1
|
Kots AY, Bian K. Regulation and Pharmacology of the Cyclic GMP and Nitric Oxide Pathway in Embryonic and Adult Stem Cells. Cells 2024; 13:2008. [PMID: 39682756 DOI: 10.3390/cells13232008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review summarizes recent advances in understanding the role of the nitric oxide (NO) and cyclic GMP (cGMP) pathway in stem cells. The levels of expression of various components of the pathway are changed during the differentiation of pluripotent embryonic stem cells. In undifferentiated stem cells, NO regulates self-renewal and survival predominantly through cGMP-independent mechanisms. Natriuretic peptides influence the growth of undifferentiated stem cells by activating particulate isoforms of guanylyl cyclases in a cGMP-mediated manner. The differentiation, recruitment, survival, migration, and homing of partially differentiated precursor cells of various types are sensitive to regulation by endogenous levels of NO and natriuretic peptides produced by stem cells, within surrounding tissues, and by the application of various pharmacological agents known to influence the cGMP pathway. Numerous drugs and formulations target various components of the cGMP pathway to influence the therapeutic efficacy of stem cell-based therapies. Thus, pharmacological manipulation of the cGMP pathway in stem cells can be potentially used to develop novel strategies in regenerative medicine.
Collapse
Affiliation(s)
- Alexander Y Kots
- Veteran Affairs Palo Alto Health Care System, US Department of Veteran Affairs, Palo Alto, CA 90304, USA
| | - Ka Bian
- Veteran Affairs Palo Alto Health Care System, US Department of Veteran Affairs, Palo Alto, CA 90304, USA
| |
Collapse
|
2
|
Kavousi S, Hosseinpour A, Bahmanzadegan Jahromi F, Attar A. Efficacy of mesenchymal stem cell transplantation on major adverse cardiovascular events and cardiac function indices in patients with chronic heart failure: a meta-analysis of randomized controlled trials. J Transl Med 2024; 22:786. [PMID: 39174960 PMCID: PMC11342608 DOI: 10.1186/s12967-024-05352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/29/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The effects of mesenchymal stem cells (MSCs) on heart failure (HF) have been controversial. This study was conducted to investigate whether the transplantation of MSCs after HF could help improve clinical outcomes and myocardial performance indices. METHODS Using a systematic approach, electronic databases were searched for randomized controlled trials (RCTs), which evaluated the transplantation of MSCs after HF. The outcomes owf interest included clinical outcomes and myocardial function indices. We also assessed the role of age, cause of heart failure, cell origin, cell number, type of donor (autologous/allogeneic), and route of cell delivery on these outcomes. Using the random-effects method, a relative risk (RR) or mean difference (MD) and their corresponding 95% confidence intervals (CI) were pooled. RESULTS Seventeen RCTs including 1684 patients (927 and 757 patients in the intervention and control arms, respectively) were enrolled. The RR (95% CI) of mortality was 0.78 (0.62; 0.99, p = 0.04) in the MSC group compared to the controls. HF rehospitalization decreased in the MSC group (RR = 0.85 (0.71-1.01), p = 0.06), but this was only significant in those who received autologous MSCs (RR = 0.67 (0.49; 0.90), p = 0.008). LVEF was significantly increased among those who received MSC (MD = 3.38 (1.89; 4.87), p < 0.001). LVESV (MD = -9.14 (-13.25; -5.03), p < 0.001), LVEDV (MD = -8.34 -13.41; -3.27), p < 0.001), and scar size (standardized MD = -0.32 (-0.60; -0.05), p = 0.02) were significantly decreased. NYHA class (MD = -0.19 (-0.34; -0.06), p = 0.006), BNP level (standardized MD = -0.28 (-0.50; -0.06), p = 0.01), and MLHFQ (MD = -11.55 (-16.77; -6.33), p = 0.005) significantly decreased and 6-min walk test significantly improved (MD = 36.86 (11.22; 62.50), p = 0.001) in the MSC group. Trials were not affected by the participants' etiology of heart failure, while trials with the autologous source of cells, MSC doses lower than 100 million cells, and intracoronary injection performed significantly better in some of the outcomes. CONCLUSION Transplantation of MSCs for ischemic or dilated heart failure patients may reduce all-cause mortality and improve clinical condition. Moreover, this treatment would improve left ventricular function indices and reduce scar size.
Collapse
Affiliation(s)
- Shahin Kavousi
- Shiraz University of Medical Sciences and Health Services, Shiraz, Iran
| | | | | | - Armin Attar
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran.
| |
Collapse
|
3
|
Shabani P, Ohanyan V, Alghadeer A, Gavazzi D, Dong F, Yin L, Kolz C, Shockling L, Enrick M, Zhang P, Shi X, Chilian W. Bone marrow cells contribute to seven different endothelial cell populations in the heart. Basic Res Cardiol 2024; 119:699-715. [PMID: 38963562 PMCID: PMC11319501 DOI: 10.1007/s00395-024-01065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP+ BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.
Collapse
Affiliation(s)
- Parisa Shabani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ammar Alghadeer
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Daniel Gavazzi
- Hiram College Physics and Computer Science Department, Hiram, OH, USA
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Christopher Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Lindsay Shockling
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Molly Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - William Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
4
|
Fatehi Hassanabad A, Zarzycki AN, Fedak PWM. Cellular and molecular mechanisms driving cardiac tissue fibrosis: On the precipice of personalized and precision medicine. Cardiovasc Pathol 2024; 71:107635. [PMID: 38508436 DOI: 10.1016/j.carpath.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Cardiac fibrosis is a significant contributor to heart failure, a condition that continues to affect a growing number of patients worldwide. Various cardiovascular comorbidities can exacerbate cardiac fibrosis. While fibroblasts are believed to be the primary cell type underlying fibrosis, recent and emerging data suggest that other cell types can also potentiate or expedite fibrotic processes. Over the past few decades, clinicians have developed therapeutics that can blunt the development and progression of cardiac fibrosis. While these strategies have yielded positive results, overall clinical outcomes for patients suffering from heart failure continue to be dire. Herein, we overview the molecular and cellular mechanisms underlying cardiac tissue fibrosis. To do so, we establish the known mechanisms that drive fibrosis in the heart, outline the diagnostic tools available, and summarize the treatment options used in contemporary clinical practice. Finally, we underscore the critical role the immune microenvironment plays in the pathogenesis of cardiac fibrosis.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Farahzadi R, Fathi E, Valipour B, Ghaffary S. Stem cells-derived exosomes as cardiac regenerative agents. IJC HEART & VASCULATURE 2024; 52:101399. [PMID: 38584674 PMCID: PMC10990901 DOI: 10.1016/j.ijcha.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Heart failure is a root cause of morbidity and mortality worldwide. Due to the limited regenerative capacity of the heart following myocardial injury, stem cell-based therapies have been considered a hopeful approach for improving cardiac regeneration. In recent years, different kinds of cell products have been investigated regarding their potential to treat patients with heart failure. Despite special attention to cell therapy and its products, therapeutic efficacy has been disappointing, and clinical application is not affordable. In the past few years, a subset of small extracellular vehicles (EVs), commonly known as "exosomes," was reported to grant regenerative and cardioprotective signals at a value similar to their donor cells. The conceptual advantage is that they may be ideally used without evoking a relevant recipient immune response or other adverse effects associated with viable cells. The evidence related to their beneficial effects in animal models of heart failure is rapidly growing. However, there is remarkable heterogeneity regarding source cells, isolation process, effective dosage, and delivery mode. This brief review will focus on the latest research and debates on regenerative potential and cardiac repair of exosomes from different sources, such as cardiac/non-cardiac stem, somatic cells, and progenitor cells. Overall, the current state of research on exosomes as an experimental therapy for heart diseases will be discussed.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Ghaffary
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Zhang ZH, Barajas-Martinez H, Jiang H, Huang CX, Antzelevitch C, Xia H, Hu D. Gene and stem cell therapy for inherited cardiac arrhythmias. Pharmacol Ther 2024; 256:108596. [PMID: 38301770 DOI: 10.1016/j.pharmthera.2024.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024]
Abstract
Inherited cardiac arrhythmias are a group of genetic diseases predisposing to sudden cardiac arrest, mainly resulting from variants in genes encoding cardiac ion channels or proteins involved in their regulation. Currently available therapeutic options (pharmacotherapy, ablative therapy and device-based therapy) can not preclude the occurrence of arrhythmia events and/or provide complete protection. With growing understanding of the genetic background and molecular mechanisms of inherited cardiac arrhythmias, advancing insight of stem cell technology, and development of vectors and delivery strategies, gene therapy and stem cell therapy may be promising approaches for treatment of inherited cardiac arrhythmias. Recent years have witnessed impressive progress in the basic science aspects and there is a clear and urgent need to be translated into the clinical management of arrhythmic events. In this review, we present a succinct overview of gene and cell therapy strategies, and summarize the current status of gene and cell therapy. Finally, we discuss future directions for implementation of gene and cell therapy in the therapy of inherited cardiac arrhythmias.
Collapse
Affiliation(s)
- Zhong-He Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
7
|
Deszcz I. Stem Cell-Based Therapy and Cell-Free Therapy as an Alternative Approach for Cardiac Regeneration. Stem Cells Int 2023; 2023:2729377. [PMID: 37954462 PMCID: PMC10635745 DOI: 10.1155/2023/2729377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
The World Health Organization reports that cardiovascular diseases (CVDs) represent 32% of all global deaths. The ineffectiveness of conventional therapies in CVDs encourages the development of novel, minimally invasive therapeutic strategies for the healing and regeneration of damaged tissue. The self-renewal capacity, multilineage differentiation, lack of immunogenicity, and immunosuppressive properties of mesenchymal stem cells (MSCs) make them a promising option for CVDs. However, growing evidence suggests that myocardial regeneration occurs through paracrine factors and extracellular vesicle (EV) secretion, rather than through differentiation into cardiomyocytes. Research shows that stem cells secrete or surface-shed into their culture media various cytokines, chemokines, growth factors, anti-inflammatory factors, and EVs, which constitute an MSC-conditioned medium (MSC-CM) or the secretome. The use of MSC-CM enhances cardiac repair through resident heart cell differentiation, proliferation, scar mass reduction, a decrease in infarct wall thickness, and cardiac function improvement comparable to MSCs without their side effects. This review highlights the limitations and benefits of therapies based on stem cells and their secretome as an innovative treatment of CVDs.
Collapse
Affiliation(s)
- Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland
| |
Collapse
|
8
|
Zheng H, Cao P, Su Z, Xia L. Insights into the roles of IL-10-producing regulatory B cells in cardiovascular disorders: recent advances and future perspectives. J Leukoc Biol 2023; 114:315-324. [PMID: 37284816 DOI: 10.1093/jleuko/qiad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Interleukin-10-producing regulatory B (B10) cells mediate the immunomodulatory functions of biosystems by secreting anti-inflammatory factors, thus playing vital roles in cardiovascular diseases such as viral myocarditis, myocardial infarction, and ischemia-reperfusion injury. However, several challenges hinder B10 cells from regulating the immunoreactivity of organisms in specific cardiovascular diseases, such as atherosclerotic disease. Regarding the regulatory mechanisms of B10 cells, the interplay between B10 cells and the cardiovascular and immune systems is complex and requires clarification. In this study, we summarize the roles of B10 cells in bacterial and aseptic heart injuries, address their regulatory functions in different stages of cardiovascular disorders, and discuss their challenges and opportunities in addressing cardiovascular diseases from bench to bedside.
Collapse
Affiliation(s)
- Huiqin Zheng
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang 212001, China
- International Genome Center, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, China
| | - Pei Cao
- International Genome Center, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, China
- Institute of Medical Immunology, Jiangsu University, No. 438 Jiefang Road, Zhenjiang 212001, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang 212001, China
- Institute of Hematological Disease, Jiangsu University, No. 438 Jiefang Road, Zhenjiang 212001, China
| |
Collapse
|
9
|
Wu M, Pelacho B, Claus P, De Buck S, Veltman D, Gillijns H, Holemans P, Pokreisz P, Caluwé E, Iglesias Colino E, Cohen S, Prosper F, Janssens S. Alginate sulfate-nanoparticles loaded with hepatocyte growth factor and insulin-like growth factor-1 improve left ventricular repair in a porcine model of myocardial ischemia reperfusion injury. Eur J Pharm Biopharm 2023; 184:83-91. [PMID: 36693545 DOI: 10.1016/j.ejpb.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Nanomedicine offers great potential for the treatment of cardiovascular disease and particulate systems have the capacity to markedly improve bioavailability of therapeutics. The delivery of pro-angiogenic hepatocyte growth factor (HGF) and pro-survival and pro-myogenic insulin-like growth factor (IGF-1) encapsulated in Alginate-Sulfate nanoparticles (AlgS-NP) might improve left ventricular (LV) functional recovery after myocardial infarction (MI). In a porcine ischemia-reperfusion model, MI is induced by 75 min balloon occlusion of the mid-left anterior descending coronary artery followed by reperfusion. After 1 week, pigs (n = 12) with marked LV-dysfunction (LV ejection fraction, LVEF < 45%) are randomized to fusion imaging-guided intramyocardial injections of 8 mg AlgS-NP prepared with 200 µg HGF and IGF-1 (HGF/IGF1-NP) or PBS (Control). Intramyocardial injection is safe and pharmacokinetic studies of Cy5-labeled NP confirm superior cardiac retention compared to intracoronary infusion. Seven weeks after intramyocardial-injection of HGF/IGF1-NP, infarct size, measured using magnetic resonance imaging, is significantly smaller than in controls and is associated with increased coronary flow reserve. Importantly, HGF/IGF1-NP-treated pigs show significantly increased LVEF accompanied by improved myocardial remodeling. These findings demonstrate the feasibility and efficacy of using AlgS-NP as a delivery system for growth factors and offer the prospect of innovative treatment for refractory ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Ming Wu
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium
| | - Beatriz Pelacho
- Hematology-Oncology and Regenerative Medicine, Clínica Universidad de Navarra and Center for Applied Medical Research, University of Navarra, Pamplona, PC 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, PC 31008, Spain
| | - Piet Claus
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium
| | - Stijn De Buck
- Department of Cardiology, University Hospital Leuven, B-3000 Leuven, Belgium
| | - Denise Veltman
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium
| | - Hilde Gillijns
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium
| | - Patricia Holemans
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium
| | - Peter Pokreisz
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium; Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Ellen Caluwé
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium
| | - Estefania Iglesias Colino
- Hematology-Oncology and Regenerative Medicine, Clínica Universidad de Navarra and Center for Applied Medical Research, University of Navarra, Pamplona, PC 31008, Spain
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Felipe Prosper
- Hematology-Oncology and Regenerative Medicine, Clínica Universidad de Navarra and Center for Applied Medical Research, University of Navarra, Pamplona, PC 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, PC 31008, Spain; Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Stefan Janssens
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium; Department of Cardiology, University Hospital Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
10
|
Höving AL, Schmidt KE, Kaltschmidt B, Kaltschmidt C, Knabbe C. The Role of Blood-Derived Factors in Protection and Regeneration of Aged Tissues. Int J Mol Sci 2022; 23:ijms23179626. [PMID: 36077021 PMCID: PMC9455681 DOI: 10.3390/ijms23179626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Tissue regeneration substantially relies on the functionality of tissue-resident endogenous adult stem cell populations. However, during aging, a progressive decline in organ function and regenerative capacities impedes endogenous repair processes. Especially the adult human heart is considered as an organ with generally low regenerative capacities. Interestingly, beneficial effects of systemic factors carried by young blood have been described in diverse organs including the heart, brain and skeletal muscle of the murine system. Thus, the interest in young blood or blood components as potential therapeutic agents to target age-associated malignancies led to a wide range of preclinical and clinical research. However, the translation of promising results from the murine to the human system remains difficult. Likewise, the establishment of adequate cellular models could help to study the effects of human blood plasma on the regeneration of human tissues and particularly the heart. Facing this challenge, this review describes the current knowledge of blood plasma-mediated protection and regeneration of aging tissues. The current status of preclinical and clinical research examining blood borne factors that act in stem cell-based tissue maintenance and regeneration is summarized. Further, examples of cellular model systems for a more detailed examination of selected regulatory pathways are presented.
Collapse
Affiliation(s)
- Anna L. Höving
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| | - Kazuko E. Schmidt
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
11
|
Mining the Mesenchymal Stromal Cell Secretome in Patients with Chronic Left Ventricular Dysfunction. Cells 2022; 11:cells11132092. [PMID: 35805175 PMCID: PMC9266164 DOI: 10.3390/cells11132092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Close examination of the initial results of cardiovascular cell therapy clinical trials indicates the importance of patient-specific differences on outcomes and the need to optimize or customize cell therapies. The fields of regenerative medicine and cell therapy have transitioned from using heterogeneous bone marrow mononuclear cells (BMMNCs) to mesenchymal stromal cells (MSCs), which are believed to elicit benefits through paracrine activity. Here, we examined MSCs from the BMMNCs of heart failure patients enrolled in the FOCUS-CCTRN trial. We sought to identify differences in MSCs between patients who improved and those who declined in heart function, regardless of treatment received. Although we did not observe differences in the cell profile of MSCs between groups, we did find significant differences in the MSC secretome profile between patients who improved or declined. We conclude that “mining” the MSC secretome may provide clues to better understand the impact of patient characteristics on outcomes after cell therapy and this knowledge can inform future cell therapy trials.
Collapse
|
12
|
Shah P, Chandra S. Review on emergence of nanomaterial coatings in bio-engineered cardiovascular stents. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Mathur A, Sim DS, Choudry F, Veerapen J, Colicchia M, Turlejski T, Hussain M, Hamshere S, Locca D, Rakhit R, Crake T, Kastrup J, Agrawal S, Jones DA, Martin J. Five‐year follow‐up of intracoronary autologous cell therapy in acute myocardial infarction: the REGENERATE‐AMI trial. ESC Heart Fail 2022; 9:1152-1159. [PMID: 35043578 PMCID: PMC8934988 DOI: 10.1002/ehf2.13786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Aims The long‐term outcomes of the intracoronary delivery of autologous bone marrow‐derived cells (BMCs) after acute myocardial infarction are not well established. Following the promising 1 year results of the REGENERATE‐AMI trial (despite it not achieving its primary endpoint), this paper presents the analysis of the 5 year clinical outcomes of these acute myocardial infarction patients who were treated with an early intracoronary autologous BMC infusion or placebo. Methods and results A 5 year follow‐up of major adverse cardiac events (defined as the composite of all‐cause death, recurrent myocardial infarction, and all coronary revascularization) and of rehospitalization for heart failure was completed in 85 patients (BMC n = 46 and placebo n = 39). The incidence of major adverse cardiac events was similar between the BMC‐treated patients and the placebo group (26.1% vs. 18.0%, P = 0.41). There were no cases of cardiac death in either group, but an increase in non‐cardiac death was seen in the BMC group (6.5% vs. 0%, P = 0.11). The rates of recurrent myocardial infarction and repeat revascularization were similar between the two groups. There were no cases of rehospitalization for heart failure in either group. Conclusion This 5 year follow‐up analysis of the REGENERATE‐AMI trial did not show an improvement in clinical outcomes for patients treated with cell therapy. This contrasts with the 1 year results which showed improvements in the surrogate outcome measures of ejection fraction and myocardial salvage index.
Collapse
Affiliation(s)
- Anthony Mathur
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Doo Sun Sim
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- Department of Cardiovascular Medicine Chonnam National University Hospital, Chonnam National University School of Medicine Gwangju Korea
| | - Fizzah Choudry
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Jessry Veerapen
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Martina Colicchia
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Tymoteusz Turlejski
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Mohsin Hussain
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Stephen Hamshere
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Didier Locca
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Roby Rakhit
- Department of Cardiology The Royal Free Hospital, Royal Free London Foundation Trust London UK
| | - Tom Crake
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Jens Kastrup
- Rigshospitalet and University of Copenhagen Copenhagen Denmark
| | - Samir Agrawal
- Haemato‐Oncology, Barts Health NHS Trust & Immunobiology, Blizard Institute Queen Mary University of London London UK
| | - Daniel A. Jones
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | | |
Collapse
|
14
|
Chitosan as Functional Biomaterial for Designing Delivery Systems in Cardiac Therapies. Gels 2021; 7:gels7040253. [PMID: 34940314 PMCID: PMC8702013 DOI: 10.3390/gels7040253] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are a leading cause of mortality across the globe, and transplant surgeries are not always successful since it is not always possible to replace most of the damaged heart tissues, for example in myocardial infarction. Chitosan, a natural polysaccharide, is an important biomaterial for many biomedical and pharmaceutical industries. Based on the origin, degree of deacetylation, structure, and biological functions, chitosan has emerged for vital tissue engineering applications. Recent studies reported that chitosan coupled with innovative technologies helped to load or deliver drugs or stem cells to repair the damaged heart tissue not just in a myocardial infarction but even in other cardiac therapies. Herein, we outlined the latest advances in cardiac tissue engineering mediated by chitosan overcoming the barriers in cardiac diseases. We reviewed in vitro and in vivo data reported dealing with drug delivery systems, scaffolds, or carriers fabricated using chitosan for stem cell therapy essential in cardiac tissue engineering. This comprehensive review also summarizes the properties of chitosan as a biomaterial substrate having sufficient mechanical stability that can stimulate the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering.
Collapse
|
15
|
Bassetti B, Rurali E, Gambini E, Pompilio G. Son of a Lesser God: The Case of Cell Therapy for Refractory Angina. Front Cardiovasc Med 2021; 8:709795. [PMID: 34552966 PMCID: PMC8450394 DOI: 10.3389/fcvm.2021.709795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
In the last decades, various non-pharmacological solutions have been tested on top of medical therapy for the treatment of patients affected by refractory angina (RA). Among these therapeutics, neuromodulation, external counter-pulsation and coronary sinus constriction have been recently introduced in the guidelines for the management of RA in United States and Europe. Notably and paradoxically, although a consistent body of evidence has proposed cell-based therapies (CT) as safe and salutary for RA outcome, CT has not been conversely incorporated into current international guidelines yet. As a matter of fact, published randomized controlled trials (RCT) and meta-analyses (MTA) cumulatively indicated that CT can effectively increase perfusion, physical function and well-being, thus reducing angina symptoms and drug assumption in RA patients. In this review, we (i) provide an updated overview of novel non-pharmacological therapeutics included in current guidelines for the management of patients with RA, (ii) discuss the Level of Evidence stemmed from available clinical trials for each recommended treatment, and (iii) focus on evidence-based CT application for the management of RA.
Collapse
Affiliation(s)
- Beatrice Bassetti
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Erica Rurali
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Elisa Gambini
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Oloker Therapeutics S.r.l., Bari, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Dynamic Patterns of N6-Methyladenosine Profiles of Messenger RNA Correlated with the Cardiomyocyte Regenerability during the Early Heart Development in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5537804. [PMID: 34413927 PMCID: PMC8369182 DOI: 10.1155/2021/5537804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
N6-Methyladenosine (m6A) plays important roles in regulating mRNA processing. Despite rapid progress in this field, little is known about the role and mechanism of m6A modification in myocardial development and cardiomyocyte regeneration. Existing studies have shown that the heart tissues of newborn mice have the capability of proliferation and regeneration, but its mechanism, particularly its relation to m6A methylation, remains unknown. Methods. To systematically profile the mRNA m6A modification pattern in the heart tissues of mice at different developmental stages, we jointly performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of heart tissues of mice, respectively, aged 1 day old, 7 days old, and 28 days old. Results. We identified the linkages and association between differentially expressed mRNA transcripts and hyper or hypomethylated m6A peaks in C57BL/6J mice at different heart developmental stages. Results showed that the amount of m6A peaks and the level of m6A modification were the lowest in the heart of mice at 1 day old. By contrast, heart tissues from 7-day-old mice tended to possess the most m6A peaks and the highest global m6A level. However, the m6A characteristics of myocardial tissue changed little after 7 days old as compared to that of 1 day old. Specifically, we found 1269 downmethylated genes of 1434 methylated genes in 7-day-old mouse heart tissues as compared to those in 1-day-old mice. Hypermethylation of some specific genes may correlate with the heart's strong proliferative and regenerative capability at the first day after birth. In terms of m6A density, the tendency shifted from coding sequences (CDS) to 3′-untranslated regions (3′UTR) and stop codon with the progression of heart development. In addition, some genes demonstrated remarkable changes both in methylation and expression, like kiss1, plekha6, and megf6, which may play important roles in proliferation. Furthermore, signaling pathways highly related to proliferation such as “Wnt signaling pathway,” “ECM-receptor interaction,” and “cardiac chamber formation” were significantly enriched in 1-day-old methylated genes. Conclusions. Our results reveal a pattern that different m6A modifications are distributed in C57BL/6J heart tissue at different developmental stages, which provides new insights into a novel function of m6A methylation of mRNA in myocardial development and regeneration.
Collapse
|
17
|
Atorvastatin Pretreatment Ameliorates Mesenchymal Stem Cell Migration through miR-146a/CXCR4 Signaling. Tissue Eng Regen Med 2021; 18:863-873. [PMID: 34260048 DOI: 10.1007/s13770-021-00362-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND We previously found that atorvastatin (ATV) enhanced mesenchymal stem cells (MSCs) migration, by a yet unknown mechanism. CXC chemokine receptor 4 (CXCR4) is critical to cell migration and regulated by microRNA-146a (miR-146a). Therefore, this study aimed to assess whether ATV ameliorates MSCs migration through miR-146a/CXCR4 signaling. METHODS Expression of CXCR4 was evaluated by flow cytometry. Expression of miR-146a was examined by reverse transcription-quantitative polymerase chain reaction. A transwell system was used to assess the migration ability of MSCs. Recruitment of systematically delivered MSCs to the infarcted heart was evaluated in Sprague-Dawley rats with acute myocardial infarction (AMI). Mimics of miR-146a were used in vitro, and miR-146a overexpression lentivirus was used in vivo, to assess the role of miR-146a in the migration ability of MSCs. RESULTS The results showed that ATV pretreatment in vitro upregulated CXCR4 and induced MSCs migration. In addition, flow cytometry demonstrated that miR-146a mimics suppressed CXCR4, and ATV pretreatment no longer ameliorated MSCs migration because of decreased CXCR4. In the AMI model, miR-146a-overexpressing MSCs increased infarct size and fibrosis. CONCLUSION The miR-146a/CXCR4 signaling pathway contributes to MSCs migration and homing induced by ATV pretreatment. miR-146a may be a novel therapeutic target for stimulating MSCs migration to the ischemic tissue for improved repair.
Collapse
|
18
|
Dedkov EI. Large- and Medium-sized Arteries Remaining in Transmural Scar Distal to Permanent Coronary Ligation Undergo Neointimal Hyperplasia and Inward Remodeling. J Histochem Cytochem 2021; 69:321-338. [PMID: 33749360 PMCID: PMC8091545 DOI: 10.1369/00221554211004297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to investigate the structural integrity and dynamic changes in chronically occluded residual arteries found in post-myocardial infarction (MI) scar. A transmural MI was induced in middle-aged, male Sprague-Dawley rats by left coronary artery ligation. The rats were euthanized 3 days and 1, 2, 4, 8, and 12 weeks after MI, and their hearts were processed into paraffin for histology, immunohistochemistry, and quantitative morphometry. It has been found that large- and medium-sized arteries were able to survive inside the transmural scars for 12 post-MI weeks. Furthermore, most residual arteries preserved their structural integrity for up to 2 weeks post-MI, but gradually all disused vessels had undergone neointimal hyperplasia and inward remodeling at later time periods. In addition, the replacement of vascular smooth muscle cells in the wall of residual arteries by extracellular matrix components led to a disruption of the vessel integrity and progressive obliteration of their lumen between 4 and 12 post-MI weeks. Taken together, this study demonstrate that residual arteries in post-infarcted region were capable of maintaining their structural integrity, including the patent lumen, during two post-MI weeks, suggesting that during this period they can be used as potential conduits for conceivable reflow of arterial blood within the scarred region of the heart.
Collapse
Affiliation(s)
- Eduard I. Dedkov
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey
| |
Collapse
|
19
|
Rheault-Henry M, White I, Grover D, Atoui R. Stem cell therapy for heart failure: Medical breakthrough, or dead end? World J Stem Cells 2021; 13:236-259. [PMID: 33959217 PMCID: PMC8080540 DOI: 10.4252/wjsc.v13.i4.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure continues to be one of the leading causes of morbidity and mortality worldwide. Myocardial infarction is the primary causative agent of chronic heart failure resulting in cardiomyocyte necrosis and the subsequent formation of fibrotic scar tissue. Current pharmacological and non-pharmacological therapies focus on managing symptoms of heart failure yet remain unable to reverse the underlying pathology. Heart transplantation usually cannot be relied on, as there is a major discrepancy between the availability of donors and recipients. As a result, heart failure carries a poor prognosis and high mortality rate. As the heart lacks significant endogenous regeneration potential, novel therapeutic approaches have incorporated the use of stem cells as a vehicle to treat heart failure as they possess the ability to self-renew and differentiate into multiple cell lineages and tissues. This review will discuss past, present, and future clinical trials, factors that influence stem cell therapy outcomes as well as ethical and safety considerations. Preclinical and clinical studies have shown a wide spectrum of outcomes when applying stem cells to improve cardiac function. This may reflect the infancy of clinical trials and the limited knowledge on the optimal cell type, dosing, route of administration, patient parameters and other important variables that contribute to successful stem cell therapy. Nonetheless, the field of stem cell therapeutics continues to advance at an unprecedented pace. We remain cautiously optimistic that stem cells will play a role in heart failure management in years to come.
Collapse
Affiliation(s)
| | - Ian White
- Northern Ontario School of Medicine, Sudbury P3E 2C6, Ontario, Canada
| | - Diya Grover
- Ross University School of Medicine, St. Michael BB11093, Barbados
| | - Rony Atoui
- Division of Cardiac Surgery, Health Sciences North, Northern Ontario School of Medicine, Sudbury P3E 3Y9, Ontario, Canada
| |
Collapse
|
20
|
Välimäki MJ, Leigh RS, Kinnunen SM, March AR, de Sande AH, Kinnunen M, Varjosalo M, Heinäniemi M, Kaynak BL, Ruskoaho H. GATA-targeted compounds modulate cardiac subtype cell differentiation in dual reporter stem cell line. Stem Cell Res Ther 2021; 12:190. [PMID: 33736688 PMCID: PMC7977156 DOI: 10.1186/s13287-021-02259-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Pharmacological modulation of cell fate decisions and developmental gene regulatory networks holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or exogenously delivered progenitor cells in order to promote cardiac regeneration. Methods Transcription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID. Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression. Results GATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5 inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+). Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4. This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1 demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene expression. Conclusions Collectively, these results indicate the potential for therapeutic alteration of cell fate decisions and pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within this study could be used to develop regenerative strategies for myocardial regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02259-z.
Collapse
Affiliation(s)
- Mika J Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Robert S Leigh
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Sini M Kinnunen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Alexander R March
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Ana Hernández de Sande
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Bogac L Kaynak
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| |
Collapse
|
21
|
Mousavi A, Vahdat S, Baheiraei N, Razavi M, Norahan MH, Baharvand H. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering. ACS Biomater Sci Eng 2020; 7:55-82. [PMID: 33320525 DOI: 10.1021/acsbiomaterials.0c01422] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult cardiomyocytes are terminally differentiated cells that result in minimal intrinsic potential for the heart to self-regenerate. The introduction of novel approaches in cardiac tissue engineering aims to repair damages from cardiovascular diseases. Recently, conductive biomaterials such as carbon- and gold-based nanomaterials, conductive polymers, and ceramics that have outstanding electrical conductivity, acceptable mechanical properties, and promoted cell-cell signaling transduction have attracted attention for use in cardiac tissue engineering. Nevertheless, comprehensive classification of conductive biomaterials from the perspective of cardiac cell function is a subject for discussion. In the present review, we classify and summarize the unique properties of conductive biomaterials considered beneficial for cardiac tissue engineering. We attempt to cover recent advances in conductive biomaterials with a particular focus on their effects on cardiac cell functions and proposed mechanisms of action. Finally, current problems, limitations, challenges, and suggested solutions for applications of these biomaterials are presented.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Sadaf Vahdat
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Department of Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, México
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
22
|
Brasil GV, Silva dos Santos D, Mendonça EA, Mesquita FCP, Kasai-Brunswick TH, da Cunha ST, Pimentel CF, de Vasconcelos-dos-Santos A, Mendez-Otero R, de Azevedo Filho CF, Goldenberg RCDS, Campos de Carvalho AC. Therapy with Cardiomyocytes Derived from Pluripotent Cells in Chronic Chagasic Cardiomyopathy. Cells 2020; 9:cells9071629. [PMID: 32645832 PMCID: PMC7408395 DOI: 10.3390/cells9071629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/05/2023] Open
Abstract
Chagas disease discovered more than a century ago remains an incurable disease. The objective of this work was to investigate the therapeutic potential of cardiomyocytes derived from mouse embryonic stem cells (CM-mESC) in a model of chronic Chagasic cardiomyopathy (CCC). Mouse embryonic stem cells (mESC) were characterized, transduced with luciferase, and submitted to cardiac differentiation. CM-mESC were labeled with superparamagnetic iron oxide particles. To induce CCC, mice were infected with Brazil strain trypomastigotes. At 150 days post-infection (dpi), infected animals were treated with CM-mESC or PBS. Cells were detected by magnetic resonance imaging (MRI) and bioluminescence. Cardiac function was evaluated by MRI and electrocardiogram at 150 and 196 dpi. CCC mice showed significant differences in MRI and ECG parameters compared to non-infected mice. However, no differences were observed in contractile and electrical parameters between cell and PBS injected groups, 45 days after cell transplantation. Cells were detected 24 h after transplantation by MRI. CM-mESC bioluminescence tracking demonstrated over 90% decrease in signal 8 days after treatment. Nevertheless, the Infected + CM-mESC group showed a significant reduction in the percentage of collagen fibers when compared to the Infected + PBS group. In conclusion, CM-mESC therapy was not effective in reversing cardiac functional changes induced by Chagas disease despite some improvement in myocardial fibrosis.
Collapse
Affiliation(s)
- Guilherme Visconde Brasil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Danúbia Silva dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Elias Ataide Mendonça
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Fernanda Cristina Paccola Mesquita
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Tais Hanae Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil
| | - Sandro Torrentes da Cunha
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Cibele Ferreira Pimentel
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Andréia de Vasconcelos-dos-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
| | - Rosália Mendez-Otero
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil
| | | | - Regina Coeli dos Santos Goldenberg
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil
| | - Antonio Carlos Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil; (G.V.B.); (D.S.d.S.); (E.A.M.); (F.C.P.M.); (T.H.K.-B.); (S.T.d.C. ); (C.F.P.); (A.d.V.-d.-S.); (R.M.-O.); (R.C.d.S.G.)
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil
- Correspondence:
| |
Collapse
|
23
|
Rogers RG, Ciullo A, Marbán E, Ibrahim AG. Extracellular Vesicles as Therapeutic Agents for Cardiac Fibrosis. Front Physiol 2020; 11:479. [PMID: 32528309 PMCID: PMC7255103 DOI: 10.3389/fphys.2020.00479] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Heart disease remains an increasing major public health challenge in the United States and worldwide. A common end-organ feature in diseased hearts is myocardial fibrosis, which stiffens the heart and interferes with normal pump function, leading to pump failure. The development of cells for regenerative therapy has been met with many pitfalls on its path to clinical translation. Recognizing that regenerative cells secrete therapeutically bioactive vesicles has paved the way to circumvent many failures of cell therapy. In this review, we provide an overview of extracellular vesicles (EVs), with a focus on their utility as therapeutic agents for cardiac regeneration. We also highlight the engineering potential of EVs to enhance their therapeutic application.
Collapse
Affiliation(s)
| | | | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | |
Collapse
|
24
|
Synergistic effects of adipose-derived stem cells combined with decellularized myocardial matrix on the treatment of myocardial infarction in rats. Life Sci 2019; 239:116891. [DOI: 10.1016/j.lfs.2019.116891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
|
25
|
António N. Combining mesenchymal stem cell therapy and exercise training in myocardial infarction: The perfect symbiosis? Rev Port Cardiol 2019; 38:657-659. [PMID: 31785853 DOI: 10.1016/j.repc.2019.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Natália António
- Department of Cardiology, Coimbra Hospital and Universitary Center (Polo HUC), Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Clinical Academic Center of Coimbra, Coimbra, Portugal.
| |
Collapse
|
26
|
Vahdat S, Pahlavan S, Mahmoudi E, Barekat M, Ansari H, Bakhshandeh B, Aghdami N, Baharvand H. Expansion of Human Pluripotent Stem Cell-derived Early Cardiovascular Progenitor Cells by a Cocktail of Signaling Factors. Sci Rep 2019; 9:16006. [PMID: 31690816 PMCID: PMC6831601 DOI: 10.1038/s41598-019-52516-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/16/2019] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular progenitor cells (CPCs) derived from human pluripotent stem cells (hPSCs) are proposed to be invaluable cell sources for experimental and clinical studies. This wide range of applications necessitates large-scale production of CPCs in an in vitro culture system, which enables both expansion and maintenance of these cells. In this study, we aimed to develop a defined and efficient culture medium that uses signaling factors for large-scale expansion of early CPCs, called cardiogenic mesodermal cells (CMCs), which were derived from hPSCs. Chemical screening resulted in a medium that contained a reproducible combination of three factors (A83-01, bFGF, and CHIR99021) that generated 1014 CMCs after 10 passages without the propensity for tumorigenicity. Expanded CMCs retained their gene expression pattern, chromosomal stability, and differentiation tendency through several passages and showed both the safety and possible cardio-protective potentials when transplanted into the infarcted rat myocardium. These CMCs were efficiently cryopreserved for an extended period of time. This culture medium could be used for both adherent and suspension culture conditions, for which the latter is required for large-scale CMC production. Taken together, hPSC-derived CMCs exhibited self-renewal capacity in our simple, reproducible, and defined medium. These cells might ultimately be potential, promising cell sources for cardiovascular studies.
Collapse
Affiliation(s)
- Sadaf Vahdat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Elena Mahmoudi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Barekat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
27
|
António N. Combining mesenchymal stem cell therapy and exercise training in myocardial infarction: The perfect symbiosis? REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.repce.2019.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Diedrichs F, Stolk M, Jürchott K, Haag M, Sittinger M, Seifert M. Enhanced Immunomodulation in Inflammatory Environments Favors Human Cardiac Mesenchymal Stromal-Like Cells for Allogeneic Cell Therapies. Front Immunol 2019; 10:1716. [PMID: 31396228 PMCID: PMC6665953 DOI: 10.3389/fimmu.2019.01716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022] Open
Abstract
Rising numbers of patients with cardiovascular diseases and limited availability of donor hearts require new and improved therapy strategies. Human atrial appendage-derived cells (hAACs) are promising candidates for an allogeneic cell-based treatment. In this study, we evaluated their inductive and modulatory capacity regarding immune responses and underlying key mechanisms in vitro. For this, cryopreserved hAACs were either cultured in the presence of interferon-gamma (IFNγ) or left unstimulated. The expression of characteristic mesenchymal stromal cell markers (CD29, CD44, CD73, CD105, CD166) was revealed by flow cytometry that also highlighted a predominant negativity for CD90. A low immunogeneic phenotype in an inflammatory milieu was shown by lacking expression of co-stimulatory molecules and upregulation of the inhibitory ligands PD-L1 and PD-L2, despite de novo expression of HLA-DR. Co-cultures of hAACs with allogeneic peripheral blood mononuclear cells, proved their low immunogeneic state by absence of induced T cell proliferation and activation. Additionally, elevated levels of IL-1β, IL-33, and IL-10 were detectable in those cell culture supernatants. Furthermore, the immunomodulatory potential of hAACs was assessed in co-cultures with αCD3/αCD28-activated peripheral blood mononuclear cells. Here, a strong inhibition of T cell proliferation and reduction of pro-inflammatory cytokines (IFNγ, TNFα, TNFβ, IL-17A, IL-2) were observable after pre-stimulation of hAACs with IFNγ. Transwell experiments confirmed that mostly soluble factors are responsible for these suppressive effects. We were able to identify indolamin-2,3-dioxygenase (IDO) as a potential key player through a genome-wide gene expression analysis and could demonstrate its involvement in the observed immunological responses. While the application of blocking antibodies against both PD-1 ligands did not affect the immunomodulation by hAACs, 1-methyl-L-tryptophan as specific inhibitor of IDO was able to restore proliferation and to lower apoptosis of T cells. In conclusion, hAACs represent a cardiac-derived mesenchymal stromal-like cell type with a high potential for the application in an allogeneic setting, since they do not trigger T cell responses and even increase their immunomodulatory potential in inflammatory environments.
Collapse
Affiliation(s)
- Falk Diedrichs
- Berlin Institute of Health (BIH), Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Meaghan Stolk
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karsten Jürchott
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marion Haag
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Tissue Engineering Laboratory, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Sittinger
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Tissue Engineering Laboratory, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martina Seifert
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
29
|
Marbán E. The Secret Life of Exosomes: What Bees Can Teach Us About Next-Generation Therapeutics. J Am Coll Cardiol 2019; 71:193-200. [PMID: 29325643 DOI: 10.1016/j.jacc.2017.11.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Mechanistic exploration has pinpointed nanosized extracellular vesicles, known as exosomes, as key mediators of the benefits of cell therapy. Exosomes appear to recapitulate the benefits of cells and more. As durable azoic entities, exosomes have numerous practical and conceptual advantages over cells. Will cells end up just being used to manufacture exosomes, or will they find lasting value as primary therapeutic agents? Here, a venerable natural process-the generation of honey-serves as an instructive parable. Flowers make nectar, which bees collect and process into honey. Cells make conditioned medium, which laboratory workers collect and process into exosomes. Unlike flowers, honey is durable, compact, and nutritious, but these facts do not negate the value of flowers themselves. The parallels suggest new ways of thinking about next-generation therapeutics.
Collapse
|
30
|
MacPherson A, Kimmelman J. Ethical development of stem-cell-based interventions. Nat Med 2019; 25:1037-1044. [PMID: 31270501 DOI: 10.1038/s41591-019-0511-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
The process of developing new and complex stem-cell-based therapeutics is incremental and requires decades of sustained collaboration among different stakeholders. In this Perspective, we address key ethical and policy challenges confronting the clinical translation of stem-cell-based interventions (SCBIs), including premature diffusion of SCBIs to clinical practice, assessment of risk in trials, obtaining valid informed consent for research participants, balanced and complete scientific reporting and public communications, regulation, and equitable access to treatment. We propose a way forward for translating these therapies with the above challenges in mind.
Collapse
Affiliation(s)
- Amanda MacPherson
- Biomedical Ethics Unit, STREAM Research Group, McGill University, Montreal, Canada
| | - Jonathan Kimmelman
- Biomedical Ethics Unit, STREAM Research Group, McGill University, Montreal, Canada.
| |
Collapse
|
31
|
Simon MA, Bachman TN, Watson J, Baldwin JT, Wagner WR, Borovetz HS. Current and Future Considerations in the Use of Mechanical Circulatory Support Devices: An Update, 2008–2018. Annu Rev Biomed Eng 2019; 21:33-60. [DOI: 10.1146/annurev-bioeng-062117-121120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our review in the 2008 volume of this journal detailed the use of mechanical circulatory support (MCS) for treatment of heart failure (HF). MCS initially utilized bladder-based blood pumps generating pulsatile flow; these pulsatile flow pumps have been supplanted by rotary blood pumps, in which cardiac support is generated via the high-speed rotation of computationally designed blading. Different rotary pump designs have been evaluated for their safety, performance, and efficacy in clinical trials both in the United States and internationally. The reduced size of the rotary pump designs has prompted research and development toward the design of MCS suitable for infants and children. The past decade has witnessed efforts focused on tissue engineering–based therapies for the treatment of HF. This review explores the current state and future opportunities of cardiac support therapies within our larger understanding of the treatment options for HF.
Collapse
Affiliation(s)
- Marc A. Simon
- Department of Medicine, Vascular Medicine Institute, and Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Timothy N. Bachman
- Department of Medicine, Vascular Medicine Institute, and Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - John Watson
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - J. Timothy Baldwin
- National Heart, Blood, and Lung Institute, Bethesda, Maryland 20892, USA
| | - William R. Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Harvey S. Borovetz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
32
|
Karpov AA, Puzanov MV, Ivkin DY, Krasnova MV, Anikin NA, Docshin PM, Moiseeva OM, Galagudza MM. Non-inferiority of microencapsulated mesenchymal stem cells to free cells in cardiac repair after myocardial infarction: A rationale for using paracrine factor(s) instead of cells. Int J Exp Pathol 2019; 100:102-113. [PMID: 31017330 DOI: 10.1111/iep.12312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 02/06/2019] [Accepted: 02/24/2019] [Indexed: 12/30/2022] Open
Abstract
A major translational barrier to the use of stem cell (SC)-based therapy in patients with myocardial infarction (MI) is the lack of a clear understanding of the mechanism(s) underlying the cardioprotective effect of SCs. Numerous paracrine factors from SCs may account for reduction in infarct size, but myocardial salvage associated with transdifferentiation of SCs into vascular cells as well as cardiomyocyte-like cells may be involved too. In this study, bone marrow-derived rat mesenchymal SC (MSCs) were microencapsulated in alginate preventing viable cell release while supporting their secretory phenotype. The hypothesis on the key role of paracrine factors from MSCs in their cardioprotective activity was tested by comparison of the effect of encapsulated vs free MSCs in the rat model of MI. Intramyocardial administration of both free and encapsulated MSCs after MI caused reduction in scar size (12.1 ± 6.83 and 14.7 ± 4.26%, respectively, vs 21.7 ± 6.88% in controls, P = 0.015 and P = 0.03 respectively). Scar size was not different in animals treated with free and encapsulated MSC (P = 0.637). These data provide evidence that MSC-derived growth factors and cytokines are crucial for cardioprotection elicited by MSC. Administration of either free or encapsulated MSCs was not arrhythmogenic in non-infarcted rats. The consistency of our data with the results of other studies on the major role of MSC secretome components in cardiac protection further support the theory that the use of live, though encapsulated, cells for MI therapy may be replaced with heart-targeted-sustained delivery of growth factors/cytokines.
Collapse
Affiliation(s)
- Andrey A Karpov
- Almazov National Medical Research Centre, St-Petersburg, Russia
| | - Maxim V Puzanov
- Almazov National Medical Research Centre, St-Petersburg, Russia
| | - Dmitry Yu Ivkin
- Saint Petersburg State Chemical Pharmaceutical Academy, St. Petersburg, Russia
| | - Marina V Krasnova
- Saint Petersburg State Chemical Pharmaceutical Academy, St. Petersburg, Russia
| | - Nikita A Anikin
- Department of Pathophysiology, First Pavlov State Medical, University of Saint Petersburg, St. Petersburg, Russia
| | - Pavel M Docshin
- Almazov National Medical Research Centre, St-Petersburg, Russia
| | - Olga M Moiseeva
- Almazov National Medical Research Centre, St-Petersburg, Russia
| | | |
Collapse
|
33
|
Chen J, Song Y, Huang Z, Zhang N, Xie X, Liu X, Yang H, Wang Q, Li M, Li Q, Gong H, Qian J, Pang Z, Ge J. Modification with CREKA Improves Cell Retention in a Rat Model of Myocardial Ischemia Reperfusion. Stem Cells 2019; 37:663-676. [PMID: 30779865 DOI: 10.1002/stem.2983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/06/2019] [Accepted: 01/21/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Jing Chen
- Department of Cardiology; Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases; Shanghai People's Republic of China
| | - Yanan Song
- Department of Cardiology; Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases; Shanghai People's Republic of China
| | - Zheyong Huang
- Department of Cardiology; Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases; Shanghai People's Republic of China
| | - Ning Zhang
- Department of Cardiology; Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases; Shanghai People's Republic of China
| | - Xinxing Xie
- Department of Cardiology; Rizhao Heart Hospital; Rizhao Shandong People's Republic of China
| | - Xin Liu
- Department of Cardiology; Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases; Shanghai People's Republic of China
| | - Hongbo Yang
- Department of Cardiology; Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases; Shanghai People's Republic of China
| | - Qiaozi Wang
- Department of Cardiology; Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases; Shanghai People's Republic of China
| | - Minghui Li
- Department of Cardiology; Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases; Shanghai People's Republic of China
| | - Qiyu Li
- Department of Cardiology; Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases; Shanghai People's Republic of China
| | - Hui Gong
- Department of Cardiology; Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases; Shanghai People's Republic of China
| | - Juying Qian
- Department of Cardiology; Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases; Shanghai People's Republic of China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; Shanghai People's Republic of China
| | - Junbo Ge
- Department of Cardiology; Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases; Shanghai People's Republic of China
- Institute of Biomedical Science; Fudan University; Shanghai People's Republic of China
| |
Collapse
|
34
|
Saludas L, Garbayo E, Mazo M, Pelacho B, Abizanda G, Iglesias-Garcia O, Raya A, Prósper F, Blanco-Prieto MJ. Long-Term Engraftment of Human Cardiomyocytes Combined with Biodegradable Microparticles Induces Heart Repair. J Pharmacol Exp Ther 2019; 370:761-771. [DOI: 10.1124/jpet.118.256065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
|
35
|
Wang BH, Liew D, Huang KW, Huang L, Tang W, Kelly DJ, Reid C, Liu Z. The Challenges of Stem Cell Therapy in Myocardial Infarction and Heart Failure and the Potential Strategies to Improve the Outcomes. ACTA ACUST UNITED AC 2018. [DOI: 10.1142/s1793984418410088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease remains the single highest global cause of death and a significant financial burden on the healthcare system. Despite the advances in medical treatments, the prevalence and mortality for heart failure remain unacceptably high. New approaches are urgently needed to reduce this burden and improve patient outcomes and quality of life. One such promising approach is stem cell therapy, including embryonic stem cells, bone marrow derived stem cells, induced pluripotent stem cells and mesenchymal stem cells. However, the cardiac microenvironment following myocardial infarction poses huge challenges with inflammation, adequate retention, engraftment and functional incorporation all crucial concerns. The lack of cardiac regeneration, cell viability and functional improvement has hindered the success of stem cell therapy in clinical settings. The use of biomaterial scaffolds in conjunction with stem cells has recently been shown to enhance the outcome of stem cell therapy for heart failure and myocardial infarction. This review outlines some of the current challenges in the treatment of heart failure and acute myocardial infarction through improving stem cell therapeutic strategies, as well as the prospect of suitable biomaterial scaffolds to enhance their efficacy and improve patient clinical outcomes.
Collapse
Affiliation(s)
- Bing Hui Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Kevin W. Huang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Li Huang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Wenjie Tang
- Department of Cardiovascular and Thoracic Surgery, Research Center for Translational Medicine and Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200120, P. R. China
| | - Darren J. Kelly
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy Victoria, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Zhongmin Liu
- Department of Cardiovascular and Thoracic Surgery, Research Center for Translational Medicine and Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200120, P. R. China
| |
Collapse
|
36
|
McKown EN, DeAguero JL, Canan BD, Kilic A, Zhu Y, Janssen PM, Delfín DA. Impaired adhesion of induced pluripotent stem cell-derived cardiac progenitor cells (iPSC-CPCs) to isolated extracellular matrix from failing hearts. Heliyon 2018; 4:e00870. [PMID: 30364772 PMCID: PMC6197956 DOI: 10.1016/j.heliyon.2018.e00870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/21/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022] Open
Abstract
We tested the hypothesis that induced pluripotent stem cell-derived cardiac progenitor cells (iPSC-CPCs) are less able to adhere to the extracellular matrix (ECM) derived from failing human hearts with dilated cardiomyopathy compared to nonfailing human heart ECM. We also hypothesized that morphological development, cell beating rates, and mRNA levels of Nkx2.5 and cardiac troponin T would be altered after culturing the iPSC-CPCs on the failing heart ECM under cardiomyocyte differentiation conditions. We used microscopy to distinguish between adhered and unadhered cells, and to determine morphological development and cell beating. We used qPCR to determine mRNA levels. iPSC-CPCs show a significantly reduced ability to adhere to the ECM of failing hearts and higher expression of Nkx2.5 mRNA. However, morphological development, cell beating rates, and cardiac troponin T levels were not significantly altered in the cells cultured on the failing heart ECM. Our study shows that the failing heart ECM from patients with dilated cardiomyopathy impairs initial iPSC-CPC adhesion and may have a modest effect on the ability of the cells to transdifferentiate into cardiomyocytes.
Collapse
Affiliation(s)
- Elizabeth N. McKown
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Joshua L. DeAguero
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Benjamin D. Canan
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology and the Davis Heart Lung Research Institute, 200 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | - Ahmet Kilic
- The Ohio State University College of Medicine, Department of Surgery and the Davis Heart Lung Research Institute, Richard M. Ross Heart Hospital, 452 West 10th Ave., Columbus, OH 43210, USA
| | - Yiliang Zhu
- The University of New Mexico School of Medicine, Department of Internal Medicine, MSC10 5550, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Paul M.L. Janssen
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology and the Davis Heart Lung Research Institute, 200 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | - Dawn A. Delfín
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA
- Corresponding author.
| |
Collapse
|
37
|
Allogeneic Mesenchymal Stem Cells and Biomaterials: The Perfect Match for Cardiac Repair? Int J Mol Sci 2018; 19:ijms19103236. [PMID: 30347686 PMCID: PMC6213975 DOI: 10.3390/ijms19103236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Coronary heart disease is the leading cause of death worldwide with huge socio-economic consequences. Cell therapy, and particularly mesenchymal stem cells (MSC), are considered a promising option to treat this disorder, due to their robust trophic and immunomodulatory properties. However, limitations such as their low rate of engraftment and poor survival after administration into the heart have precluded their large-scale clinical use. Nevertheless, the combination of MSC with polymer-made scaffolds or hydrogels has proven to enhance their retention and, therefore, their efficacy. Additionally, their allogeneic use could permit the creation of ready-to-use cell patches able to improve their feasibility and promote their application in clinical settings. In this review, the experimental and clinical results derived from the use of MSC in cardiac pathology, as well as advances in the bioengineering field to improve the potential of therapeutic cells, are extensively discussed. Additionally, the current understanding of the heart response to the allogeneic MSC transplants is addressed.
Collapse
|
38
|
Bassetti B, Carbucicchio C, Catto V, Gambini E, Rurali E, Bestetti A, Gaipa G, Belotti D, Celeste F, Parma M, Righetti S, Biava L, Arosio M, Bonomi A, Agostoni P, Scacciatella P, Achilli F, Pompilio G. Linking cell function with perfusion: insights from the transcatheter delivery of bone marrow-derived CD133 + cells in ischemic refractory cardiomyopathy trial (RECARDIO). Stem Cell Res Ther 2018; 9:235. [PMID: 30217223 PMCID: PMC6137884 DOI: 10.1186/s13287-018-0969-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Background Cell therapy with bone marrow (BM)-derived progenitors has emerged as a promising therapeutic for refractory angina (RA) patients. In the present study, we evaluated the safety and preliminary efficacy of transcatheter delivery of autologous BM-derived advanced therapy medicinal product CD133+ cells (ATMP-CD133) in RA patients, correlating perfusion outcome with cell function. Methods In the phase I “Endocavitary Injection of Bone Marrow Derived CD133+ Cells in Ischemic Refractory Cardiomyopathy” (RECARDIO) trial, a total of 10 patients with left ventricular (LV) dysfunction (ejection fraction ≤ 45%) and evidence of reversible ischemia, as assessed by single-photon emission computed tomography (SPECT), underwent BM aspiration and fluoroscopy-based percutaneous endomyocardial delivery of ATMP-CD133. Patients were evaluated at 6 and 12 months for safety and preliminary efficacy endpoints. ATMP-CD133 samples were used for in vitro correlations. Results Patients were treated safely with a mean number of 6.57 ± 3.45 × 106 ATMP-CD133. At 6-month follow-up, myocardial perfusion at SPECT was significantly ameliorated in terms of changes in summed stress (from 18.2 ± 8.6 to 13.8 ± 7.8, p = 0.05) and difference scores (from 12.0 ± 5.3 to 6.1 ± 4.0, p = 0.02) and number of segments with inducible ischemia (from 7.3 ± 2.2 to 4.0 ± 2.7, p = 0.003). Similarly, Canadian Cardiovascular Society and New York Heart Association classes significantly improved at follow-up vs baseline (p ≤ 0.001 and p = 0.007, respectively). Changes in summed stress score changes positively correlated with ATMP-CD133 release of proangiogenic cytokines HGF and PDGF-bb (r = 0.80, p = 0.009 and r = 0.77, p = 0.01, respectively) and negatively with the proinflammatory cytokines RANTES (r = − 0.79, p = 0.01) and IL-6 (r = − 0.76, p = 0.02). Conclusion Results of the RECARDIO trial suggested safety and efficacy in terms of clinical and perfusion outcomes in patients with RA and LV dysfunction. The observed link between myocardial perfusion improvements and ATMP-CD133 secretome may represent a proof of concept for further mechanistic investigations. Trial registration ClinicalTrials.gov, NCT02059681. Registered 11 February 2014.
Collapse
Affiliation(s)
- Beatrice Bassetti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Corrado Carbucicchio
- Heart Rhythm Center, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Valentina Catto
- Heart Rhythm Center, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Elisa Gambini
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Erica Rurali
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Alberto Bestetti
- Service of Nuclear Medicine, IRCCS Multimedica, Via Milanese 300, 20099, Sesto San Giovanni, Milan, Italy
| | - Giuseppe Gaipa
- Laboratory of Cell and Gene Therapy "Stefano Verri", ASST-Monza, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, Italy.,Tettamanti Research Center, Tettamanti Foundation, Via Pergolesi 33, 20900, Monza, Italy
| | - Daniela Belotti
- Laboratory of Cell and Gene Therapy "Stefano Verri", ASST-Monza, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, Italy.,University of Milano Bicocca, Via Pergolesi 33, 20900, Monza, Italy
| | - Fabrizio Celeste
- Cardiovascular Imaging Area, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Matteo Parma
- Haematology Division and BMT Unit, ASST-Monza, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, Italy
| | - Stefano Righetti
- Department of Cardiology, ASST-Monza, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, Italy
| | - Lorenza Biava
- Department of Cardiovascular and Thoracic Diseases, Città della Salute e della Scienza Hospital, Corso Bramante 88, 10126, Turin, Italy
| | - Maurizio Arosio
- Nuclear Medicine Unit, ASST-Monza, San Gerardo Hospital and University of Milano Bicocca, Via Pergolesi, 33, 20900, Monza, Italy
| | - Alice Bonomi
- BioStatistical Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Piergiuseppe Agostoni
- Heart Failure, Clinical Cardiology and Rehabilitation Cardiology Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy.,Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Paolo Scacciatella
- Department of Cardiovascular and Thoracic Diseases, Città della Salute e della Scienza Hospital, Corso Bramante 88, 10126, Turin, Italy
| | - Felice Achilli
- Department of Cardiology, ASST-Monza, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138, Milan, Italy. .,Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
39
|
Nadal-Ginard B, Torella D, De Angelis A, Rossi F. Monographic issue of pharmacological research on adult myocardial repair/regeneration. Pharmacol Res 2018; 127:1-3. [PMID: 29279193 DOI: 10.1016/j.phrs.2017.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bernardo Nadal-Ginard
- Molecular Cellular Cardiology, Department of Medical, Surgical Sciences, Magna Graecia University, Catanzaro, 88100, Italy, Italy.
| | - Daniele Torella
- Molecular Cellular Cardiology, Department of Medical, Surgical Sciences, Magna Graecia University, Catanzaro, 88100, Italy, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "L.Vanvitelli", Naples, 80121, Italy, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "L.Vanvitelli", Naples, 80121, Italy, Italy.
| |
Collapse
|
40
|
Chen J, Wei J, Huang Y, Ma Y, Ni J, Li M, Zhu Y, Gao X, Fan G. Danhong Injection Enhances the Therapeutic Efficacy of Mesenchymal Stem Cells in Myocardial Infarction by Promoting Angiogenesis. Front Physiol 2018; 9:991. [PMID: 30093864 PMCID: PMC6070728 DOI: 10.3389/fphys.2018.00991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/06/2018] [Indexed: 01/07/2023] Open
Abstract
Stem cell-based therapies have the potential to dramatically transform the treatment and prognosis of myocardial infarction (MI), and mesenchymal stem cells (MSCs) have been suggested as a promising cell population to ameliorate the heart remodeling in post-MI. However, poor implantation and survival in ischemic myocardium restrict its efficacy and application. In this study, we sought to use the unique mode of action of Chinese medicine to improve this situation. Surrounding the myocardial infarct area, we performed a multi-point MSC transplantation and administered in conjunction with Danhong injection, which is mainly used for the treatment of MI. Our results showed that the MSC survival rate and cardiac function were improved significantly through the small animal imaging system and echocardiography, respectively. Moreover, histological analysis showed that MSC combined with DHI intervention significantly reduced myocardial infarct size in myocardial infarcted mice and significantly increased MSC resident. To investigate the mechanism of DHI promoting MSC survival and cell migration, PCR and WB experiments were performed. Our results showed that DHI could promote the expression of CXC chemokine receptor 4 in MSC and enhance the expression of stromal cell–derived factor-1 in myocardium, and this effect can be inhibited by AMD3100 (an SDF1/CXCR4 antagonist). Additionally, MSC in combination with DHI interfered with MI in mice and this signifies that when combined, the duo could the expression of vascular endothelial growth factor (VEGF) in the marginal zone of infarction compared with when either MSC or DHI are used individually. Based on these results, we conclude that DHI enhances the residence of MSCs in cardiac tissue by modulating the SDF1/CXCR4 signaling pathway. These findings have important therapeutic implications for Chinese medicine-assisted cell-based therapy strategies.
Collapse
Affiliation(s)
- Jingrui Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Wei
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Ma
- Oxford Chinese Medicine Research Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
41
|
Perrucci GL, Rurali E, Pompilio G. Cardiac fibrosis in regenerative medicine: destroy to rebuild. J Thorac Dis 2018; 10:S2376-S2389. [PMID: 30123577 DOI: 10.21037/jtd.2018.03.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major limitations for cardiac regeneration in patients after myocardial infarction (MI) are the wide loss of cardiomyocytes and the adverse structural alterations of extracellular matrix (ECM). Cardiac fibroblast differentiation into myofibroblasts (MFB) leads to a huge deposition of ECM and to the subsequent loss of ventricular structural integrity. All these molecular events depict the fundamental features at the basis of the post-MI fibrosis and deserve in depth cellular and molecular studies to fill the gap in the clinical practice. Indeed, to date, there are no effective therapeutic approaches to limit the post-MI massive fibrosis development. In this review we describe the involvement of integrins and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)/ADAMTS-like (ADAMTSL) proteins in cardiac reparative pro-fibrotic response after MI, proposing some of them as novel potential pharmacological tools.
Collapse
Affiliation(s)
- Gianluca Lorenzo Perrucci
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Erica Rurali
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Giulio Pompilio
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy.,Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| |
Collapse
|
42
|
Cardiac Stem Cells in the Postnatal Heart: Lessons from Development. Stem Cells Int 2018; 2018:1247857. [PMID: 30034478 PMCID: PMC6035836 DOI: 10.1155/2018/1247857] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
Heart development in mammals is followed by a postnatal decline in cell proliferation and cell renewal from stem cell populations. A better understanding of the developmental changes in cardiac microenvironments occurring during heart maturation will be informative regarding the loss of adult regenerative potential. We reevaluate the adult heart's mitotic potential and the reported adult cardiac stem cell populations, as these are two topics of ongoing debate. The heart's early capacity for cell proliferation driven by progenitors and reciprocal signalling is demonstrated throughout development. The mature heart architecture and environment may be more restrictive on niches that can host progenitor cells. The engraftment issues observed in cardiac stem cell therapy trials using exogenous stem cells may indicate a lack of supporting stem cell niches, while tissue injury adds to a hostile microenvironment for transplanted cells. Engraftment may be improved by preconditioning the cultured stem cells and modulating the microenvironment to host these cells. These prospective areas of further research would benefit from a better understanding of cardiac progenitor interactions with their microenvironment throughout development and may lead to enhanced cardiac niche support for stem cell therapy engraftment.
Collapse
|
43
|
Madigan M, Atoui R. Therapeutic Use of Stem Cells for Myocardial Infarction. Bioengineering (Basel) 2018; 5:bioengineering5020028. [PMID: 29642402 PMCID: PMC6027340 DOI: 10.3390/bioengineering5020028] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction is a leading cause of morbidity and mortality worldwide. Although medical and surgical treatments can significantly improve patient outcomes, no treatment currently available is able to generate new contractile tissue or reverse ischemic myocardium. Driven by the recent/novel understanding that regenerative processes do exist in the myocardium—tissue previously thought not to possess regenerative properties—the use of stem cells has emerged as a promising therapeutic approach with high expectations. The literature describes the use of cells from various sources, categorizing them as either embryonic, induced pluripotent, or adult/tissue stem cells (mesenchymal, hematopoietic, skeletal myoblasts, cardiac stem cells). Many publications show the successful use of these cells to regenerate damaged myocardium in both animal and human models; however, more studies are needed to directly compare cells of various origins in efforts to draw conclusions on the ideal source. Although numerous challenges exist in this developing area of research and clinical practice, prospects are encouraging. The following aims to provide a concise review outlining the different types of stem cells used in patients after myocardial infarction.
Collapse
Affiliation(s)
- Mariah Madigan
- Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada.
| | - Rony Atoui
- Health Sciences North, Sudbury, ON P3E 5J1, Canada.
| |
Collapse
|
44
|
Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, Kasalkova NS, Svorcik V, Kolska Z, Motarjemi H, Molitor M. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv 2018; 36:1111-1126. [PMID: 29563048 DOI: 10.1016/j.biotechadv.2018.03.011] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023]
Abstract
Stem cells can be defined as units of biological organization that are responsible for the development and the regeneration of organ and tissue systems. They are able to renew their populations and to differentiate into multiple cell lineages. Therefore, these cells have great potential in advanced tissue engineering and cell therapies. When seeded on synthetic or nature-derived scaffolds in vitro, stem cells can be differentiated towards the desired phenotype by an appropriate composition, by an appropriate architecture, and by appropriate physicochemical and mechanical properties of the scaffolds, particularly if the scaffold properties are combined with a suitable composition of cell culture media, and with suitable mechanical, electrical or magnetic stimulation. For cell therapy, stem cells can be injected directly into damaged tissues and organs in vivo. Since the regenerative effect of stem cells is based mainly on the autocrine production of growth factors, immunomodulators and other bioactive molecules stored in extracellular vesicles, these structures can be isolated and used instead of cells for a novel therapeutic approach called "stem cell-based cell-free therapy". There are four main sources of stem cells, i.e. embryonic tissues, fetal tissues, adult tissues and differentiated somatic cells after they have been genetically reprogrammed, which are referred to as induced pluripotent stem cells (iPSCs). Although adult stem cells have lower potency than the other three stem cell types, i.e. they are capable of differentiating into only a limited quantity of specific cell types, these cells are able to overcome the ethical and legal issues accompanying the application of embryonic and fetal stem cells and the mutational effects associated with iPSCs. Moreover, adult stem cells can be used in autogenous form. These cells are present in practically all tissues in the organism. However, adipose tissue seems to be the most advantageous tissue from which to isolate them, because of its abundancy, its subcutaneous location, and the need for less invasive techniques. Adipose tissue-derived stem cells (ASCs) are therefore considered highly promising in present-day regenerative medicine.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic.
| | - Jana Zarubova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Martina Travnickova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Jana Musilkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Petr Slepicka
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Nikola Slepickova Kasalkova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Zdenka Kolska
- Faculty of Science, J.E. Purkyne University, Ceske mladeze 8, 400 96 Usti nad Labem, Czech Republic
| | - Hooman Motarjemi
- Clinic of Plastic Surgery, Faculty Hospital Na Bulovce, Budinova 67/2, 180 81 Prague, 8-Liben, Czech Republic
| | - Martin Molitor
- Clinic of Plastic Surgery, Faculty Hospital Na Bulovce, Budinova 67/2, 180 81 Prague, 8-Liben, Czech Republic
| |
Collapse
|
45
|
Pilato CA, Stadiotti I, Maione AS, Saverio V, Catto V, Tundo F, Dello Russo A, Tondo C, Pompilio G, Casella M, Sommariva E. Isolation and Characterization of Cardiac Mesenchymal Stromal Cells from Endomyocardial Bioptic Samples of Arrhythmogenic Cardiomyopathy Patients. J Vis Exp 2018. [PMID: 29553539 PMCID: PMC5931414 DOI: 10.3791/57263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A normal adult heart is composed of several different cell types, among which cardiac mesenchymal stromal cells represent an abundant population. The isolation of these cells offers the possibility of studying their involvement in cardiac diseases, and, in addition, provides a useful primary cell model to investigate biological mechanisms. Here, the method for the isolation of C-MSC from arrhythmogenic cardiomyopathy patients' bioptic samples is described. The endomyocardial biopsy sampling is guided in the right ventricular areas adjacent to the scar visualized by electro-anatomical mapping. The digestion of the biopsies in collagenase and their plating on a plastic dish in culture medium to allow C-MSC growth is described. The isolated cells can be expanded in culture for several passages. To confirm their mesenchymal phenotype, the description of immuno-phenotypical characterization is provided. C-MSC are able to differentiate into several cell types like adipocytes, chondrocytes, and osteoblasts: in the context of ACM, characterized by adipocyte deposits in patients' hearts, the protocols for the adipogenic differentiation of C-MSC and the characterization of lipid droplet accumulation are described.
Collapse
Affiliation(s)
- Chiara Assunta Pilato
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS; Department of Clinical Sciences and Community Health, Università degli Studi di Milano
| | - Ilaria Stadiotti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS
| | - Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS
| | - Valentina Saverio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS
| | | | | | | | - Claudio Tondo
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano; Heart Rhythm Center, Centro Cardiologico Monzino-IRCCS
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS; Department of Clinical Sciences and Community Health, Università degli Studi di Milano
| | | | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS;
| |
Collapse
|
46
|
Cell Therapy for Refractory Angina: A Reappraisal. Stem Cells Int 2017; 2017:5648690. [PMID: 29375624 PMCID: PMC5742462 DOI: 10.1155/2017/5648690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/05/2017] [Indexed: 12/23/2022] Open
Abstract
Cardiac cell-based therapy has emerged as a novel therapeutic option for patients dealing with untreatable refractory angina (RA). However, after more than a decade of controlled studies, no definitive consensus has been reached regarding clinical efficacy. Although positive results in terms of surrogate endpoints have been suggested by early and phase II clinical studies as well as by meta-analyses, the more recent reports lacked the provision of definitive response in terms of hard clinical endpoints. Regrettably, pivotal trials designed to conclusively determine the efficacy of cell-based therapeutics in such a challenging clinical condition are therefore still missing. Considering this, a comprehensive reappraisal of cardiac cell-based therapy role in RA seems warranted and timely, since a number of crucial cell- and patient-related aspects need to be systematically analysed. As an example, the large variability in efficacy endpoint selection appears to be a limiting factor for the advancement of cardiac cell-based therapy in the field. This review will provide an overview of the key elements that may have influenced the results of cell-based trials in the context of RA, focusing in particular on the understanding at which the extent of angina-related endpoints may predict cell-based therapeutic efficacy.
Collapse
|
47
|
Myocardial Regeneration via Progenitor Cell-Derived Exosomes. Stem Cells Int 2017; 2017:7849851. [PMID: 29333167 PMCID: PMC5733225 DOI: 10.1155/2017/7849851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
In the past 20 years, a variety of cell products has been evaluated in terms of their capacity to treat patients with acute myocardial infarction and chronic heart failure. Despite initial enthusiasm, therapeutic efficacy has overall been disappointing, and clinical application is costly and complex. Recently, a subset of small extracellular vesicles (EVs), commonly referred to as "exosomes," was shown to confer cardioprotective and regenerative signals at a magnitude similar to that of their donor cells. The conceptual advantage is that they may be produced in industrial quantities and stored at the point-of-care for off-the-shelf application, ideally without eliciting a relevant recipient immune response or other adverse effects associated with viable cells. The body of evidence on beneficial exosome-mediated effects in animal models of heart diseases is rapidly growing. However, there is significant heterogeneity in terms of exosome source cells, isolation process, therapeutic dosage, and delivery mode. This review summarizes the current state of research on exosomes as experimental therapy of heart diseases and seeks to identify roadblocks that need to be overcome prior to clinical application.
Collapse
|
48
|
Savi M, Frati C, Cavalli S, Graiani G, Galati S, Buschini A, Madeddu D, Falco A, Prezioso L, Mazzaschi G, Galaverna F, Lagrasta CAM, Corradini E, De Angelis A, Cappetta D, Berrino L, Aversa F, Quaini F, Urbanek K. Imatinib mesylate-induced cardiomyopathy involves resident cardiac progenitors. Pharmacol Res 2017; 127:15-25. [PMID: 28964914 DOI: 10.1016/j.phrs.2017.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications are included among the systemic effects of tyrosine kinase inhibitor (TKI)-based therapeutic strategies. To test the hypothesis that inhibition of Kit tyrosine kinase that promotes cardiac progenitor cell (CPC) survival and function may be one of the triggering mechanisms of imatinib mesylate (IM)-related cardiovascular effects, the anatomical, structural and ultrastructural changes in the heart of IM-treated rats were evaluated. Cardiac anatomy in IM-exposed rats showed a dose-dependent, restrictive type of remodeling and depressed hemodynamic performance in the absence of remarkable myocardial fibrosis. The effects of IM on rat and human CPCs were also assessed. IM induced rat CPC depletion, reduced growth and increased cell death. Similar effects were observed in CPCs isolated from human hearts. These results extend the notion that cardiovascular side effects are driven by multiple actions of IM. The identification of cellular mechanisms responsible for cardiovascular complications due to TKIs will enable future strategies aimed at preserving concomitantly cardiac integrity and anti-tumor activity of advanced cancer treatment.
Collapse
Affiliation(s)
- Monia Savi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Caterina Frati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Cavalli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gallia Graiani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Serena Galati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Annamaria Buschini
- Department of Genetics, Biology of Microorganisms, Anthropology, Evolution, University of Parma, Parma, Italy
| | - Denise Madeddu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Angela Falco
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lucia Prezioso
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giulia Mazzaschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Emilia Corradini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Franco Aversa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|