous stromal microenvironment of breast pathologies, including alteration of multiple collagen-type patterns. ECM IMS is a promising new tool for investigating the stromal microenvironment of breast tissue including cancer.
Collapse
Affiliation(s)
- Peggi M. Angel
- Department of Cell and Molecular Pharmacology; MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC
| | | | - Susana Comte-Walters
- Department of Cell and Molecular Pharmacology; MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Cassandra Clift
- Department of Cell and Molecular Pharmacology; MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology; MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology; MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology; MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
4
|
Zambrano JN, Williams CJ, Williams CB, Hedgepeth L, Burger P, Dilday T, Eblen ST, Armeson K, Hill EG, Yeh ES. Staurosporine, an inhibitor of hormonally up-regulated neu-associated kinase. Oncotarget 2018; 9:35962-35973. [PMID: 30542510 PMCID: PMC6267597 DOI: 10.18632/oncotarget.26311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/21/2018] [Indexed: 01/27/2023] Open
Abstract
HUNK is a protein kinase that is implicated in HER2-positive (HER2+) breast cancer progression and resistance to HER2 inhibitors. Though prior studies suggest there is therapeutic potential for targeting HUNK in HER2+ breast cancer, pharmacological agents that target HUNK are yet to be identified. A recent study showed that the broad-spectrum kinase inhibitor staurosporine binds to the HUNK catalytic domain, but the effect of staurosporine on HUNK enzymatic activity was not tested. We now show that staurosporine inhibits the kinase activity of a full length HUNK protein. Our findings further suggest that inhibiting HUNK with staurosporine has a strong effect on suppressing cell viability of HER2/neu mammary and breast cancer cells, which express high levels of HUNK protein and are dependent on HUNK for survival. Significantly, we use in vitro and in vivo methods to show that staurosporine synergizes with the HER2 inhibitor lapatinib to restore sensitivity toward HER2 inhibition in a HER2 inhibitor resistant breast cancer model. Collectively, these studies indicate that pharmacological inhibition of HUNK kinase activity has therapeutic potential for HER2+ breast cancers, including HER2+ breast cancers that have developed drug resistance.
Collapse
Affiliation(s)
- Joelle N Zambrano
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Christina J Williams
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carly Bess Williams
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lonzie Hedgepeth
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Pieter Burger
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Tinslee Dilday
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Scott T Eblen
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kent Armeson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth G Hill
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|