1
|
Liu L, Yu L, Wang Y, Zhou L, Liu Y, Pan X, Huang J. Unravelling the impact of RNA methylation genetic and epigenetic machinery in the treatment of cardiomyopathy. Pharmacol Res 2024; 207:107305. [PMID: 39002868 DOI: 10.1016/j.phrs.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Cardiomyopathy (CM) represents a heterogeneous group of diseases primarily affecting cardiac structure and function, with genetic and epigenetic dysregulation playing a pivotal role in its pathogenesis. Emerging evidence from the burgeoning field of epitranscriptomics has brought to light the significant impact of various RNA modifications, notably N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N1-methyladenosine (m1A), 2'-O-methylation (Nm), and 6,2'-O-dimethyladenosine (m6Am), on cardiomyocyte function and the broader processes of cardiac and vascular remodelling. These modifications have been shown to influence key pathological mechanisms including mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis, inflammation, immune response, and myocardial fibrosis. Importantly, aberrations in the RNA methylation machinery have been observed in human CM cases and animal models, highlighting the critical role of RNA methylating enzymes and their potential as therapeutic targets or biomarkers for CM. This review underscores the necessity for a deeper understanding of RNA methylation processes in the context of CM, to illuminate novel therapeutic avenues and diagnostic tools, thereby addressing a significant gap in the current management strategies for this complex disease.
Collapse
Affiliation(s)
- Li Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Baise 533000, China; Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Linxing Yu
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yubo Wang
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Liufang Zhou
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yan Liu
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xingshou Pan
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Jianjun Huang
- Youjiang Medical University for Nationalities, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| |
Collapse
|
2
|
Wang J, Lv ZY, Li P, Zhang Y, Li X, Shen DF. Lnc PVT1 facilitates TGF-β1-induced human cardiac fibroblast activation in vitro and ISO-induced myocardial fibrosis in vivo through regulating MYC. Mol Cell Biochem 2024:10.1007/s11010-024-05060-7. [PMID: 38997507 DOI: 10.1007/s11010-024-05060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Cardiac fibrosis is a commonly seen pathophysiological process in various cardiovascular disorders, such as coronary heart disorder, hypertension, and cardiomyopathy. Cardiac fibroblast trans-differentiation into myofibroblasts (MFs) is a key link in myocardial fibrosis. LncRNA PVT1 participates in fibrotic diseases in multiple organs; however, its role and mechanism in cardiac fibrosis remain largely unknown. Human cardiac fibroblasts (HCFs) were stimulated with TGF-β1 to induce myofibroblast; Immunofluorescent staining, Immunoblotting, and fluorescence in situ hybridization were used to detect the myofibroblasts phenotypes and lnc PVT1 expression. Cell biological phenotypes induced by lnc PVT1 knockdown or overexpression were detected by CCK-8, flow cytometry, and Immunoblotting. A mouse model of myocardial fibrosis was induced using isoproterenol (ISO), and the cardiac functions were examined by echocardiography measurements, cardiac tissues by H&E, and Masson trichrome staining. In this study, TGF-β1 induced HCF transformation into myofibroblasts, as manifested as significantly increased levels of α-SMA, vimentin, collagen I, and collagen III; the expression level of lnc PVT1 expression showed to be significantly increased by TGF-β1 stimulation. The protein levels of TGF-β1, TGFBR1, and TGFBR2 were also decreased by lnc PVT1 knockdown. Under TGF-β1 stimulation, lnc PVT1 knockdown decreased FN1, α-SMA, collagen I, and collagen III protein contents, inhibited HCF cell viability and enhanced cell apoptosis, and inhibited Smad2/3 phosphorylation. Lnc PVT1 positively regulated MYC expression with or without TGF-β1 stimulation; MYC overexpression in TGF-β1-stimulated HCFs significantly attenuated the effects of lnc PVT1 knockdown on HCF proliferation and trans-differentiation to MFs. In the ISO-induced myocardial fibrosis model, lnc PVT1 knockdown partially reduced fibrotic area, improved cardiac functions, and decreased the levels of fibrotic markers. In addition, lnc PVT1 knockdown decreased MYC and CDK4 levels but increased E-cadherin in mice heart tissues. lnc PVT1 is up-regulated in cardiac fibrosis and TGF-β1-stimulated HCFs. Lnc PVT1 knockdown partially ameliorates TGF-β1-induced HCF activation and trans-differentiation into MFs in vitro and ISO-induced myocardial fibrosis in vivo, potentially through interacting with MYC and up-regulating MYC.
Collapse
Affiliation(s)
- Juan Wang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Zhong-Yin Lv
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Peng Li
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Yin Zhang
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Xia Li
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China.
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, 830001, Xinjiang, China.
| | - Di-Fei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
3
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Pant K, Ali H, Paudel KR, Dureja H, Singh TG, Singh SK, Dua K. ncRNAs and their impact on dopaminergic neurons: Autophagy pathways in Parkinson's disease. Ageing Res Rev 2024; 98:102327. [PMID: 38734148 DOI: 10.1016/j.arr.2024.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Parkinson's Disease (PD) is a complex neurological illness that causes severe motor and non-motor symptoms due to a gradual loss of dopaminergic neurons in the substantia nigra. The aetiology of PD is influenced by a variety of genetic, environmental, and cellular variables. One important aspect of this pathophysiology is autophagy, a crucial cellular homeostasis process that breaks down and recycles cytoplasmic components. Recent advances in genomic technologies have unravelled a significant impact of ncRNAs on the regulation of autophagy pathways, thereby implicating their roles in PD onset and progression. They are members of a family of RNAs that include miRNAs, circRNA and lncRNAs that have been shown to play novel pleiotropic functions in the pathogenesis of PD by modulating the expression of genes linked to autophagic activities and dopaminergic neuron survival. This review aims to integrate the current genetic paradigms with the therapeutic prospect of autophagy-associated ncRNAs in PD. By synthesizing the findings of recent genetic studies, we underscore the importance of ncRNAs in the regulation of autophagy, how they are dysregulated in PD, and how they represent novel dimensions for therapeutic intervention. The therapeutic promise of targeting ncRNAs in PD is discussed, including the barriers that need to be overcome and future directions that must be embraced to funnel these ncRNA molecules for the treatment and management of PD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
4
|
Sharma H, Kaushik M, Goswami P, Sreevani S, Chakraborty A, Ashique S, Pal R. Role of miRNAs in Brain Development. Microrna 2024; 13:96-109. [PMID: 38571343 DOI: 10.2174/0122115366287127240322054519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Non-coding RNAs that are small in size, called microRNAs (miRNAs), exert a consequence in neutralizing gene activity after transcription. The nervous system is a massively expressed organ, and an expanding body of research reveals the vital functions that miRNAs play in the brain's growth and neural activity. The significant benefit of miRNAs on the development of the central nervous system is currently shown through new scientific methods that concentrate on targeting and eradicating vital miRNA biogenesis pathways the elements involving Dicer and DGCR8. Modulation of miRNA has been associated with numerous essential cellular processes on neural progenitors, like differentiation, proliferation, and destiny determination. Current research discoveries that emphasize the significance of miRNAs in the complex process of brain development are included in this book. The miRNA pathway plays a major role in brain development, its operational dynamics, and even diseases. Recent studies on miRNA-mediated gene regulation within neural discrepancy, the circadian period and synaptic remodeling are signs of this. We also discussed how these discoveries may affect our comprehension of the fundamental processes behind brain diseases, highlighting the novel therapeutic opportunities miRNAs provide for treating various human illnesses.
Collapse
Affiliation(s)
- Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP), 244001, India
| | - Monika Kaushik
- Amity Institute of Pharmacy, Amity University Gwalior, 474005, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Maharashtra Educational Society's H. K. College of Pharmacy, Mumbai, Maharashtra, 400102, India
| | - Sanakattula Sreevani
- Department of Pharmacology, Vivekananda College of Pharmacy, Rajajinagar, Bengaluru, Karnataka, 560055, India
| | - Ananya Chakraborty
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, 700064, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Radheshyam Pal
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| |
Collapse
|
5
|
Burgon PG, Weldrick JJ, Talab OMSA, Nadeer M, Nomikos M, Megeney LA. Regulatory Mechanisms That Guide the Fetal to Postnatal Transition of Cardiomyocytes. Cells 2023; 12:2324. [PMID: 37759546 PMCID: PMC10528641 DOI: 10.3390/cells12182324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Heart disease remains a global leading cause of death and disability, necessitating a comprehensive understanding of the heart's development, repair, and dysfunction. This review surveys recent discoveries that explore the developmental transition of proliferative fetal cardiomyocytes into hypertrophic postnatal cardiomyocytes, a process yet to be well-defined. This transition is key to the heart's growth and has promising therapeutic potential, particularly for congenital or acquired heart damage, such as myocardial infarctions. Although significant progress has been made, much work is needed to unravel the complex interplay of signaling pathways that regulate cardiomyocyte proliferation and hypertrophy. This review provides a detailed perspective for future research directions aimed at the potential therapeutic harnessing of the perinatal heart transitions.
Collapse
Affiliation(s)
- Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Jonathan J. Weldrick
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
| | | | - Muhammad Nadeer
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Lynn A. Megeney
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
6
|
Li T, Wang H, Jiang Y, Chen S, Huang D, Wu Z, Yin X, Zhou C, Li Y, Zou S. LITTIP/Lgr6/HnRNPK complex regulates cementogenesis via Wnt signaling. Int J Oral Sci 2023; 15:33. [PMID: 37558690 PMCID: PMC10412570 DOI: 10.1038/s41368-023-00237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Orthodontically induced tooth root resorption (OIRR) is a serious complication during orthodontic treatment. Stimulating cementum repair is the fundamental approach for the treatment of OIRR. Parathyroid hormone (PTH) might be a potential therapeutic agent for OIRR, but its effects still lack direct evidence, and the underlying mechanisms remain unclear. This study aims to explore the potential involvement of long noncoding RNAs (lncRNAs) in mediating the anabolic effects of intermittent PTH and contributing to cementum repair, as identifying lncRNA-disease associations can provide valuable insights for disease diagnosis and treatment. Here, we showed that intermittent PTH regulates cell proliferation and mineralization in immortalized murine cementoblast OCCM-30 via the regulation of the Wnt pathway. In vivo, daily administration of PTH is sufficient to accelerate root regeneration by locally inhibiting Wnt/β-catenin signaling. Through RNA microarray analysis, lncRNA LITTIP (LGR6 intergenic transcript under intermittent PTH) is identified as a key regulator of cementogenesis under intermittent PTH. Chromatin isolation by RNA purification (ChIRP) and RNA immunoprecipitation (RIP) assays revealed that LITTIP binds to mRNA of leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) and heterogeneous nuclear ribonucleoprotein K (HnRNPK) protein. Further co-transfection experiments confirmed that LITTIP plays a structural role in the formation of the LITTIP/Lgr6/HnRNPK complex. Moreover, LITTIP is able to promote the expression of LGR6 via the RNA-binding protein HnRNPK. Collectively, our results indicate that the intermittent PTH administration accelerates root regeneration via inhibiting Wnt pathway. The lncRNA LITTIP is identified to negatively regulate cementogenesis, which activates Wnt/β-catenin signaling via high expression of LGR6 promoted by HnRNPK.
Collapse
Affiliation(s)
- Tiancheng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Han Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuo Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danyuan Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuyu Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Yedigaryan L, Sampaolesi M. Extracellular vesicles and Duchenne muscular dystrophy pathology: Modulators of disease progression. Front Physiol 2023; 14:1130063. [PMID: 36891137 PMCID: PMC9987248 DOI: 10.3389/fphys.2023.1130063] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disorder and is considered to be one of the worst forms of inherited muscular dystrophies. DMD occurs as a result of mutations in the dystrophin gene, leading to progressive muscle fiber degradation and weakness. Although DMD pathology has been studied for many years, there are aspects of disease pathogenesis and progression that have not been thoroughly explored yet. The underlying issue with this is that the development of further effective therapies becomes stalled. It is becoming more evident that extracellular vesicles (EVs) may contribute to DMD pathology. EVs are vesicles secreted by cells that exert a multitude of effects via their lipid, protein, and RNA cargo. EV cargo (especially microRNAs) is also said to be a good biomarker for identifying the status of specific pathological processes that occur in dystrophic muscle, such as fibrosis, degeneration, inflammation, adipogenic degeneration, and dilated cardiomyopathy. On the other hand, EVs are becoming more prominent vehicles for custom-engineered cargos. In this review, we will discuss the possible contribution of EVs to DMD pathology, their potential use as biomarkers, and the therapeutic efficacy of both, EV secretion inhibition and custom-engineered cargo delivery.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Singh D, Rai V, Agrawal DK. Non-Coding RNAs in Regulating Plaque Progression and Remodeling of Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2022; 23:13731. [PMID: 36430208 PMCID: PMC9692922 DOI: 10.3390/ijms232213731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) regulate cell proliferation, migration, differentiation, inflammation, metabolism of clinically important biomolecules, and other cellular processes. They do not encode proteins but are involved in the regulatory network of various proteins that are directly related to the pathogenesis of diseases. Little is known about the ncRNA-associated mechanisms of atherosclerosis and related cardiovascular disorders. Remodeling of the extracellular matrix (ECM) is critical in the pathogenesis of atherosclerosis and related disorders; however, its regulatory proteins are the potential subjects to explore with special emphasis on epigenetic regulatory components. The activity of regulatory proteins involved in ECM remodeling is regulated by various ncRNA molecules, as evident from recent research. Thus, it is important to critically evaluate the existing literature to enhance the understanding of nc-RNAs-regulated molecular mechanisms regulating ECM components, remodeling, and progression of atherosclerosis. This is crucial since deregulated ECM remodeling contributes to atherosclerosis. Thus, an in-depth understanding of ncRNA-associated ECM remodeling may identify novel targets for the treatment of atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
9
|
Ma J, Lei P, Chen H, Wang L, Fang Y, Yan X, Yang Q, Peng B, Jin L, Sun D. Advances in lncRNAs from stem cell-derived exosome for the treatment of cardiovascular diseases. Front Pharmacol 2022; 13:986683. [PMID: 36147326 PMCID: PMC9486024 DOI: 10.3389/fphar.2022.986683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality globally. Benefiting from the advantages of early diagnosis and precision medicine, stem cell-based therapies have emerged as promising treatment options for CVDs. However, autologous or allogeneic stem cell transplantation imposes a potential risk of immunological rejection, infusion toxicity, and oncogenesis. Fortunately, exosome can override these limitations. Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) in exosome from stem cell paracrine factors play critical roles in stem cell therapy and participate in numerous regulatory processes, including transcriptional silencing, transcriptional activation, chromosome modification, and intranuclear transport. Accordingly, lncRNAs can treat CVDs by directly acting on specific signaling pathways. This mini review systematically summarizes the key regulatory actions of lncRNAs from different stem cells on myocardial aging and apoptosis, ischemia-reperfusion injury, retinopathy, atherosclerosis, and hypertension. In addition, the current challenges and future prospects of lncRNAs treatment for CVDs are discussed.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Xiaoqing Yan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- *Correspondence: Da Sun, ; Libo Jin,
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- *Correspondence: Da Sun, ; Libo Jin,
| |
Collapse
|
10
|
Marini V, Marino F, Aliberti F, Giarratana N, Pozzo E, Duelen R, Cortés Calabuig Á, La Rovere R, Vervliet T, Torella D, Bultynck G, Sampaolesi M, Chai YC. Long-term culture of patient-derived cardiac organoids recapitulated Duchenne muscular dystrophy cardiomyopathy and disease progression. Front Cell Dev Biol 2022; 10:878311. [PMID: 36035984 PMCID: PMC9403515 DOI: 10.3389/fcell.2022.878311] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked neuromuscular disease which to date is incurable. The major cause of death is dilated cardiomyopathy however, its pathogenesis is unclear as existing cellular and animal models do not fully recapitulate the human disease phenotypes. In this study, we generated cardiac organoids from patient-derived induced pluripotent stem cells (DMD-COs) and isogenic-corrected controls (DMD-Iso-COs) and studied if DMD-related cardiomyopathy and disease progression occur in the organoids upon long-term culture (up to 93 days). Histological analysis showed that DMD-COs lack initial proliferative capacity, displayed a progressive loss of sarcoglycan localization and high stress in endoplasmic reticulum. Additionally, cardiomyocyte deterioration, fibrosis and aberrant adipogenesis were observed in DMD-COs over time. RNA sequencing analysis confirmed a distinct transcriptomic profile in DMD-COs which was associated with functional enrichment in hypertrophy/dilated cardiomyopathy, arrhythmia, adipogenesis and fibrosis pathways. Moreover, five miRNAs were identified to be crucial in this dysregulated gene network. In conclusion, we generated patient-derived cardiac organoid model that displayed DMD-related cardiomyopathy and disease progression phenotypes in long-term culture. We envision the feasibility to develop a more complex, realistic and reliable in vitro 3D human cardiac-mimics to study DMD-related cardiomyopathies.
Collapse
Affiliation(s)
- Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Fabiola Marino
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Flaminia Aliberti
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Fondazione IRCCS Policlinico San Matteo, Center for Inherited Cardiovascular Diseases, Transplant Research Area, Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Nefele Giarratana
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Enrico Pozzo
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Institute, KU Leuven, Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Institute, KU Leuven, Leuven, Belgium
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Institute, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- *Correspondence: Maurilio Sampaolesi, ; Yoke Chin Chai,
| | - Yoke Chin Chai
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- *Correspondence: Maurilio Sampaolesi, ; Yoke Chin Chai,
| |
Collapse
|
11
|
Yedigaryan L, Gatti M, Marini V, Maraldi T, Sampaolesi M. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia. Cells 2022; 11:2293. [PMID: 35892590 PMCID: PMC9332174 DOI: 10.3390/cells11152293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Significant loss of muscle mass may occur in cachexia and sarcopenia, which are major causes of mortality and disability. Cachexia represents a complex multi-organ syndrome associated with cancer and chronic diseases. It is often characterized by body weight loss, inflammation, and muscle and adipose wasting. Progressive muscle loss is also a hallmark of healthy aging, which is emerging worldwide as a main demographic trend. A great challenge for the health care systems is the age-related decline in functionality which threatens the independence and quality of life of elderly people. This biological decline can also be associated with functional muscle loss, known as sarcopenia. Previous studies have shown that microRNAs (miRNAs) play pivotal roles in the development and progression of muscle wasting in both cachexia and sarcopenia. These small non-coding RNAs, often carried in extracellular vesicles, inhibit translation by targeting messenger RNAs, therefore representing potent epigenetic modulators. The molecular mechanisms behind cachexia and sarcopenia, including the expression of specific miRNAs, share common and distinctive trends. The aim of the present review is to compile recent evidence about shared and divergent epigenetic mechanisms, particularly focusing on miRNAs, between cachexia and sarcopenia to understand a facet in the underlying muscle wasting associated with these morbidities and disclose potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
12
|
Angiotensin receptor/Neprilysin inhibitor effects in CRTd non-responders: From epigenetic to clinical beside. Pharmacol Res 2022; 182:106303. [PMID: 35697289 DOI: 10.1016/j.phrs.2022.106303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVES We evaluated whether Angiotensin receptor/Neprilysin inhibitors (ARNI) reduce heart failure (HF) hospitalizations and deaths in cardiac resynchronization therapy with defibrillator (CRTd) non-responders patients at 12 months of follow-up, modulating microRNAs (miRs) implied in adverse cardiac remodeling. BACKGROUND adverse cardiac remodeling characterized by left ventricle ejection fraction (LVEF) reduction, left ventricular end-systolic volume (LVESv) increase, and the 6-minute walking test (6MWT) reduction are relevant pathological mechanisms in CRTd non-responders and could be linked to changes in miRNAs (miRs), regulating cardiac fibrosis, apoptosis, and hypertrophy. METHODS miRs levels and clinical outcomes (LVEF, cardiac deaths, and 6MWT) were evaluated at baseline and one year of follow-up in CRTd non-responders divided into ARNI-users and Non-ARNI users. RESULTS At baseline, there were no differences in levels of inflammatory markers, miR-18, miR-145, and miR-181 (p > 0.05) between Non-ARNI users (n 106) and ARNI-users (n 312). At one year of follow-up, ARNI-users vs. Non-ARNI users showed lowest inflammatory markers (p < 0.01) and miR-181 levels (p < 0.01) and higher values of miR-18 (p < 0.01)and miR-145 (p < 0.01). At one year of follow-up, ARNI-users had a higher increase of LVEF (p < 0.01) and 6MWT (p < 0.01) along with a more significant reduction of LVESv (p < 0.01) compared to Non-ARNI users. Cox regression analysis evidenced that ARNI-based therapies increase the probability of anti-remodeling effects of CRTd. Based on symptomatic improvements, echocardiographic and functional classification improvements, 37 (34.9%) patients among ARNI-users became responders, while only twenty (6.4%) patients became responders among Non-ARNi-users. CONCLUSIONS ARNI might influence epigenetic mechanisms modulating miRs implicated in the adverse cardiac remodeling responses to CRTd.
Collapse
|
13
|
Abstract
The purpose of this review was to systematize data on molecular genetic markers of increased risk of cardiotoxic effects, as well as to search for risk and protective variants of candidate genes. Today, the therapy of malignant neoplasms is based on the use of anthracyclines – drugs of the cytostatic mechanism of action. Along with their effectiveness, these drugs can have a cardiotoxic effect on cardiomyocytes by increasing the amount of reactive oxygen species and disrupting mitochondrial biogenesis. Pathological disorders lead to an increased risk of myocardial dysfunction and a number of other cardiovascular pathologies in patients receiving chemotherapy using anthracyclines. The cardiotoxic effect of anthracyclines leads to cardiomyopathy, heart failure, myocardial infarction, and thrombosis. Early detection of cardiotoxic damage leads to reducing the negative effects of these drugs due to changes in chemotherapy tactics. It is known that the risk of cardiotoxic myocardial damage is genetically determined and controlled by more than 80 genes. In this review, the description of basic molecules such as ATP-binding cassette transporters and solute carrier family (SLC transporters), carbonyl reductase, molecules of antioxidant defense, xenobiotic and iron metabolism was performed. In addition, a special attention is paid to the study of epigenetic and post-translational regulation. The available data are characterized by some inconsistency that may be explained by the ethnic differences of the studied populations. Thus, a more detailed research of various ethnic groups, gene-gene interactions between potential candidate genes and epigenetic regulation is necessary. Thus, understanding the contribution of genetic polymorphism to the development of cardiotoxicity will help to assess the individual risks of cardiovascular pathology in patients with various types of cancer, as well as reduce the risk of myocardial damage by developing individual preventive measures and correcting chemotherapy.
Collapse
|
14
|
Zhao SF, Ye YX, Xu JD, He Y, Zhang DW, Xia ZY, Wang S. Long non-coding RNA KCNQ1OT1 increases the expression of PDCD4 by targeting miR-181a-5p, contributing to cardiomyocyte apoptosis in diabetic cardiomyopathy. Acta Diabetol 2021; 58:1251-1267. [PMID: 33907874 DOI: 10.1007/s00592-021-01713-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
AIMS Diabetic cardiomyopathy (DCM) is a specific myocardial alteration in patients with diabetics. LncRNA KCNQ1OT1 has been previously demonstrated to be involved in various diabetic complications. Our aims are to further investigate the underlying regulatory mechanisms/pathways of KCNQ1OT1 in DCM. METHODS In vitro and in vivo models of DCM were established in high glucose (HG)-treated human cardiomyocytes and in streptozotocin (STZ)-induced diabetic mice, respectively. Gene and protein expressions were examined by qPCR, western blotting and ELISA. Cell proliferation and apoptosis were determined by CCK8 assay, flow cytometry and TUNEL staining. The association between KCNQ1OT1 and miR-181a-5p, miR-181a-5p and PDCD4 was predicted using bioinformatics methods and subsequently confirmed by dual luciferase reporter and RNA immunoprecipitation assays. Mouse cardiac tissues were collected and analysed using HE staining, Masson's staining and immunohistochemical analysis. RESULTS KCNQ1OT1 and PDCD4 were upregulated in HG-treated human cardiomyocytes, while miR-181a-5p was downregulated. In addition, KCNQ1OT1 could negatively regulate miR-181a-5p expression; meanwhile, miR-181a-5p also negatively regulated PDCD4 expression. KCNQ1OT1 silencing suppressed the expression of inflammatory cytokines and cell apoptosis in vitro, whereas inhibition of miR-181a-5p abrogated those effects of KCNQ1OT1 knockdown. Moreover, overexpressed PDCD4 abolished the inhibition on inflammation and apoptosis caused by miR-181a-5p overexpression. Finally, KCNQ1OT1 knockdown reduced the expression of PDCD4 via regulating miR-181a-5p and inhibited myocardial inflammation and cardiomyocyte apoptosis in the in vivo DCM model. CONCLUSIONS Our findings suggest that KCNQ1OT1 and its target gene miR-181a-5p regulate myocardial inflammation and cardiomyocyte apoptosis by modulating PDCD4 in DCM.
Collapse
Affiliation(s)
- Shuo-Fang Zhao
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences and Guangdong Cardiovascular Institute, No.102, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Ying-Xian Ye
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences and Guangdong Cardiovascular Institute, No.102, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Jin-Dong Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences and Guangdong Cardiovascular Institute, No.102, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yi He
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences and Guangdong Cardiovascular Institute, No.102, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Deng-Wen Zhang
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences and Guangdong Cardiovascular Institute, No.102, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Zheng-Yuan Xia
- Department of Anesthesiology, The University of Hong Kong, Pok Fu Lam, 999077, Hong Kong SAR, People's Republic of China
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences and Guangdong Cardiovascular Institute, No.102, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China.
- Department of Anesthesiology, Linzhi People's Hospital, Linzhi, Tibet, People's Republic of China.
| |
Collapse
|
15
|
Bär C, Chatterjee S, Falcão Pires I, Rodrigues P, Sluijter JPG, Boon RA, Nevado RM, Andrés V, Sansonetti M, de Windt L, Ciccarelli M, Hamdani N, Heymans S, Figuinha Videira R, Tocchetti CG, Giacca M, Zacchigna S, Engelhardt S, Dimmeler S, Madonna R, Thum T. Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2021; 116:1805-1819. [PMID: 32638021 DOI: 10.1093/cvr/cvaa195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Vast parts of mammalian genomes are actively transcribed, predominantly giving rise to non-coding RNA (ncRNA) transcripts including microRNAs, long ncRNAs, and circular RNAs among others. Contrary to previous opinions that most of these RNAs are non-functional molecules, they are now recognized as critical regulators of many physiological and pathological processes including those of the cardiovascular system. The discovery of functional ncRNAs has opened up new research avenues aiming at understanding ncRNA-related disease mechanisms as well as exploiting them as novel therapeutics in cardiovascular therapy. In this review, we give an update on the current progress in ncRNA research, particularly focusing on cardiovascular physiological and disease processes, which are under current investigation at the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. This includes a range of topics such as extracellular vesicle-mediated communication, neurohormonal regulation, inflammation, cardiac remodelling, cardio-oncology as well as cardiac development and regeneration, collectively highlighting the wide-spread involvement and importance of ncRNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Christian Bär
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Inês Falcão Pires
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,Partner site Rhein/Main, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marida Sansonetti
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leon de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Italy
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Centre, University Hospital Maastricht, The Netherlands.,Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, The Netherlands
| | - Raquel Figuinha Videira
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London, London, UK.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, Biedersteiner Str. 29, Munich 80802, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Boyer O, Butler-Browne G, Chinoy H, Cossu G, Galli F, Lilleker JB, Magli A, Mouly V, Perlingeiro RCR, Previtali SC, Sampaolesi M, Smeets H, Schoewel-Wolf V, Spuler S, Torrente Y, Van Tienen F. Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Front Genet 2021; 12:702547. [PMID: 34408774 PMCID: PMC8365145 DOI: 10.3389/fgene.2021.702547] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
This article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies.
Collapse
Affiliation(s)
- Olivier Boyer
- Department of Immunology & Biotherapy, Rouen University Hospital, Normandy University, Inserm U1234, Rouen, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Hector Chinoy
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, United Kingdom
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Francesco Galli
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - James B. Lilleker
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Stefano C. Previtali
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hubert Smeets
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
- School for Developmental Biology and Oncology (GROW), Maastricht University, Maastricht, Netherlands
| | - Verena Schoewel-Wolf
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Yvan Torrente
- Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Florence Van Tienen
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
17
|
He Q, Li R, Hu B, Li X, Wu Y, Sun P, Jia Y, Guo Y. Stromal cell-derived factor-1 promotes osteoblastic differentiation of human bone marrow mesenchymal stem cells via the lncRNA-H19/miR-214-5p/BMP2 axis. J Gene Med 2021; 23:e3366. [PMID: 34032330 DOI: 10.1002/jgm.3366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Stromal cell-derived factor-1 (SDF-1) plays an important role in the osteoblastic differentiation of human bone marrow mesenchymal stem cells (hBMMSCs), but the specific mechanism remains unclear. Our study aimed to clarify the role of the lncRNA-H19/miR-214-5p/BMP2 axis in the osteoblastic differentiation of hBMMSCs induced by SDF-1. METHODS We used reverse-transcriptase polymerase chain reaction, western blotting, alkaline phosphatase activity test, and Alizarin red staining to evaluate the osteoblastic differentiation of primary hBMMSCs and the luciferase reporter assay to determine if lncRNA-H19 binds with miR-214-5p. RESULTS Our results indicated that SDF-1 (50 ng/mL) promotes the osteoblastic differentiation of hBMMSCs, significantly upregulates osteoblastogenic genes (OCN, OSX, RUNX2, and ALP), and increases Alizarin red staining, alkaline phosphatase activity, and lncRNA-H19 expression. Luciferase reporter assay verified that lncRNA-H19 binds with and represses miR-214-5p, thereby upregulating BMP2 expression. Use of miR-214-5p inhibitor or overexpression of lncRNA-H19 can promote the osteoblastic differentiation of hBMMSCs, but miR-214-5p or shH19 inhibits the osteoblastic differentiation of hBMMSCs. Treatment with an miR-214-5p inhibitor could rescue the inhibitory effect of shH19 on the osteoblastic differentiation of hBMMSCs. CONCLUSIONS Taken together, SDF-1 promotes the osteoblastic differentiation of hBMMSCs through the lncRNA-H19/miR-214-5p/BMP2 axis. Increased osteoblastic differentiation by an miR-214-5p inhibitor reveals a new possible strategy for the treatment of bone defect and osteoporosis.
Collapse
Affiliation(s)
- Qiting He
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ruibin Li
- Department of Orthopedic Surgery, Linyi central hospital, Linyi, Shandong, China
| | - Beibei Hu
- Department of Ultrasound, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xuezhou Li
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunpeng Wu
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Pengfei Sun
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuhua Jia
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongyuan Guo
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Zhang Y, Yang Y, He X, Yang P, Zong T, Sun P, Sun R, Yu T, Jiang Z. The cellular function and molecular mechanism of formaldehyde in cardiovascular disease and heart development. J Cell Mol Med 2021; 25:5358-5371. [PMID: 33973354 PMCID: PMC8184665 DOI: 10.1111/jcmm.16602] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
As a common air pollutant, formaldehyde is widely present in nature, industrial production and consumer products. Endogenous formaldehyde is mainly produced through the oxidative deamination of methylamine catalysed by semicarbazide-sensitive amine oxidase (SSAO) and is ubiquitous in human body fluids, tissues and cells. Vascular endothelial cells and smooth muscle cells are rich in this formaldehyde-producing enzyme and are easily damaged owing to consequent cytotoxicity. Consistent with this, increasing evidence suggests that the cardiovascular system and stages of heart development are also susceptible to the harmful effects of formaldehyde. Exposure to formaldehyde from different sources can induce heart disease such as arrhythmia, myocardial infarction (MI), heart failure (HF) and atherosclerosis (AS). In particular, long-term exposure to high concentrations of formaldehyde in pregnant women is more likely to affect embryonic development and cause heart malformations than long-term exposure to low concentrations of formaldehyde. Specifically, the ability of mouse embryos to effect formaldehyde clearance is far lower than that of the rat embryos, more readily allowing its accumulation. Formaldehyde may also exert toxic effects on heart development by inducing oxidative stress and cardiomyocyte apoptosis. This review focuses on the current progress in understanding the influence and underlying mechanisms of formaldehyde on cardiovascular disease and heart development.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiac UltrasoundThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yanyan Yang
- Department of ImmunologyBasic Medicine SchoolQingdao UniversityQingdaoChina
| | - Xiangqin He
- Department of Cardiac UltrasoundThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Panyu Yang
- Department of Cardiac UltrasoundThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tingyu Zong
- Department of Cardiac UltrasoundThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Pin Sun
- Department of Cardiac UltrasoundThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Rui‐cong Sun
- Department of Cardiac UltrasoundThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tao Yu
- Department of Cardiac UltrasoundThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Zhirong Jiang
- Department of Cardiac UltrasoundThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
19
|
Cao X, Ma Q, Wang B, Qian Q, Liu N, Liu T, Dong X. Silencing long non-coding RNA MIAT ameliorates myocardial dysfunction induced by myocardial infarction via MIAT/miR-10a-5p/EGR2 axis. Aging (Albany NY) 2021; 13:11188-11206. [PMID: 33819189 PMCID: PMC8109106 DOI: 10.18632/aging.202785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Long non-coding RNA (lncRNA) myocardial infarction-associated transcript (MIAT) has been widely-demonstrated to function as diagnostic markers for acute myocardial infarction (MI). This study was designed to explore the modulatory role of MIAT and its underlying molecular mechanism in MI. Firstly, MI mouse model was developed via ligation of the descending branch of the left coronary artery, and cell model was established through exposure to hypoxic conditions. Online prediction indicated that MIAT could bind to microRNA-10a-5p (miR-10a-5p), while miR-10a-5p was highlighted to bind to early growth response gene-2 (EGR2). MIAT and EGR2 were subsequently determined to be highly-expressed, whereas miR-10a-5p was found to be poorly-expressed in cardiomyocytes exposed to hypoxia as well as in MI mice using RT-qPCR and Western blot assay. The binding relationships between MIAT and miR-10a-5p, and between miR-10a-5p and EGR2 were further confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. The results of in vitro and in vivo experimentation also suggested that overexpression of miR-10a-5p or silencing of MIAT and EGR2 reduced cardiomyocyte apoptosis and increased ATP content, thus alleviating the impairment of cardiac function following MI. In a word, inhibition of MIAT protects against cardiac dysfunction induced by MI through the crosstalk with miR-10a-5p/EGR2.
Collapse
Affiliation(s)
- Xiangke Cao
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, P.R. China
| | - Qinghua Ma
- Department of Preventive Health, The Third People's Hospital Of Xiangcheng District In Suzhou, Suzhou 215134, P.R. China
| | - Bin Wang
- Department of Pediatrics, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, P.R. China
| | - Qingqiang Qian
- Department of Neurology, Tangshan Gongren Hospital, Tangshan 063000, P.R. China
| | - Ning Liu
- Department of Cardiovascular Diseases, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, P.R. China
| | - Tiejun Liu
- Department of Anesthesiology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, P.R. China
| | - Xiaoliu Dong
- Department of Neurology, Tangshan People's Hospital, Tangshan 063001, P.R. China
| |
Collapse
|
20
|
Kay M, Soltani BM. LncRNAs in Cardiomyocyte Maturation: New Window for Cardiac Regenerative Medicine. Noncoding RNA 2021; 7:ncrna7010020. [PMID: 33802186 PMCID: PMC8005985 DOI: 10.3390/ncrna7010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiomyocyte (CM) maturation, which is characterized by structural, functional, and metabolic specializations, is the last phase of CM development that prepares the cells for efficient and forceful contraction throughout life. Over the past decades, CM maturation has gained increased attention due to the fact that pluripotent stem cell-derived CMs are structurally, transcriptionally, and functionally immature and embryonic-like, which causes a defect in cell replacement therapy. The current challenge is to discover and understand the molecular mechanisms, which control the CM maturation process. Currently, emerging shreds of evidence emphasize the role of long noncoding RNAs (lncRNAs) in regulating different aspects of CM maturation, including myofibril maturation, electrophysiology, and Ca2+ handling maturation, metabolic maturation and proliferation to hypertrophy transition. Here, we describe the structural and functional characteristics of mature CMs. Furthermore, this review highlights the lncRNAs as crucial regulators of different aspects in CM maturation, which have the potential to be used for mature CM production. With the current advances in oligonucleotide delivery; lncRNAs may serve as putative therapeutic targets to produce highly mature CMs for research and regenerative medicine.
Collapse
|
21
|
Wang S, Guo N, Li S, He Y, Zheng D, Li L, Wang Z. EZH2 Dynamically Associates With Non-coding RNAs in Mouse Hearts After Acute Angiotensin II Treatment. Front Cardiovasc Med 2021; 8:585691. [PMID: 33732733 PMCID: PMC7959742 DOI: 10.3389/fcvm.2021.585691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Enhancer of zeste 2 (EZH2) governs gene reprogramming during cardiac hypertrophy through epigenetic remodeling, a process regulated by numerous non-coding RNAs (ncRNAs). However, the dynamic interaction between EZH2 and ncRNAs upon hypertrophic stimulation remains elusive. Here we performed an unbiased profiling for EZH2-associated ncRNAs in mouse hearts treated with Angiotensin II (AngII) at different time points (0, 4, and 24 h). The interactions between EZH2 and long ncRNAs (lncRNAs), Chaer, Mirt1, Hotair, and H19, were validated by PCR. RIP-seq analysis identified a total of 126 ncRNAs to be significantly associated with EZH2. These ncRNAs covers all five categories including intergenic, antisense, intron-related, promoter-related and both antisense and promoter-related. According to their changing patterns after AngII treatment, these ncRNAs were clustered into four groups, constantly enhanced, transiently enhanced, constantly suppressed and transiently suppressed. Structural prediction showed that EZH2 bound to hairpin motifs in ncRNAs including snoRNAs. Interaction strength prediction and RNA pull-down assay confirmed the direct interaction between EZH2 and Snora33. Interestingly, two antisense lncRNAs of Malat1, Gm20417, and Gm37376, displayed different binding patterns from their host gene after AngII treatment, suggesting a crucial role of this genomic locus in modulating EZH2 behavior. Our findings reveal the profile of EZH2-associated ncRNAs upon hypertrophic stimulation, and imply a dynamic regulation of EZH2 function in cardiac hypertrophy.
Collapse
Affiliation(s)
- Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuangling Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan He
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Cantile M, Di Bonito M, Tracey De Bellis M, Botti G. Functional Interaction among lncRNA HOTAIR and MicroRNAs in Cancer and Other Human Diseases. Cancers (Basel) 2021; 13:cancers13030570. [PMID: 33540611 PMCID: PMC7867281 DOI: 10.3390/cancers13030570] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This review aimed to describe the contribution of functional interaction between the lncRNA HOTAIR and microRNAs in human diseases, including cancer. HOTAIR/miRNAs complexes interfere with different cellular processes during carcinogenesis, mainly deregulating a series of oncogenic signaling pathways. A great number of ncRNAs-related databases have been established, supported by bioinformatics technologies, to identify the ncRNA-mediated sponge regulatory network. These approaches need experimental validation through cells and animal models studies. The optimization of systems to interfere with HOTAIR/miRNAs interplay could represent a new tool for the definition of diagnostic therapeutics in cancer patients. Abstract LncRNAs are a class of non-coding RNAs mostly involved in regulation of cancer initiation, metastatic progression, and drug resistance, through participation in post-transcription regulatory processes by interacting with different miRNAs. LncRNAs are able to compete with endogenous RNAs by binding and sequestering miRNAs and thereby regulating the expression of their target genes, often represented by oncogenes. The lncRNA HOX transcript antisense RNA (HOTAIR) represents a diagnostic, prognostic, and predictive biomarker in many human cancers, and its functional interaction with miRNAs has been described as crucial in the modulation of different cellular processes during cancer development. The aim of this review is to highlight the relation between lncRNA HOTAIR and different microRNAs in human diseases, discussing the contribution of these functional interactions, especially in cancer development and progression.
Collapse
Affiliation(s)
- Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-590-3471; Fax: +39-081-590-3718
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, 80131 Naples, Italy;
| | - Maura Tracey De Bellis
- Scientific Direction, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, 80131 Naples, Italy; (M.T.D.B.); (G.B.)
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, 80131 Naples, Italy; (M.T.D.B.); (G.B.)
| |
Collapse
|
23
|
Long noncoding RNA expression profiles in intermittent parathyroid hormone induced cementogenesis. Genomics 2020; 113:217-228. [PMID: 33309767 DOI: 10.1016/j.ygeno.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/01/2020] [Accepted: 12/06/2020] [Indexed: 11/22/2022]
Abstract
The aim of this study was to explore the involvement of long noncoding RNAs (lncRNAs) during intermittent parathyroid hormone (PTH) induced cementogenesis. Expression profiles of lncRNAs and mRNAs were obtained using high-throughput microarray. Gene Ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and coding-noncoding gene coexpression networks construction were performed. We identified 190 lncRNAs and 135 mRNAs that were differentially expressed during intermittent PTH-induced cementogenesis. In this process, the Wnt signaling pathway was negatively regulated, and eight lncRNAs were identified as possible core regulators of Wnt signaling. Based on the results of microarrray analysis, we further verified the repressed expression of Wnt signaling crucial components β-catenin, APC and Axin2. Above all, we speculated that lncRNAs may play important roles in PTH-induced cementogenesis via the negative regulation of Wnt pathway.
Collapse
|
24
|
Chen YQ, Yang X, Xu W, Yan Y, Chen XM, Huang ZQ. Knockdown of lncRNA TTTY15 alleviates myocardial ischemia-reperfusion injury through the miR-374a-5p/FOXO1 axis. IUBMB Life 2020; 73:273-285. [PMID: 33296140 DOI: 10.1002/iub.2428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 01/11/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury greatly contributes to myocardial tissue damage in patients with coronary disease, which eventually leads to heart failure. Long noncoding RNAs (lncRNAs) have an emerging role in the process of myocardial I/R injury. Our previous work revealed the protective role of miR-374a-5p against myocardial I/R injury. In this study, we explored the role of lncRNA TTTY15 and its potential interaction mechanisms with miR-374a-5p in myocardial I/R injury. The expression of TTTY15 was increased both in vitro and in vivo after myocardial I/R injury models according to quantitative real-time polymerase chain reaction. Various assays were conducted to evaluate the regulatory relationship among TTTY15, miR-374a-5p, FOXO1, and autophagy in H9c2 and HL-1 cells. The results showed that TTTY15 suppresses autophagy and myocardial I/R injury by targeting miR-374a-5p. We found that TTTY15 regulates miR-374a-5p, thus affecting FOXO1 expression and autophagy in myocytes during I/R. Furthermore, in an in vivo mouse model of myocardial I/R injury, suppression of TTTY15 successfully alleviated myocardial I/R injury. Our results reveal a novel feedback mechanism in which TTTY15 regulates miRNA processing and a potential target in myocardial I/R injury. TTTY15 is a promising therapeutic target for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Yong-Quan Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Xin Yang
- Department of Geriatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Wei Xu
- Department of Cardiology, Huadu District People's Hospital of Guangzhou, Guangzhou, PR China
| | - Yi Yan
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Xi-Ming Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Zhao-Qi Huang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
25
|
Comprehensive Overview of Non-coding RNAs in Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:197-211. [PMID: 32285413 DOI: 10.1007/978-981-15-1671-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cardiac development in the human embryo is characterized by the interactions of several transcription and growth factors leading the heart from a primordial linear tube into a synchronous contractile four-chamber organ. Studies on cardiogenesis showed that cell proliferation, differentiation, fate specification and morphogenesis are spatiotemporally coordinated by cell-cell interactions and intracellular signalling cross-talks. In recent years, research has focused on a class of inter- and intra-cellular modulators called non-coding RNAs (ncRNAs), transcribed from the noncoding portion of the DNA and involved in the proper formation of the heart. In this chapter, we will summarize the current state of the art on the roles of three major forms of ncRNAs [microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs)] in orchestrating the four sequential phases of cardiac organogenesis.
Collapse
|
26
|
Li J, Wang M, Song L, Wang X, Lai W, Jiang S. Lnc
RNA MALAT
1 regulates inflammatory cytokine production in lipopolysaccharide‐stimulated human gingival fibroblasts through sponging miR‐20a and activating
TLR
4 pathway. J Periodontal Res 2020; 55:182-190. [PMID: 31552681 DOI: 10.1111/jre.12700] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/26/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jiashan Li
- Department of Periodontics Hospital of Stomatology School of Dentistry Tianjin Medical University Tianjin China
| | - Minwei Wang
- School of Biological Science University of California Irvine Irvine CA USA
| | - Liting Song
- Department of Periodontics Hospital of Stomatology School of Dentistry Tianjin Medical University Tianjin China
| | - Xiangpu Wang
- Department of Periodontics Hospital of Stomatology School of Dentistry Tianjin Medical University Tianjin China
| | - Wen Lai
- Department of Periodontics Hospital of Stomatology School of Dentistry Tianjin Medical University Tianjin China
| | - Shaoyun Jiang
- Department of Periodontology Center of Stomatology Shenzhen Hospital Peking University Shenzhen China
| |
Collapse
|
27
|
Li G, Yun X, Ye K, Zhao H, An J, Zhang X, Han X, Li Y, Wang S. Long non-coding RNA-H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA-149/SDF-1 axis. J Cell Mol Med 2020; 24:4944-4955. [PMID: 32198976 PMCID: PMC7205807 DOI: 10.1111/jcmm.15040] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
Bone defects resulting from non-union fractures or tumour resections are common clinical problems. Long non-coding RNAs (lncRNAs) are reported to play vital roles in stem cell differentiation. The aim of this study was to elucidate the role of lncRNA-H19 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). Following the establishment of an osteogenic differentiation model in rats, the expression of H19, microRNA-149 (miR-149) and stromal cell-derived factor-1 (SDF-1) was measured by RT-qPCR. Thereafter, BMMSCs were isolated from rats and treated with a series of mimic, inhibitor or siRNA. SDF-1 expression, alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were detected. The mineralized and calcified nodules were assessed by alizarin red S and Von Kossa staining. BMMSC surface markers were detected by flow cytometry. Western blot analysis was used to measure the expression of ALP, OCN, runt-related transcription factor 2 (RUNX2) and osterix (OSX) proteins. Lastly, dual-luciferase reporter gene assay and RNA immunoprecipitation were applied to verify the relationship of H19, miR-149 and SDF-1. Overexpressed H19 and SDF-1 and poorly expressed miR-149 were found in rats with osteogenic differentiation. H19 increased SDF-1 expression by binding to miR-149. H19 enhanced ALP activity, OCN content, calcium deposit and ALP, OCN, RUNX2 and OSX protein expression of BMMSCS by up-regulating SDF-1 via binding to miR-149. Taken together, up-regulated H19 could promote the osteogenic differentiation of BMMSCs by increasing SDF-1 via miR-149.
Collapse
Affiliation(s)
- Guangjie Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiangdong Yun
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Kaishan Ye
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Haiyan Zhao
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Jiangdong An
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Xueliang Zhang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Xingwen Han
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Shuanke Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
28
|
Yang H, Ma J, Wang Z, Yao X, Zhao J, Zhao X, Wang F, Zhang Y. Genome-Wide Analysis and Function Prediction of Long Noncoding RNAs in Sheep Pituitary Gland Associated with Sexual Maturation. Genes (Basel) 2020; 11:E320. [PMID: 32192168 PMCID: PMC7140784 DOI: 10.3390/genes11030320] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNA (lncRNA) plays a crucial role in the hypothalamic-pituitary-testis (HPT) axis associated with sheep reproduction. The pituitary plays a connecting role in the HPT axis. However, little is known of their expression pattern and potential roles in the pituitary gland. To explore the potential lncRNAs that regulate the male sheep pituitary development and sexual maturation, we constructed immature and mature sheep pituitary cDNA libraries (three-month-old, TM, and nine-month-old, NM, respectively, n = 3) for lncRNA and mRNA high-throughput sequencing. Firstly, the expression of lncRNA and mRNA were comparatively analyzed. 2417 known lncRNAs and 1256 new lncRNAs were identified. Then, 193 differentially expressed (DE) lncRNAs and 1407 DE mRNAs were found in the pituitary between the two groups. Moreover, mRNA-lncRNA interaction network was constructed according to the target gene prediction of lncRNA and functional enrichment analysis. Five candidate lncRNAs and their targeted genes HSD17B12, DCBLD2, PDPK1, GPX3 and DLL1 that enriched in growth and reproduction related pathways were further filtered. Lastly, the interaction of candidate lncRNA TCONS_00066406 and its targeted gene HSD17B12 were validated in in vitro of sheep pituitary cells. Our study provided a systematic presentation of lncRNAs and mRNAs in male sheep pituitary, which revealed the potential role of lncRNA in male reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (J.M.); (Z.W.); (X.Y.); (J.Z.); (X.Z.); (F.W.)
| |
Collapse
|
29
|
Martone J, Mariani D, Desideri F, Ballarino M. Non-coding RNAs Shaping Muscle. Front Cell Dev Biol 2020; 7:394. [PMID: 32117954 PMCID: PMC7019099 DOI: 10.3389/fcell.2019.00394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
In 1957, Francis Crick speculated that RNA, beyond its protein-coding capacity, could have its own function. Decade after decade, this theory was dramatically boosted by the discovery of new classes of non-coding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and circular RNAs (circRNAs), which play a fundamental role in the fine spatio-temporal control of multiple layers of gene expression. Recently, many of these molecules have been identified in a plethora of different tissues, and they have emerged to be more cell-type specific than protein-coding genes. These findings shed light on how ncRNAs are involved in the precise tuning of gene regulatory mechanisms governing tissues homeostasis. In this review, we discuss the recent findings on the mechanisms used by lncRNAs and circRNAs to sustain skeletal and cardiac muscle formation, paying particular attention to the technological developments that, over the last few years, have aided their genome-wide identification and study. Together with lncRNAs and circRNAs, the emerging contribution of Piwi-interacting RNAs and transfer RNA-derived fragments to myogenesis will be also discussed, with a glimpse on the impact of their dysregulation in muscle disorders, such as myopathies, muscle atrophy, and rhabdomyosarcoma degeneration.
Collapse
Affiliation(s)
- Julie Martone
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Davide Mariani
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
| | - Fabio Desideri
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
30
|
Gabriel AF, Costa MC, Enguita FJ. Circular RNA-Centered Regulatory Networks in the Physiopathology of Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21020456. [PMID: 31936839 PMCID: PMC7014333 DOI: 10.3390/ijms21020456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Non-coding regulatory RNAs are generated as a core output of the eukaryotic genomes, being essential players in cell biology. At the organism level, they are key functional actors in those tissues and organs with limited proliferation capabilities such as the heart. The role of regulatory networks mediated by non-coding RNAs in the pathophysiology of cardiovascular conditions is starting to be unveiled. However, a deeper knowledge of the functional interactions among the diverse non-coding RNA families and their phenotypic consequences is required. This review presents the current knowledge about the functional crosstalk between circRNAs and other biomolecules in the framework of the cardiovascular diseases.
Collapse
Affiliation(s)
- André F. Gabriel
- Instituto de Medicina, Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (A.F.G.); (M.C.C.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marina C. Costa
- Instituto de Medicina, Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (A.F.G.); (M.C.C.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisco J. Enguita
- Instituto de Medicina, Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (A.F.G.); (M.C.C.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217999480
| |
Collapse
|
31
|
Wang QS, Zhou J, Li X. LncRNA UCA1 protects cardiomyocytes against hypoxia/reoxygenation induced apoptosis through inhibiting miR-143/MDM2/p53 axis. Genomics 2020; 112:574-580. [DOI: 10.1016/j.ygeno.2019.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 12/26/2022]
|
32
|
Guo J, Pan H. Long Noncoding RNA LINC01125 Enhances Cisplatin Sensitivity of Ovarian Cancer via miR-1972. Med Sci Monit 2019; 25:9844-9854. [PMID: 31865363 PMCID: PMC6938651 DOI: 10.12659/msm.916820] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background Ovarian cancer (OC) is the most frequent aggressive cancer among women worldwide, and chemoresistance is the major challenge in the clinical treatment of OC. Recently, there is evidence that long noncoding RNAs (lncRNAs) are closely related to the regulation of cisplatin (CDDP) resistance in OC cells. However, whether LINC01125, a novel lncRNA, can improve the sensitivity of OC to cisplatin remains unknown. Material/Methods In this study, we analyzed aberrantly expressed lncRNAs in miR-200a-overexpressing OC samples by using GSE122123. LINC01125 and miR-1972 expressions were measured by qRT-PCR. The effect of LINC01125 overexpression on cell proliferation was determined by CCK-8 and colony formation assays. The sensitivity of OC cells to cisplatin was determined by CCK-8 assays. The interaction between LINC01125 and miR-1972 was verified through dual-luciferase reporter and RNA immunoprecipitation (RIP) assays, and bioinformatics analysis was performed to predict the target genes of miR-1972. Results Our results indicated that LINC01125 expression was significantly downregulated in CDDP-resistant OC tissues and cell lines. Overexpression of LINC01125 inhibited OC cell proliferation and enhanced the cytotoxicity of CDDP in OC cells. Additionally, LINC01125 participated in the apoptosis pathway by directly binding to miR-1972 in OC cells. Conclusions Therefore, we suggest that LINC01125 might act as a tumor suppressor in OC and enhances the cisplatin sensitivity of OC cells by binding to miR-1972.
Collapse
Affiliation(s)
- Jia Guo
- Department of Obstetrics, Lanzhou Maternity and Child Health Care Hospital, Lanzhou, Gansu, China (mainland)
| | - Hua Pan
- Department of Obstetrics, Lanzhou Maternity and Child Health Care Hospital, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
33
|
Lv Y, Liu Z, Huang J, Yu J, Dong Y, Wang J. LncRNA nuclear-enriched abundant transcript 1 regulates hypoxia-evoked apoptosis and autophagy via mediation of microRNA-181b. Mol Cell Biochem 2019; 464:193-203. [PMID: 31853799 DOI: 10.1007/s11010-019-03660-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/16/2019] [Indexed: 12/22/2022]
Abstract
Nuclear-enriched abundant transcript 1 (NEAT1), a vital long noncoding RNA (lncRNA), exhibits the functions in disparate cancers. Nevertheless, the influences of NEAT1 in congenital heart disease (CHD) remain unreported. The research delves into whether NEAT1 affects H9c2 cells apoptosis and autophagy under the hypoxia condition. Overexpressed NEAT1 vector was transfected into H9c2 cells; then, functions of NEAT1 in cell viability, apoptosis, autophagy, PI3K/AKT/mTOR and JAK1/STAT3 pathways were detected in H9c2 cells under hypoxia condition. Expression of NEAT1 and miR-181b in hypoxia and blood samples from CHD was evaluated. After miR-181b inhibitor transfection, functions of miR-181b repression in the above-mentioned cell behavior and PI3K/AKT/mTOR and JAK1/STAT3 pathways were reassessed. Overexpressed NEAT1 clearly allayed hypoxia-triggered H9c2 cells apoptosis and autophagy. The decreased NEAT1 and miR-181b were showcased in hypoxia and blood samples from CHD; meanwhile, elevated miR-181b evoked by overexpressed NEAT1 was observed in hypoxia-managed H9c2 cells. More importantly, miR-181b inhibition obviously overturned the influences of NEAT1 in hypoxia-affected H9c2 cells apoptosis and autophagy. Besides, overexpressed NEAT1 facilitated PI3K/AKT/mTOR and JAK1/STAT3 activations via enhancing miR-181b. The research exposed that NEAT1 eased hypoxia-triggered H9c2 cells apoptosis and autophagy by expediting PI3K/AKT/mTOR and JAK1/STAT3 pathways via elevating miR-181b.
Collapse
Affiliation(s)
- Ying Lv
- Department of Cardiovascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Zhaoming Liu
- Department of Pediatric Surgery, Shijiazhuang Maternity & Child Healthcare Hospital, No. 9 Jianguo Road, Shijiazhuang, 050051, Hebei, China
| | - Jiancheng Huang
- Department of Cardiovascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Jie Yu
- Department of Cardiovascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Yanbo Dong
- Department of Cardiovascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Jun Wang
- Department of Cardiovascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| |
Collapse
|
34
|
Gong L, Chang H, Xu H. RETRACTED: LncRNA MALAT1 knockdown alleviates oxygen-glucose deprivation and reperfusion induced cardiomyocyte apoptotic death by regulating miR-122. Exp Mol Pathol 2019; 111:104325. [PMID: 31669130 DOI: 10.1016/j.yexmp.2019.104325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/05/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. The journal was initially contacted by the corresponding author to request the retraction of the article. Given the comments of Dr Elisabeth Bik regarding this article “… the Western blot bands in all 400+ papers are all very regularly spaced and have a smooth appearance in the shape of a dumbbell or tadpole, without any of the usual smudges or stains. All bands are placed on similar looking backgrounds, suggesting they were copy/pasted from other sources, or computer generated”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Licheng Gong
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Hong Chang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Haiming Xu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
35
|
Zhao Y, Wang Z, Zhang W, Zhang L. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. Biofactors 2019; 45:844-856. [PMID: 31418958 PMCID: PMC6916288 DOI: 10.1002/biof.1555] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Autophagy is a highly conserved catabolic process and fundamental biological process in eukaryotic cells. It recycles intracellular components to provide nutrients during starvation and maintains quality control of organelles and proteins. In addition, autophagy is a well-organized homeostatic cellular process that is responsible for the removal of damaged organelles and intracellular pathogens. Moreover, it also modulates the innate and adaptive immune systems. Micro ribonucleic acids (microRNAs) are a mature class of post-transcriptional modulators that are widely expressed in tissues and organs. And, it can suppress gene expression by targeting messenger RNAs for translational repression or, at a lesser extent, degradation. Research indicates that microRNAs regulate autophagy through different pathways, playing an essential role in the treatment of various diseases. It is an important regulator of fundamental cellular processes such as proliferation, autophagy, and cell apoptosis. In this review article, we first review the current knowledge of autophagy and the function of microRNAs. Then, we summarize the mechanism of autophagy and the signaling pathways related to autophagy by citing at least the main proteins involved in the different phases of the process. Second, we introduce other members of RNA and report some examples in various pathologies. Finally, we review the current literature regarding microRNA-based therapies for cancer, atherosclerosis, cardiac disease, tuberculosis, and viral diseases. MicroRNAs can cause autophagy upregulation or downregulation by targeting genes or affecting autophagy-related signaling pathways. Therefore, the microRNAs have a huge potential in autophagy regulation, and it is the function as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Yunyi Zhao
- Laboratory of Pathogenic Microbiology and ImmunologyCollege of Life Science, Jilin Agricultural UniversityChangchunChina
| | - Ze Wang
- Laboratory of Pathogenic Microbiology and ImmunologyCollege of Life Science, Jilin Agricultural UniversityChangchunChina
| | - Wenhui Zhang
- Laboratory of Pathogenic Microbiology and ImmunologyCollege of Life Science, Jilin Agricultural UniversityChangchunChina
- Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical DevelopmentJilin Agricultural UniversityChangchunChina
| | - Linbo Zhang
- Laboratory of Pathogenic Microbiology and ImmunologyCollege of Life Science, Jilin Agricultural UniversityChangchunChina
- Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical DevelopmentJilin Agricultural UniversityChangchunChina
| |
Collapse
|
36
|
Hanousková B, Skála M, Brynychová V, Zárybnický T, Skarková V, Kazimírová P, Vernerová A, Souček P, Skálová L, Pudil R, Matoušková P. Imatinib-induced changes in the expression profile of microRNA in the plasma and heart of mice-A comparison with doxorubicin. Biomed Pharmacother 2019; 115:108883. [PMID: 31004989 DOI: 10.1016/j.biopha.2019.108883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/13/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022] Open
Abstract
Cardiotoxicity is a serious adverse reaction to cancer chemotherapy and may lead to critical heart damage. Imatinib mesylate (IMB), a selective tyrosine kinase inhibitor, is sometimes accompanied by severe cardiovascular complications. To minimize risk, early biomarkers of such complications are of utmost importance. At the present time, microRNAs (miRNAs) are intensively studied as potential biomarkers of many pathological processes. Many miRNAs appear to be specific in some tissues, including the heart. In the present study we have explored the potential of specific miRNAs to be early markers of IMB-induced cardiotoxicity. Doxorubicin (DOX), an anthracycline with well-known cardiotoxicity, was used for comparison. NMRI mice were treated with IMB or DOX for nine days in doses corresponding to the highest recommended doses in oncological patients, following which plasmatic levels of miRNAs were analyzed in miRNA microarrays and selected cardio-specific miRNAs were quantified using qPCR. The plasmatic level of miR-1a, miR-133a, miR-133b, miR-339, miR-7058, miR-6236 and miR-6240 were the most different between the IMB-treated and control mice. Interestingly, most of the miRNAs affected by DOX were also affected by IMB showing the same trends. Concerning selected microRNAs in the hearts of individual mice, only miR-34a was significantly increased after DOX treatment, and only miR-205 was significantly decreased after IMB and DOX treatment. However, no changes in any miRNA expression correlated with the level of troponin T, a classical marker of heart injury.
Collapse
Affiliation(s)
- Barbora Hanousková
- Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Mikuláš Skála
- Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, Hradec Králové, Czech Republic; Department of Pulmology, University Hospital in Hradec Králové, Hradec Králové, Czech Republic
| | - Veronika Brynychová
- The National Institute of Public Health, Šrobárova 48, Praha 10, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Plzeň, Czech Republic
| | - Tomáš Zárybnický
- Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Veronika Skarková
- Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, Hradec Králové, Czech Republic
| | - Petra Kazimírová
- Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, Hradec Králové, Czech Republic
| | - Andrea Vernerová
- Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Pavel Souček
- The National Institute of Public Health, Šrobárova 48, Praha 10, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Plzeň, Czech Republic
| | - Lenka Skálová
- Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Radek Pudil
- Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic.
| |
Collapse
|
37
|
MicroRNAs in the diagnosis and prevention of drug-induced cardiotoxicity. Arch Toxicol 2018; 93:1-9. [DOI: 10.1007/s00204-018-2356-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/14/2018] [Indexed: 01/12/2023]
|
38
|
Li N, Rochette L, Wu Y, Rosenblatt-Velin N. New Insights into the Role of Exosomes in the Heart After Myocardial Infarction. J Cardiovasc Transl Res 2018; 12:18-27. [PMID: 30173401 DOI: 10.1007/s12265-018-9831-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/26/2018] [Indexed: 12/15/2022]
Abstract
Intercellular communications play a pivotal role in several cardiac pathophysiological processes. One subtype of extracellular vesicles, so-called exosomes, became known as important intercellular communication mediators in the heart. Exosomes are lipid bilayer biological nanovesicles loaded with diverse proteins, lipids, and mRNAs/microRNAs. All major cardiac cell types can modulate recipient cellular function via the release of exosomes. After myocardial infarction (MI), exosomes, especially those secreted by different cardiac stem cells, have been shown to confer cardioprotective effects, activate regenerative signals, and participate into cardiac repair. In this review, we rapidly recall the biology of exosomes at the beginning. Then we summarize the exosomes secreted by different myocardial cells and their function in cardiac intercellular communication. At last, we discuss the role of these vesicles in cardiac repair after MI.
Collapse
Affiliation(s)
- Na Li
- Unité de Physiopathologie Clinique, Département cœur-vaisseaux, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 7a, 1005, Lausanne, Switzerland.
| | - Luc Rochette
- Research team Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 Boulevard Jeanne d'Arc, 21079, Dijon, France
| | - Yongxin Wu
- FEMTO-ST Institute, University of Bourgogne Franche-Comté, ENSMM, CNRS, 24 rue Savary, F-25000, Besançon, France
| | - Nathalie Rosenblatt-Velin
- Unité de Physiopathologie Clinique, Département cœur-vaisseaux, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 7a, 1005, Lausanne, Switzerland
| |
Collapse
|
39
|
MiR-381 negatively regulates cardiomyocyte survival by suppressing Notch signaling. In Vitro Cell Dev Biol Anim 2018; 54:610-619. [PMID: 30105734 DOI: 10.1007/s11626-018-0277-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
The mechanisms for cardiomyocyte death in cardiovascular diseases are incompletely understood. The aim of this study is to reveal the function of miR-381 in myocardium infarction (MI)-induced cardiomyocyte apoptosis. We established mouse model of MI and cellular models of apoptosis induced by oxidative stress (H2O2 and hypoxia/reoxygenation (H/R)). The expression of miR-381 in these models was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR); we employed approaches including cell counting kit-8 (CCK-8) assay and flow cytometry to evaluate the cell viability and apoptosis. Notch signaling was determined by western blot analysis of key signaling components including Notch1 intracellular domain (ICD), Jag1, and Hes1. The predicted binding of miR-381 to Jag1 3' untranslated region (UTR) was validated by luciferase assay. Following MI, miR-381 expression was upregulated time dependently in the border zone of ischemic area but not in the non-ischemic area. MiR-381 expression was also upregulated in cardiomyocytes treated with H2O2 and H/R. Overexpression of miR-381 exacerbated H2O2- and H/R-induced apoptosis of cardiomyocytes; in contrast, inhibition of miR-381 attenuated apoptosis in these conditions. Importantly, in vivo delivery of miR-381 antagomir significantly reduced infarction size. Moreover, miR-381 negatively regulates the cardioprotective Notch signaling in vivo and in vitro, which might be an effect of targeted inhibition of Jag1 by itself. These data indicate an essential role of miR-381/Jag1 pathway in regulating Notch signaling-mediated cardioprotective effect in cardiomyocytes. Our study also provides a potential therapeutic target for cardiovascular diseases.
Collapse
|
40
|
Nadal-Ginard B, Torella D, De Angelis A, Rossi F. Monographic issue of pharmacological research on adult myocardial repair/regeneration. Pharmacol Res 2018; 127:1-3. [PMID: 29279193 DOI: 10.1016/j.phrs.2017.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bernardo Nadal-Ginard
- Molecular Cellular Cardiology, Department of Medical, Surgical Sciences, Magna Graecia University, Catanzaro, 88100, Italy, Italy.
| | - Daniele Torella
- Molecular Cellular Cardiology, Department of Medical, Surgical Sciences, Magna Graecia University, Catanzaro, 88100, Italy, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "L.Vanvitelli", Naples, 80121, Italy, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "L.Vanvitelli", Naples, 80121, Italy, Italy.
| |
Collapse
|
41
|
Gómez J, Lorca R, Reguero JR, Martín M, Morís C, Alonso B, Iglesias S, Díaz-Molina B, Avanzas P, Coto E. Genetic variation at the long noncoding RNA H19 gene is associated with the risk of hypertrophic cardiomyopathy. Epigenomics 2018; 10:865-873. [DOI: 10.2217/epi-2017-0175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: The long noncoding RNA H19 and its host micro RNA miR-675 have been found deregulated in cardiac hypertrophy and heart failure tissues. Our aim was to investigate whether the H19 gene variants were associated with the risk of hypertrophic cardiomyopathy (HCM). Patients & methods: We genotyped two H19 tag single nucleotide polymorphisms in 405 HCM patients and 550 controls, and sequenced this gene in 100 patients. Results: The rs2107425 C was significantly increased in sarcomere no-mutation patients (n = 225; p = 0.01): CC versus CT + TT, p = 0.017; odd ratios: 1.51. Sequencing of the H19 coding transcript identified two patients heterozygous carriers for a rare variant, rs945977096 G/A, that was absent among the controls. Conclusion: Our study suggested a significant association between H19 variants and the risk of developing HCM.
Collapse
Affiliation(s)
- Juan Gómez
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Rebeca Lorca
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Julián R Reguero
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - María Martín
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - César Morís
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Belén Alonso
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Sara Iglesias
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Beatriz Díaz-Molina
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Pablo Avanzas
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Eliecer Coto
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Genética Molecular y Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
- Red de Investigación Renal (REDINREN), Madrid, Spain
| |
Collapse
|
42
|
Di Mauro V, Barandalla-Sobrados M, Catalucci D. The noncoding-RNA landscape in cardiovascular health and disease. Noncoding RNA Res 2018; 3:12-19. [PMID: 30159435 PMCID: PMC6084835 DOI: 10.1016/j.ncrna.2018.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 12/22/2022] Open
Abstract
The cardiovascular system plays a pivotal role in regulating and maintaining homeostasis in the human body. Therefore any alteration in regulatory networks that orchestrate heart development as well as adaptation to physiological and environmental stress might result in pathological conditions, which represent the leading cause of death worldwide [1]. The latest advances in genome-wide techniques challenged the "protein-central dogma" with the discovery of the so-called non-coding RNAs (ncRNAs). Despite their lack of protein coding potential, ncRNAs have been largely demonstrated to regulate the majority of biological processes and have also been largely implicated in cardiovascular disorders. This review will first discuss the important mechanistic aspects of some of the classes of ncRNAs such as biogenesis, mechanism of action, as well as their involvement in cardiac diseases. The ncRNA potential uses as therapeutic molecules, with a specific focus on the latest technologies for their in vivo delivery as drug targets, will be described.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Maria Barandalla-Sobrados
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Daniele Catalucci
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
43
|
Corella D, Coltell O, Macian F, Ordovás JM. Advances in Understanding the Molecular Basis of the Mediterranean Diet Effect. Annu Rev Food Sci Technol 2018; 9:227-249. [PMID: 29400994 DOI: 10.1146/annurev-food-032217-020802] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increasingly, studies showing the protective effects of the Mediterranean diet (MedDiet) on different diseases (cardiovascular, diabetes, some cancers, and even total mortality and aging indicators) are being published. The scientific evidence level for each outcome is variable, and new studies are needed to better understand the molecular mechanisms whereby the MedDiet may exercise its effects. Here, we present recent advances in understanding the molecular basis of MedDiet effects, mainly focusing on cardiovascular diseases but also discussing other related diseases. There is heterogeneity in defining the MedDiet, and it can, owing to its complexity, be considered as an exposome with thousands of nutrients and phytochemicals. We review MedDiet composition and assessment as well as the latest advances in the genomic, epigenomic (DNA methylation, histone modifications, microRNAs, and other emerging regulators), transcriptomic (selected genes and whole transcriptome), and metabolomic and metagenomic aspects of the MedDiet effects (as a whole and for its most typical food components). We also present a critical review of the limitations of the studies undertaken and propose new analyses and greater bioinformatic integration to better understand the most important molecular mechanisms whereby the MedDiet as a whole, or its main food components, may exercise their protective effects.
Collapse
Affiliation(s)
- Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, 46010, Spain; .,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain.,Department of Computer Languages and Systems, School of Technology and Experimental Sciences, Universitat Jaume I, Castellón, 12071, Spain
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA.,Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.,IMDEA Alimentación, Madrid, 28049, Spain
| |
Collapse
|