1
|
Biswas R, Boyd EK, Eaton N, Steenackers A, Schulte ML, Reusswig F, Yu H, Drew C, Kahr WHA, Shi Q, Plomann M, Hoffmeister KM, Falet H. PACSIN2 regulates platelet integrin β1 hemostatic function. J Thromb Haemost 2023; 21:3619-3632. [PMID: 37678551 PMCID: PMC10841284 DOI: 10.1016/j.jtha.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Upon vessel injury, platelets adhere to exposed matrix constituents via specific membrane receptors, including the von Willebrand factor receptor glycoprotein (GP)Ib-IX-V complex and integrins β1 and β3. In platelets, the Fes/CIP4-homology Bin-Amphiphysin-Rvs protein PACSIN2 associates with the cytoskeletal and scaffolding protein filamin A (FlnA), linking GPIbα and integrins to the cytoskeleton. OBJECTIVES Here we investigated the role of PACSIN2 in platelet function. METHODS Platelet parameters were evaluated in mice lacking PACSIN2 and platelet integrin β1. RESULTS Pacsin2-/- mice displayed mild thrombocytopenia, prolonged bleeding time, and delayed thrombus formation in a ferric chloride-mediated carotid artery injury model, which was normalized by injection of control platelets. Pacsin2-/- platelets formed unstable thrombi that embolized abruptly in a laser-induced cremaster muscle injury model. Pacsin2-/- platelets had hyperactive integrin β1, as evidenced by increased spreading onto surfaces coated with the collagen receptor α2β1-specific peptide GFOGER and increased binding of the antibody 9EG7 directed against active integrin β1. By contrast, Pacsin2-/- platelets had normal integrin αIIbβ3 function and expressed P-selectin normally following stimulation through the collagen receptor GPVI or with thrombin. Deletion of platelet integrin β1 in Pacsin2-/- mice normalized platelet count, hemostasis, and thrombus formation. A PACSIN2 peptide mimicking the FlnA-binding site mediated the pull-down of a FlnA rod 2 construct by integrin β7, a model for integrin β-subunits. CONCLUSIONS Pacsin2-/- mice displayed severe thrombus formation defects due to hyperactive platelet integrin β1. The data suggest that PACSIN2 binding to FlnA negatively regulates platelet integrin β1 hemostatic function.
Collapse
Affiliation(s)
- Ratnashree Biswas
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA
| | - Emily K Boyd
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nathan Eaton
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Agata Steenackers
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA
| | | | - Friedrich Reusswig
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA
| | - Hongyin Yu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Caleb Drew
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA
| | - Walter H A Kahr
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Qizhen Shi
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin, USA
| | - Markus Plomann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Karin M Hoffmeister
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA; Departments of Biochemistry and Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hervé Falet
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
2
|
Morgan J, Yarwood R, Starborg T, Yan G, Lowe M. Pacsin2 is required for endocytosis in the zebrafish pronephric tubule. Biol Open 2022; 11:275521. [PMID: 35616009 PMCID: PMC9235069 DOI: 10.1242/bio.059150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Endocytosis mediates the cellular uptake of numerous molecules from the extracellular space and is a fundamentally important process. In the renal proximal tubule, the scavenger receptor megalin and its co-receptor cubilin mediate endocytosis of low molecular weight proteins from the renal filtrate. However, the extent to which megalin endocytosis relies on different components of the trafficking machinery remains relatively poorly defined in vivo. In this study, we identify a functional requirement for the F-BAR protein pacsin2 in endocytosis in the renal proximal tubule of zebrafish larvae. Pacsin2 is expressed throughout development and in all zebrafish tissues, similar to the mammalian orthologue. Within renal tubular epithelial cells, pacsin2 is enriched at the apical pole where it is localised to endocytic structures. Loss of pacsin2 results in reduced endocytosis within the proximal tubule, which is accompanied by a reduction in the abundance of megalin and endocytic organelles. Our results indicate that pacsin2 is required for efficient endocytosis in the proximal tubule, where it likely cooperates with other trafficking machinery to maintain endocytic uptake and recycling of megalin. Summary: We identify a role for the F-BAR protein pacsin2 in endocytosis in the renal tubule of zebrafish larvae.
Collapse
Affiliation(s)
- Joseph Morgan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Tobias Starborg
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Guanhua Yan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
3
|
Dumont V, Lehtonen S. PACSIN proteins in vivo: Roles in development and physiology. Acta Physiol (Oxf) 2022; 234:e13783. [PMID: 34990060 PMCID: PMC9285741 DOI: 10.1111/apha.13783] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/15/2021] [Accepted: 01/01/2022] [Indexed: 12/22/2022]
Abstract
Protein kinase C and casein kinase substrate in neurons (PACSINs), or syndapins (synaptic dynamin‐associated proteins), are a family of proteins involved in the regulation of cell cytoskeleton, intracellular trafficking and signalling. Over the last twenty years, PACSINs have been mostly studied in the in vitro and ex vivo settings, and only in the last decade reports on their function in vivo have emerged. We first summarize the identification, structure and cellular functions of PACSINs, and then focus on the relevance of PACSINs in vivo. During development in various model organisms, PACSINs participate in diverse processes, such as neural crest cell development, gastrulation, laterality development and neuromuscular junction formation. In mouse, PACSIN2 regulates angiogenesis during retinal development and in human, PACSIN2 associates with monosomy and embryonic implantation. In adulthood, PACSIN1 has been extensively studied in the brain and shown to regulate neuromorphogenesis, receptor trafficking and synaptic plasticity. Several genetic studies suggest a role for PACSIN1 in the development of schizophrenia, which is also supported by the phenotype of mice depleted of PACSIN1. PACSIN2 plays an essential role in the maintenance of intestinal homeostasis and participates in kidney repair processes after injury. PACSIN3 is abundant in muscle tissue and necessary for caveolar biogenesis to create membrane reservoirs, thus controlling muscle function, and has been linked to certain genetic muscular disorders. The above examples illustrate the importance of PACSINs in diverse physiological or tissue repair processes in various organs, and associations to diseases when their functions are disturbed.
Collapse
Affiliation(s)
- Vincent Dumont
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
| | - Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
- Department of Pathology University of Helsinki Helsinki Finland
| |
Collapse
|
4
|
A junctional PACSIN2/EHD4/MICAL-L1 complex coordinates VE-cadherin trafficking for endothelial migration and angiogenesis. Nat Commun 2021; 12:2610. [PMID: 33972531 PMCID: PMC8110786 DOI: 10.1038/s41467-021-22873-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Angiogenic sprouting relies on collective migration and coordinated rearrangements of endothelial leader and follower cells. VE-cadherin-based adherens junctions have emerged as key cell-cell contacts that transmit forces between cells and trigger signals during collective cell migration in angiogenesis. However, the underlying molecular mechanisms that govern these processes and their functional importance for vascular development still remain unknown. We previously showed that the F-BAR protein PACSIN2 is recruited to tensile asymmetric adherens junctions between leader and follower cells. Here we report that PACSIN2 mediates the formation of endothelial sprouts during angiogenesis by coordinating collective migration. We show that PACSIN2 recruits the trafficking regulators EHD4 and MICAL-L1 to the rear end of asymmetric adherens junctions to form a recycling endosome-like tubular structure. The junctional PACSIN2/EHD4/MICAL-L1 complex controls local VE-cadherin trafficking and thereby coordinates polarized endothelial migration and angiogenesis. Our findings reveal a molecular event at force-dependent asymmetric adherens junctions that occurs during the tug-of-war between endothelial leader and follower cells, and allows for junction-based guidance during collective migration in angiogenesis. Communication between endothelial leader and follower cells during collective cell migration is crucial for vascular development. Here, the authors show that PACSIN2 guides collective cell migration and angiogenesis by recruiting a protein trafficking complex to asymmetric cell-cell junctions, controlling local junction plasticity.
Collapse
|