1
|
Chen J, Fan W, Fan J, Xie J, Wang Y, Wang Y, Lin N, Lin B. Tetrahydrocurcumin Attenuates Polymyxin B Sulfate-Induced HK-2 Cells Apoptosis by Inhibiting Endoplasmic Reticulum Stress-Mediated PERK/eIF2α/ATF4/CHOP Signaling Pathway Axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:4995-5007. [PMID: 39023307 DOI: 10.1002/tox.24376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
The clinical application of polymyxin B (PMB) is limited by its nephrotoxic effects, making the reduction of PMB-induced nephrotoxicity has become a pressing concern for clinicians. Tetrahydrocurcumin (THC), known for its beneficial characteristics in biological functions, presents an attractive option for intervention therapy to mitigate PMB-induced nephrotoxicity. However, the underlying mechanism of how THC mitigates PMB-induced nephrotoxicity is still poorly understood. Here, we first evaluated the potential of THC intervention therapy to mitigate PMB-induced nephrotoxicity in an in vitro model of PMB-induced cell injury. Moreover, we demonstrated that THC effectively protected HK-2 cells from PMB-induced apoptosis by using cell counting kit-8 and flow cytometry assay. THC could also suppress PMB-induced endoplasmic reticulum (ER) stress via PERK/eIF2α/ATF4/CHOP pathway. In addition, using PERK inhibitor GSK2606414 to inhibit ER stress also alleviated PMB-induced apoptosis. Taken together, these findings provide novel insights that THC possesses the ability to alleviate PMB-induced nephrotoxicity by inhibiting the ER stress-mediated PERK/eIF2α/ATF4/CHOP axis, which sheds light on the benefits of THC as an intervention strategy to reduce PMB-induced nephrotoxicity, thus providing a potential avenue for improved clinical outcomes in patients receiving PMB treatment.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Intensive Care Medicine, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
| | - Weibin Fan
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
| | - Jing Fan
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
| | - Jiao Xie
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Yan Wang
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Yinhui Wang
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
| |
Collapse
|
2
|
Su Z, Lu W, Cao J, Xie Z, Zhao P. Endoplasmic reticulum stress in abdominal aortic aneurysm. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VASCULATURE 2024; 54:101500. [PMID: 39280692 PMCID: PMC11402186 DOI: 10.1016/j.ijcha.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by permanent dilatation of the abdominal aorta, which is accompanied by inflammation, degradation of the extracellular matrix (ECM) and disruption of vascular smooth muscle cell (VSMC) homeostasis. Endoplasmic reticulum (ER) stress is involved in the regulation of inflammation, oxidative stress and VSMC apoptosis, all of which are critical factors in AAA development. Although several studies have revealed the occurrence of ER stress in AAA development, the specific biological functions of ER stress in AAA development remain largely unknown. Given that targeting ER stress is a promising strategy for treating AAAs, further investigation of the physiological and pathological roles of ER stress in AAA development is warranted.
Collapse
Affiliation(s)
- Zhaohai Su
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Weiling Lu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Zheng Xie
- Department of General Practice, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Pei Zhao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
| |
Collapse
|
3
|
Hajimohammadi S, Rameshrad M, Karimi G. Exploring the therapeutic effects of sulforaphane: an in-depth review on endoplasmic reticulum stress modulation across different disease contexts. Inflammopharmacology 2024; 32:2185-2201. [PMID: 38922526 DOI: 10.1007/s10787-024-01506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that contributes to the folding of proteins and calcium homeostasis. Numerous elements can disrupt its function, leading to the accumulation of proteins that are unfolded or misfolded in the lumen of the ER, a condition that is known as ER stress. This phenomenon can trigger cell death through the activation of apoptosis and inflammation. Glucoraphanin (GRA) is the predominant glucosinolate found in cruciferous vegetables. Various mechanical and biochemical processes activate the enzyme myrosinase, leading to the hydrolysis of glucoraphanin into the bioactive compound sulforaphane. Sulforaphane is an organosulfur compound that belongs to the isothiocyanate group. It possesses a wide range of activities and has shown remarkable potential as an anti-inflammatory, antioxidant, antitumor, and anti-angiogenic substance. Additionally, sulforaphane is resistant to oxidation, has been demonstrated to have low toxicity, and is considered well-tolerable in individuals. These properties make it a valuable natural dietary supplement for research purposes. Sulforaphane has been demonstrated as a potential candidate drug molecule for managing a range of diseases, primarily because of its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, which can be mediated by modulation of ER stress pathways. This review seeks to cover a wealth of data supporting the broad range of protective functions of sulforaphane, improving various diseases, such as cardiovascular, central nervous system, liver, eye, and reproductive diseases, as well as diabetes, cancer, gastroenteritis, and osteoarthritis, through the amelioration of ER stress in both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Samaneh Hajimohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Research Institute, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
4
|
Zhang N, Zhang S, Dong X. Plant-derived bioactive compounds and their novel role in central nervous system disorder treatment via ATF4 targeting: A systematic literature review. Biomed Pharmacother 2024; 176:116811. [PMID: 38795641 DOI: 10.1016/j.biopha.2024.116811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Central nervous system (CNS) disorders exhibit exceedingly intricate pathogenic mechanisms. Pragmatic and effective solutions remain elusive, significantly compromising human life and health. Activating transcription factor 4 (ATF4) participates in the regulation of multiple pathophysiological processes, including CNS disorders. Considering the widespread involvement of ATF4 in the pathological process of CNS disorders, the targeted regulation of ATF4 by plant-derived bioactive compounds (PDBCs) may become a viable strategy for the treatment of CNS disorders. However, the regulatory relationship between PDBCs and ATF4 remains incompletely understood. Here, we aimed to comprehensively review the studies on PDBCs targeting ATF4 to ameliorate CNS disorders, thereby offering novel directions and insights for the treatment of CNS disorders. A computerized search was conducted on PubMed, Embase, Web of Science, and Google Scholar databases to identify preclinical experiments related to PDBCs targeting ATF4 for the treatment of CNS disorders. The search timeframe was from the inception of the databases to December 2023. Two assessors conducted searches using the keywords "ATF4," "Central Nervous System," "Neurological," "Alzheimer's disease," "Parkinson's Disease," "Stroke," "Spinal Cord Injury," "Glioblastoma," "Traumatic Brain Injury," and "Spinal Cord Injury." Overall, 31 studies were included, encompassing assessments of 27 PDBCs. Combining results from in vivo and in vitro studies, we observed that these PDBCs, via ATF4 modulation, prevent the deposition of amyloid-like fibers such as Aβ, tau, and α-synuclein. They regulate ERS, reduce the release of inflammatory factors, restore mitochondrial membrane integrity to prevent oxidative stress, regulate synaptic plasticity, modulate autophagy, and engage anti-apoptotic mechanisms. Consequently, they exert neuroprotective effects in CNS disorders. Numerous PDBCs targeting ATF4 have shown potential in facilitating the restoration of CNS functionality, thereby presenting expansive prospects for the treatment of such disorders. However, future endeavors necessitate high-quality, large-scale, and comprehensive preclinical and clinical studies to further validate this therapeutic potential.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun, Liaoning 113000, China
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| |
Collapse
|
5
|
Wang Q, Li A, Yu H, Wang C, Wang T, Zhang J. Evaluation of Cross-Talk and Alleviate Potential of Cytotoxic Factors Induced by Deoxynivalenol in IPEC-J2 Cells Interference with Curcumin. Int J Mol Sci 2024; 25:6984. [PMID: 39000093 PMCID: PMC11241398 DOI: 10.3390/ijms25136984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by Fusarium graminearum, and curcumin (CUR) is a natural polyphenolic compound found in turmeric. However, the combined treatment of CUR and DON to explore the mitigating effect of CUR on DON and their combined mechanism of action is not clear. Therefore, in this study, we established four treatment groups (CON, CUR, DON and CUR + DON) to investigate their mechanism in the porcine intestinal epithelial cells (IPEC-J2). In addition, the cross-talk and alleviating potential of CUR interfering with DON-induced cytotoxic factors were evaluated by in vitro experiments; the results showed that CUR could effectively inhibit DON-exposed activated TNF-α/NF-κB pathway, attenuate DON-induced apoptosis, and alleviate DON-induced endoplasmic reticulum stress and oxidative stress through PERK/CHOP pathways, which were verified at both mRNA and protein levels. In conclusion, these promising findings may contribute to the future use of CUR as a novel feed additive to protect livestock from the harmful effects of DON.
Collapse
Affiliation(s)
- Qiyuan Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chuanqi Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Ting Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jing Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
6
|
Cozmin M, Lungu II, Gutu C, Stefanache A, Duceac LD, Șoltuzu BD, Damir D, Calin G, Bogdan Goroftei ER, Grierosu C, Boev M. Turmeric: from spice to cure. A review of the anti-cancer, radioprotective and anti-inflammatory effects of turmeric sourced compounds. Front Nutr 2024; 11:1399888. [PMID: 38863589 PMCID: PMC11165187 DOI: 10.3389/fnut.2024.1399888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Turmeric (Curcuma longa) has been extensively studied for its diverse pharmacological properties, including its potential role as an anticancer agent, antioxidant, and radioprotector. This review provides an overview of the chemical composition of turmeric, focusing on its main bioactive compounds, such as curcuminoids and volatile oils. Curcumin, the most abundant curcuminoid in turmeric, has been widely investigated for its various biological activities, including anti-inflammatory, antioxidant, and anticancer effects. Numerous in vitro and in vivo studies have demonstrated the ability of curcumin to modulate multiple signaling pathways involved in carcinogenesis, leading to inhibition of cancer cell proliferation, induction of apoptosis, and suppression of metastasis. Furthermore, curcumin has shown promising potential as a radioprotective agent by mitigating radiation-induced oxidative stress and DNA damage. Additionally, turmeric extracts containing curcuminoids have been reported to exhibit potent antioxidant activity, scavenging free radicals and protecting cells from oxidative damage. The multifaceted pharmacological properties of turmeric make it a promising candidate for the development of novel therapeutic strategies for cancer prevention and treatment, as well as for the management of oxidative stress-related disorders. However, further research is warranted to elucidate the underlying mechanisms of action and to evaluate the clinical efficacy and safety of turmeric and its bioactive constituents in cancer therapy and radioprotection. This review consolidates the most recent relevant data on turmeric's chemical composition and its therapeutic applications, providing a comprehensive overview of its potential in cancer prevention and treatment, as well as in radioprotection.
Collapse
Affiliation(s)
- Mihai Cozmin
- "Apollonia” University of Iasi, Faculty of Dental Medicine, Iași, Romania
| | | | - Cristian Gutu
- University Dunarea de Jos Faculty of Medicine and Pharmacy, Galați, Romania
- "Dr. Aristide Serfioti” Military Emergency Clinical Hospital, Galați, Romania
| | - Alina Stefanache
- "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Letitia Doina Duceac
- "Apollonia” University of Iasi, Faculty of Dental Medicine, Iași, Romania
- University Dunarea de Jos Faculty of Medicine and Pharmacy, Galați, Romania
- Prof. Dr. Nicolae Oblu” Neurosurg Hospital Iasi, 2 Ateneului, Iasi, Romania
| | | | - Daniela Damir
- "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Gabriela Calin
- "Apollonia” University of Iasi, Faculty of Dental Medicine, Iași, Romania
| | - Elena Roxana Bogdan Goroftei
- University Dunarea de Jos Faculty of Medicine and Pharmacy, Galați, Romania
- Sf. Ioan Emergency Clinical Hospital for Children, 2 Gheorghe Asachi Str., Galați, Romania
| | - Carmen Grierosu
- "Apollonia” University of Iasi, Faculty of Dental Medicine, Iași, Romania
| | - Monica Boev
- University Dunarea de Jos Faculty of Medicine and Pharmacy, Galați, Romania
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, Galați, Romania
| |
Collapse
|
7
|
Li W, Cheng X, Zhu G, Hu Y, Wang Y, Niu Y, Li H, Aierken A, Li J, Feng L, Liu G. A review of chemotherapeutic drugs-induced arrhythmia and potential intervention with traditional Chinese medicines. Front Pharmacol 2024; 15:1340855. [PMID: 38572424 PMCID: PMC10987752 DOI: 10.3389/fphar.2024.1340855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Significant advances in chemotherapy drugs have reduced mortality in patients with malignant tumors. However, chemotherapy-related cardiotoxicity increases the morbidity and mortality of patients, and has become the second leading cause of death after tumor recurrence, which has received more and more attention in recent years. Arrhythmia is one of the common types of chemotherapy-induced cardiotoxicity, and has become a new risk related to chemotherapy treatment, which seriously affects the therapeutic outcome in patients. Traditional Chinese medicine has experienced thousands of years of clinical practice in China, and has accumulated a wealth of medical theories and treatment formulas, which has unique advantages in the prevention and treatment of malignant diseases. Traditional Chinese medicine may reduce the arrhythmic toxicity caused by chemotherapy without affecting the anti-cancer effect. This paper mainly discussed the types and pathogenesis of secondary chemotherapeutic drug-induced arrhythmia (CDIA), and summarized the studies on Chinese medicine compounds, Chinese medicine Combination Formula and Chinese medicine injection that may be beneficial in intervention with secondary CDIA including atrial fibrillation, ventricular arrhythmia and sinus bradycardia, in order to provide reference for clinical prevention and treatment of chemotherapy-induced arrhythmias.
Collapse
Affiliation(s)
- Weina Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaozhen Cheng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yunhan Wang
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Yueyue Niu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongping Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aikeremu Aierken
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Feng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guifang Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Jiang Z, Liu L, Su H, Cao Y, Ma Z, Gao Y, Huang D. Curcumin and analogues in mitigating liver injury and disease consequences: From molecular mechanisms to clinical perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155234. [PMID: 38042008 DOI: 10.1016/j.phymed.2023.155234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Liver injury is a prevalent global health concern, impacting a substantial number of individuals and leading to elevated mortality rates and socioeconomic burdens. Traditional primary treatment options encounter resource constraints and high costs, prompting exploration of alternative adjunct therapies, such as phytotherapy. Curcumin demonstrates significant therapeutic potential across various medical conditions, particularly emerging as a promising candidate for liver injury treatment. PURPOSE This study aims to provide current evidence maps of curcumin and its analogs in the context of liver injury, covering aspects of biosafety, toxicology, and clinical trials. Importantly, it seeks to summarize the intricate mechanisms modulated by curcumin. METHODS We conducted a comprehensive search of MEDLINE, Web of Science, and Embase up to July 2023. Titles and abstracts were reviewed to identify studies that met our eligibility criteria. The screening process involved three authors independently assessing the potential of curcumin mitigating liver injury and its disease consequences by reviewing titles, abstracts, and full texts. RESULTS Curcumin and its analogs have demonstrated low toxicity in vitro and in vivo. However, the limited bioavailability has hindered their advanced use in liver injury. This limitation can potentially be addressed by nano-curcumin and emerging drug delivery systems. Curcumin plays a role in alleviating liver injury by modulating the antioxidant system, as well as cellular and molecular pathways. The specific mechanisms involve multiple pathways, such as NF-κB, p38/MAPK, and JAK2/STAT3, and the pro-apoptosis Bcl-2/Bax/caspase-3 axis in damaged cells. Additionally, curcumin targets nutritional metabolism, regulating the substance in liver cells and tissues. The microenvironment associated with liver injury, like extracellular matrix and immune cells and factors, is also regulated by curcumin. Initial evaluation of curcumin and its analogs through 12 clinical trials demonstrates their potential application in liver injury. CONCLUSION Curcumin emerges as a promising phytomedicine for liver injury owing to its effectiveness in hepatoprotection and low toxicity profile. Nevertheless, in-depth investigations are warranted to unravel the complex mechanisms through which curcumin influences liver tissues and overall physiological milieu. Moreover, extensive clinical trials are essential to determine optimal curcumin dosage forms, maximizing its benefits and achieving favorable clinical outcomes.
Collapse
Affiliation(s)
- Zhishen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hengpei Su
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Zhongkai Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Erzurumlu Y, Dogan HK, Catakli D. New mode of action of curcumin on prostate cancer cells: Modulation of endoplasmic reticulum-associated degradation mechanism and estrogenic signaling. J Biochem Mol Toxicol 2024; 38:e23636. [PMID: 38229314 DOI: 10.1002/jbt.23636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
Prostate cancer is leading to cancer-related mortality in numerous men each year worldwide. While there are several treatment options, acquired drug resistance mostly limits the success of treatments. Therefore, there is a need for the development of innovative treatments. Curcumin is one of the bioactive polyphenolic ingredients identified in turmeric and has numerous biological activities, such as anti-inflammatory and anticancer. In the present study, we investigated the effect of curcumin on the ER-associated degradation (ERAD) and estrogenic signaling in prostate cancer cells. The antiproliferative effect of curcumin on human androgen-dependent prostate cancer cell lines LNCaP and VCaP was estimated by WST-1 assay. Morphological alterations were investigated with an inverted microscope. We investigated the effect of curcumin on ERAD and estrogen signaling proteins by immunoblotting assay. To evaluate the impact of curcumin on endoplasmic reticulum (ER) protein quality-related, the expression level of 32 genes was analyzed by quantitative reverse transcription polymerase chain reaction. The nuclear translocation of estrogen receptor was examined by nuclear fractionation and immunofluorescence microscopy. We found that curcumin effectively reduced the proliferation rates of LNCaP and VCaP cells. ERAD proteins; Hrd1, gp78, p97/VCP, Ufd1 and Npl4 were strongly induced by curcumin. Also, the steady-state level of polyubiquitin was increased in a dose-dependent manner in both cell lines. Curcumin administration remarkably decreased the protein levels of estrogen receptor-alfa (Erα), whereas estrogen receptor-beta unaffected. Additionally, curcumin strongly restricted the nuclear translocation of Erα. Present data suggest that curcumin may be effectively used in therapeutic approaches associated with the targeting ER protein quality control mechanism and modulation of estrogen signaling in prostate cancer.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
10
|
Xu W, Shen Y. Curcumin affects apoptosis of colorectal cancer cells through ATF6-mediated endoplasmic reticulum stress. Chem Biol Drug Des 2024; 103:e14433. [PMID: 38230779 DOI: 10.1111/cbdd.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024]
Abstract
Colorectal cancer (CRC) is the main cause of cancer-associated death. Herein, we treated SW620 and HT-29 CRC cells with different curcumin concentrations, followed by treatment with the half maximal inhibitory concentration (IC50) curcumin/endoplasmic reticulum stress (ERS) inhibitor 4-phenyl butyric acid (4-PBA)/activating transcription factor 6 (ATF6) interference plasmid (si-ATF6). We detected cell proliferation/apoptosis, ATF6 cellular localization/nuclear translocation, ion concentration, ATF6 protein/apoptotic protein (Bax/Bcl-2/Cleaved Caspase-3) levels, and ERS-related proteins (glucose-regulated protein 78 [Grp78]/C/EBP homologous protein [CHOP]). We discovered inhibited cell proliferation/growth, enhanced cell apoptosis/(Bax/Bcl-2) ratio/Cleaved Caspase-3 levels/Ca2+ concentration in the cytoplasm/ERS-related protein (Grp78/CHOP) levels, and activated ERS following treatment with IC50 curcumin. 4-PBA partially reversed the inhibitory effect of curcumin on SW620 cells by restraining ERS. Curcumin stimulated ATF6 expression and its nuclear translocation to activate ERS. ATF6 silencing partly annulled the inhibitory effect of curcumin on SW620 cells. Our study explored the molecular mechanism of curcumin affecting CRC cell apoptosis through ATF6.
Collapse
Affiliation(s)
- Wei Xu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Hangzhou Cancer Hospital, Hangzhou, China
| | - Yu Shen
- Health Management Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou, China
| |
Collapse
|
11
|
Badibostan H, Eizadi-Mood N, Hayes AW, Karimi G. Protective effects of natural compounds against paraquat-induced pulmonary toxicity: the role of the Nrf2/ARE signaling pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:611-624. [PMID: 36682065 DOI: 10.1080/09603123.2022.2163985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Paraquat (PQ) is a toxic herbicide to humans. Once absorbed, it accumulates in the lungs. PQ has been well documented that the generation of reactive oxygen species (ROS) is the main mechanism of its toxicity. Oxidative damage of PQ in lungs is represented as generation of cytotoxic and fibrotic mediators, interruption of epithelial and endothelial barriers, and inflammatory cell infiltration. No effective treatment for PQ toxicity is currently available. Several studies have shown that natural compounds (NCs) have the potential to alleviate PQ-induced pulmonary toxicity, due to their antioxidant and anti-inflammatory effects. NCs function as protective agents through stimulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Elevation of Nrf2 levels leads to the expression of its downstream enzymes such as SOD, CAT, and HO-1. The hypothesized role of the Nrf2/ARE signaling pathway as the protective mechanism of NCs against PQ-induced pulmonary toxicity is reviewed.
Collapse
Affiliation(s)
- Hasan Badibostan
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nastaran Eizadi-Mood
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Vázquez Cervantes GI, González Esquivel DF, Ramírez Ortega D, Blanco Ayala T, Ramos Chávez LA, López-López HE, Salazar A, Flores I, Pineda B, Gómez-Manzo S, Pérez de la Cruz V. Mechanisms Associated with Cognitive and Behavioral Impairment Induced by Arsenic Exposure. Cells 2023; 12:2537. [PMID: 37947615 PMCID: PMC10649068 DOI: 10.3390/cells12212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Dinora Fabiola González Esquivel
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Daniela Ramírez Ortega
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Tonali Blanco Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Lucio Antonio Ramos Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Humberto Emanuel López-López
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| |
Collapse
|
13
|
Aloi E, Tone CM, Barberi RC, Ciuchi F, Bartucci R. Effects of curcumin in the interaction with cardiolipin-containg lipid monolayers and bilayers. Biophys Chem 2023; 301:107082. [PMID: 37544082 DOI: 10.1016/j.bpc.2023.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Curcumin, a plant polyphenol extracted from the Chinese herb turmeric, has gained widespread attention in recent years because of its multifunctional properties as antioxidant, antinflammatory, antimicrobial, and anticancer agent. Effects of the molecule on mitochondrial membranes properties have also been evidenced. In this work, the interaction of curcumin with models of mitochondrial membranes composed of dimyristoylphosphatidylcholine (DMPC) or mixtures of DMPC and 4 mol% tetramyristoylcardiolipin (TMCL) has been investigated by using biophysical techniques. Spectrophotometry and fluorescence allowed to determine the association constant and the binding energy of curcumin with pure DMPC and mixed DMPC/TMCL aqueous bilayers. The molecular organization of pure DMPC and cardiolipin-containing Langmuir monolayers at the air-water interface were investigated and the morphology of the monolayers transferred into mica substrates were characterized through atomic force microscopy (AFM). It is found that curcumin associates at the polar/apolar interface of the lipid bilayers and the binding is favored in the presence of cardiolipin. At 2 mol%, curcumin is well miscible with lipid monolayers, particularly with mixed DMPC/TMCL ones, where compact terraces formation characterized by a reduction of the surface roughness is observed in the AFM topographic images. At 10 mol%, curcumin perturbs the stability of DMPC monolayers and morphologically are evident terraces surrounded by cur aggregates. In the presence of TMCL, very few curcumin aggregates and larger compact terraces are observed. The overall results indicate that cardiolipin augments the incorporation of curcumin in model membranes highlighting the mutual interplay cardiolipin-curcumin in mitochondrial membranes.
Collapse
Affiliation(s)
- Erika Aloi
- Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Caterina M Tone
- Department of Physics, University of Calabria, 87036 Rende, Italy; CNR Nanotec c/o Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Riccardo C Barberi
- Department of Physics, University of Calabria, 87036 Rende, Italy; CNR Nanotec c/o Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Federica Ciuchi
- CNR Nanotec c/o Department of Physics, University of Calabria, 87036 Rende, Italy.
| | - Rosa Bartucci
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
14
|
Tepebaşı MY, Büyükbayram Hİ, Özmen Ö, Taşan Ş, Selçuk E. Dexpanthenol ameliorates doxorubicin-induced lung injury by regulating endoplasmic reticulum stress and apoptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1837-1845. [PMID: 37074393 DOI: 10.1007/s00210-023-02497-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023]
Abstract
Doxorubicin (DOX), which is used as a chemotherapeutic agent in the treatment of tumors, has limited use due to its toxicity in various organs and tissues. One of the organs where DOX has a toxic effect is the lung. DOX shows this effect by increasing oxidative stress, inflammation, and apoptosis. Dexpanthenol (DEX), a homologue of pantothenic acid, has anti-inflammatory, antioxidant, and anti-apoptotic properties. Therefore, the purpose of our investigation was to explore how DEX could counteract the harmful effects of DOX on the lungs. Thirty-two rats were used in the study, and 4 groups were formed (control, DOX, DOX + DEX, and DEX). In these groups, parameters of inflammation, ER stress, apoptosis, and oxidative stress were evaluated by immunohistochemistry, RT-qPCR, and spectrophotometric methods. In addition, lung tissue was evaluated histopathologically in the groups. While CHOP/GADD153, caspase-12, caspase-9, and Bax gene expressions increased in the DOX group, Bcl-2 gene expression levels significantly decreased. In addition, changes in Bax and Bcl-2 were supported immunohistochemically. There was a significant increase in oxidative stress parameters and a significant decrease in antioxidant levels. In addition, an increase in inflammatory marker (TNF-α and IL-10) levels was determined. There was a decrease in CHOP/GADD153, caspase-12, caspase-9, and Bax gene expressions and an increase in Bcl-2 gene expression in the DEX-treated group. In addition, it was determined that there was a decrease in oxidative stress levels and inflammatory findings. The curative effect of DEX was supported by histopathological findings. As a result, it was experimentally determined that DEX has a healing effect on oxidative stress, ER stress, inflammation, and apoptosis in lung damage caused by DOX toxicity.
Collapse
Affiliation(s)
| | | | - Özlem Özmen
- Department of Pathology, University of Mehmet Akif Ersoy, Burdur, Turkey
| | - Şerife Taşan
- Department of Pathology, University of Mehmet Akif Ersoy, Burdur, Turkey
| | - Esma Selçuk
- Department of Medical Biology, University of Süleyman Demirel, Isparta, Turkey
| |
Collapse
|
15
|
Jo SL, Yang H, Lee HW, Hong EJ. Curcumae radix Reduces Endoplasmic Reticulum Stress in Mice with Chronic Neuroinflammation. Biomedicines 2023; 11:2107. [PMID: 37626603 PMCID: PMC10452873 DOI: 10.3390/biomedicines11082107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 08/27/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is a condition in which the ER protein-folding machinery is impaired, leading to the accumulation of improperly folded proteins and triggering an unfolded-protein response. Excessive ER stress causes cell death and contributes to the development of chronic diseases. Interestingly, there is a bidirectional relationship between ER stress and the nuclear factor-kappa B (NF-κB) pathway. Curcumin, a natural polyphenolic compound found in Curcumae radix, exerts its neuroprotective effects by regulating ER stress and inflammation. Therefore, investigating the potential protective and regulatory effects of curcumin on ER stress, inflammation, and neurodegeneration under chronic neuroinflammatory conditions is of great interest. Mice were pretreated with Curcumae radix extract (CRE) for 19 days and then treated with CRE plus lipopolysaccharide for 1 week. We monitored pro-inflammatory cytokine levels in the serum and ER stress-, inflammation-, and neurodegeneration-related markers in the mouse cerebrum and hippocampus using Western blotting and qRT-PCR. CRE reduced Interleukin-1 beta levels in the blood and brain of mice with lipopolysaccharide-induced chronic inflammation. CRE also suppressed the expression of markers related to the ER stress and NF-κB signaling pathways. The expression of neurodegeneration-related markers was reduced in the mouse cerebrum and hippocampus. CRE exerts neuroprotective effects under chronic inflammatory conditions via multifaceted anti-inflammatory and ER stress-pathway regulatory mechanisms.
Collapse
Affiliation(s)
- Seong-Lae Jo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Hye Won Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
16
|
Liu Y, Zhao L, He X, Shen Y, Wang N, Hu S, Xu J, Zhao Q, Zhang Q, Qin L, Zhang Q. Jintiange proteins promote osteogenesis and inhibit apoptosis of osteoblasts by enhancing autophagy via PI3K/AKT and ER stress pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116399. [PMID: 36997131 DOI: 10.1016/j.jep.2023.116399] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tiger bone, which had long been used in traditional Chinese medicine, had the action of removing wind and alleviating pain, strengthening the sinews and bones, and often used to treat bone impediment, and atrophic debility of bones in TCM clinical practice. As a substitute of natural bone tiger, artificial tiger bone Jintiange (JTG), has been approved by the State Food and Drug Administration of China for relief the symptom of osteoporosis, such as lumbago and back pain, lassitude in loin and legs, flaccidity and weakness legs, and walk with difficulty based on TCM theory. JTG has similar chemical profile to natural tiger bone, and contains mineral substance, peptides and proteins, and has been shown to protect bone loss in ovariectomized mice and exert the regulatory effects on osteoblast and osteoclast activities. But how the peptides and proteins in JTG modulate bone formation remains unclear. AIM To investigate the stimulating effects of JTG proteins on osteogenesis and explore the possible underlying mechanisms. MATERIALS AND METHODS JTG proteins were prepared from JTG Capsules by extracting calcium, phosphorus and other inorganic elements using SEP-PaktC18 desalting column. MC3T3-E1 cells were treated with JTG proteins to evaluate their effects and explore the underlying mechanisms. Osteoblast proliferation was detected by CCK-8 method. ALP activity was detected using a relevant assay kit, and bone mineralized nodules were stained with alizarin red-Tris-HCl solution. Cell apoptosis was analyzed by flow cytometry. Autophagy was observed by MDC staining, and autophagosomes were observed by TEM. Nuclear translocations of LC3 and CHOP were detected by immunofluorescence and observed under a laser confocal microscope. The expression of key proteins related to osteogenesis, apoptosis, autophagy and PI3K/AKT and ER stress pathways was analyzed by Western Blot analysis. RESULTS JTG proteins improved osteogenesis as evidenced by the alteration of proliferation, differentiation and mineralization of MC3T3-E1 osteoblasts, inhibited their apoptosis, and enhanced autophagosome formation and autophagy. They also regulated the expression of key proteins of PI3K/AKT and ER stress pathways. In addition, PI3K/AKT and ER stress pathway inhibitors could reverse the regulatory effects of JTG proteins on osteogenesis, apoptosis, autophagy and PI3K/AKT and ER stress pathways. CONCLUSION JTG proteins increased the osteogenesis and inhibited osteoblast apoptosis by enhancing autophagy via PI3K/AKT and ER stress signaling pathways.
Collapse
Affiliation(s)
- Yuling Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Luying Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xinyunxi He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Na Wang
- Ginwa Enterprise (Group) INC, Xi'an, 710069, China
| | - Sijing Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinlong Xu
- The 969th Hospital of the PLA Joint Logistics Support Forces, Hohhot, 010051, China
| | - Qiming Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Quanlong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
17
|
Hu P, Li K, Peng XX, Kan Y, Yao TJ, Wang ZY, Li Z, Liu HY, Cai D. Curcumin derived from medicinal homologous foods: its main signals in immunoregulation of oxidative stress, inflammation, and apoptosis. Front Immunol 2023; 14:1233652. [PMID: 37497225 PMCID: PMC10368479 DOI: 10.3389/fimmu.2023.1233652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
It has been for thousands of years in China known medicinal homologous foods that can be employed both as foods and medicines to benefit human and animal health. These edible herbal materials perform divert roles in the regulation of metabolic disorders, cancers, and immune-related diseases. Curcumin, the primary component derived from medicinal homologous foods like curcuma longa rhizome, is reported to play vital actions in organic activities, such as the numerous pharmacological functions including anti-oxidative stress, anti-inflammation and anti/pro-apoptosis in treating various diseases. However, the potential mechanisms of curcumin-derived modulation still need to be developed and attract more attention worldwide. Given that these signal pathways are enrolled in important bioactive reactions, we collected curcumin's last achievements predominantly on the immune-regulation signals with the underlying targetable strategies in the last 10 years. This mini-review will be helpful to accelerate curcumin and other extracts from medicinal homologous foods use in future human clinical applications.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiao-Xu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yufei Kan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tong-Jia Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zi-Yu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Zhang Z, Duan Y, Zhang Y, Zhang S, Liang X, Li J, Ren S, Zhang C, Wang M. Exogenous spraying of 4-chlorophenoxyacetic acid sodium salt promotes growth and flavonoid biosynthesis of mulberry leaves ( Morus alba L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:971-983. [PMID: 37649887 PMCID: PMC10462555 DOI: 10.1007/s12298-023-01339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
Mulberry (Morus alba L.) leaves are known as an ideal vegetable with good antioxidant effect, which can bring delicious taste and multiple health benefits. In the present study, the effects of 4-Chlorophenoxyacetic acid sodium salt (4-CPANa) treatment on growth and content of flavonoid compounds in mulberry leaves were investigated. Moreover, the changes in the expression levels of genes involved in flavonoid biosynthetic pathways, and the accumulation of important secondary metabolites including rutin (Rut), chlorogenic acid (ChA), isoquercitrin (IQ) and astragalin (Ast), were investigated in mulberry leaves. The results showed that 4-CPANa treatment could significantly promote the differentiation and growth of mulberry, increased shoot number, bud number, leaf fresh weight and leaf area of mulberry compared with control. Besides, the contents of ChA, Rut, IQ and Ast were significantly increased after 4-CPANa (5 mg/L) treatment. Further analysis revealed that 5 mg/L 4-CPANa strongly induced the expression of flavonoid biosynthesis-related genes including flavonoid 3-O-glucosyltransferase (F3GT) gene, chalcone synthase (CHS) gene, 4-xoumarate-CoA ligase (4CL) and phenylalanine ammonia lyase (PAL) gene. In conclusion, exogenous spraying of 4-CPANa provides a new way to improve the medicinal quality and development of mulberry leaf food with high value. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01339-z.
Collapse
Affiliation(s)
- Zhen Zhang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
- School of Food Science and Engineering, Hainan University, Haikou, 570228 China
| | - Yun Duan
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
- Laboratory of Quality and Safety Risk Assessment for Tropical Products of Ministry of Agriculture and Rural Affairs, Haikou, China
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, China
| | - Yu Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570228 China
| | - Shanying Zhang
- School of Food Science and Engineering, Hainan University, Haikou, 570228 China
| | - Xiaoyu Liang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570228 China
| | - Jiahao Li
- School of Food Science and Engineering, Hainan University, Haikou, 570228 China
| | - Saihao Ren
- School of Food Science and Engineering, Hainan University, Haikou, 570228 China
| | - Chenghui Zhang
- School of Food Science and Engineering, Hainan University, Haikou, 570228 China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570228 China
| | - Meng Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570228 China
| |
Collapse
|
19
|
Zhao P, Qiu J, Pan C, Tang Y, Chen M, Song H, Yang J, Hao X. Potential roles and molecular mechanisms of bioactive ingredients in Curcumae Rhizoma against breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154810. [PMID: 37075623 DOI: 10.1016/j.phymed.2023.154810] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Breast cancer is the most prevalent cancer worldwide, with high morbidity and mortality. Despite great advances in the therapeutic strategies, the survival rate in the past decades of patients with breast cancer remains unsatisfactory. Growing evidence has demonstrated that Curcumae Rhizoma, called Ezhu in Chinese, showed various pharmacological properties, including anti-bacterial, anti-oxidant, anti-inflammatory and anti-tumor activities. It has been widely used in Chinese medicine to treat many types of human cancer. PURPOSE To comprehensively summarize and analyze the effects of active substances in Curcumae Rhizoma on breast cancer malignant phenotypes and the underlying mechanisms, as well as discuss its medicinal value and future perspectives. METHOD We used "Curcumae Rhizoma" or the name of crude extracts and bioactive components in Curcumae Rhizoma in combination with "breast cancer" as key words. Studies focusing on their anti-breast cancer activities and mechanisms of action were extracted from Pubmed, Web of Science and CNKI databases up to October 2022. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guideline was followed. RESULTS Crude extracts and 7 main bioactive phytochemicals (curcumol, β-elemene, furanodiene, furanodienone, germacrone, curdione and curcumin) isolated from Curcumae Rhizoma have shown many anti-breast cancer pharmacological properties, including inhibiting cell proliferation, migration, invasion and stemness, reversing chemoresistance, and inducing cell apoptosis, cycle arrest and ferroptosis. The mechanisms of action were involved in regulating MAPK, PI3K/AKT and NF-κB signaling pathways. In vivo and clinical studies demonstrated that these compounds exhibited high anti-tumor efficacy and safety against breast cancer. CONCLUSION These findings provide strong evidence that Curcumae Rhizoma acts as a rich source of phytochemicals and has robust anti-breast cancer properties.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Jianfei Qiu
- Key Laboratory of Modern Pathogen Biology and Characteristics, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Chaolan Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Yunyan Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Meijun Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Hui Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China.
| |
Collapse
|
20
|
Liao D, Shangguan D, Wu Y, Chen Y, Liu N, Tang J, Yao D, Shi Y. Curcumin protects against doxorubicin induced oxidative stress by regulating the Keap1-Nrf2-ARE and autophagy signaling pathways. Psychopharmacology (Berl) 2023; 240:1179-1190. [PMID: 36949340 PMCID: PMC10102057 DOI: 10.1007/s00213-023-06357-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Doxorubicin (DOX)-induced neurotoxicity is widely reported in previous studies. Oxidative stress has been validated as a critical event involved in DOX-induced neurotoxicity. As a selective autophagy adaptor protein, p62 is reported to regulate Keap1-Nrf2-ARE antioxidant pathway in response to oxidative stress. Curcumin (CUR) relieves depressive-like state through the mitigation of oxidative stress and the activation of Nrf2-ARE signaling pathway. However, the exact mechanism of CUR in alleviating DOX-induced neurotoxicity is still unknown. MATERIALS AND METHODS The rats were randomly divided into three groups: control group, DOX group, and DOX + CUR group. At the end of 3 weeks, the behavior tests as sucrose preference test (SPT), forced swimming test (FST), and novelty-suppressed feeding test (NSFT) were performed to assess anxiety- and depression-like behaviors. The rats were sacrificed after behavior tests, and the brain tissues were collected for biochemical analysis. RESULTS It was observed that the administration of CUR could effectively reverse DOX-induced depressive-like behaviors. The exposure of DOX activated autophagy and increased oxidative stress levels, and the administration of CUR could significantly inhibit DOX-induced autophagy and suppress oxidative stress. More importantly, we also found that Keap1-Nrf2-ARE signaling pathway was involved in DOX-induced neurotoxicity and oxidative stress regulated by autophagy. CONCLUSION Our study demonstrated that CUR could effectively reverse DOX-induced neurotoxicity through suppressing autophagy and mitigating oxidative stress and endoplasmic reticulum (ER) stress.
Collapse
Affiliation(s)
- Dehua Liao
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China
| | - Danggang Shangguan
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China
| | - Yi Wu
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China
| | - Yun Chen
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China
| | - Ni Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China
| | - Jingyi Tang
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China
| | - Dunwu Yao
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China.
| | - Yingrui Shi
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
21
|
Kuang Z, Wu J, Tan Y, Zhu G, Li J, Wu M. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules 2023; 13:biom13030568. [PMID: 36979503 PMCID: PMC10046787 DOI: 10.3390/biom13030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Doxorubicin (DOX), a broad-spectrum chemotherapy drug, is widely applied to the treatment of cancer; however, DOX-induced cardiotoxicity (DIC) limits its clinical therapeutic utility. However, it is difficult to monitor and detect DIC at an early stage using conventional detection methods. Thus, sensitive, accurate, and specific methods of diagnosis and treatment are important in clinical practice. MicroRNAs (miRNAs) belong to non-coding RNAs (ncRNAs) and are stable and easy to detect. Moreover, miRNAs are expected to become biomarkers and therapeutic targets for DIC; thus, there are currently many studies focusing on the role of miRNAs in DIC. In this review, we list the prominent studies on the diagnosis and treatment of miRNAs in DIC, explore the feasibility and difficulties of using miRNAs as diagnostic biomarkers and therapeutic targets, and provide recommendations for future research.
Collapse
Affiliation(s)
- Ziyu Kuang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingyuan Wu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Tan
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guanghui Zhu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Min Wu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
22
|
Yang J, Hasenbilige, Bao S, Luo S, Jiang L, Li Q, Kong Y, Cao J. Inhibition of ATF4-mediated elevation of both autophagy and AKT/mTOR was involved in antitumorigenic activity of curcumin. Food Chem Toxicol 2023; 173:113609. [PMID: 36640941 DOI: 10.1016/j.fct.2023.113609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Curcumin, a natural hydrophobic polyphenol, carries significant anticancer activity. The protein kinase B (AKT)/the mammalian target of the rapamycin (mTOR) pathway and autophagy are well known to be involved in carcinogenesis, and usually, inhibition of mTOR is the main reason to promote autophagy. In this study, however, autophagy and mTOR were found to be inhibited simultaneously by curcumin treatments, and both of them played an important role in the effect of curcumin on suppressing the growth of A549 cells. Tunicamycin (TM), the activator of Endoplasmic Reticulum (ER) stress, increased both autophagy and AKT/mTOR, while curcumin could significantly decrease TM-induced autophagy and AKT/mTOR. Furthermore, curcumin could inhibit TM-induced aerobic glycolysis in A549 cells, and decrease the level of cycle-related and migration-related proteins. Blocking activating transcription factor 4 (ATF4) by siRNA strongly reduced both the expression of autophagy-related proteins and AKT/mTOR. ChIP assay illustrated that ATF4 protein could bind to the promotor sequence of either ATG4B or AKT1. The transplantation tumor experiment showed that the weight and volume of the transplanted tumors were reduced significantly in the BALB/c mice subcutaneously injected with A549 cells treated with curcumin. Moreover, intranasal administration of curcumin decreased the protein level of autophagy, AKT/mTOR and ER stress in lung tissues of BALB/c mice. Taken together, our results demonstrated that inhibition of ER stress-dependent ATF4-mediated autophagy and AKT/mTOR pathway plays an important role in anticancer effect of curcumin.
Collapse
Affiliation(s)
- Jie Yang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Hasenbilige
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Shibo Bao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Shengxiang Luo
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China.
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
23
|
Anti-inflammatory potential of turmeric, amla, and black pepper mixture against sepsis-induced acute lung injury in rats. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:252-261. [PMID: 36349282 PMCID: PMC9633023 DOI: 10.1007/s13197-022-05610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 09/01/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Acute lung injury (ALI), is a severe inflammatory lung disease. We tested the prophylactic effect of a functional food mix comprising three anti-inflammatory plant products: turmeric, amla, and black pepper (TAB) against lipopolysaccharide (LPS)-induced ALI in rats. Two-month-old male Wistar rats were randomly divided into three groups: control (C), LPS (5 mg/kg), and LPS with TAB (TAB). After 6 h of LPS injection, the rats were sacrificed by cervical decapitation to collect the lung tissue. Results showed that TAB partially ameliorated LPS-induced increase in circulating inflammatory cytokines (TNFα and IL6) and significantly prevented lung histopathological changes. TAB also suppressed LPS-activated ER stress markers (GRP78, pIRE1, and CHOP) and apoptotic markers (caspase-3 and - 12) in the lung. The anti-inflammatory effects of the TAB support its potential use as an adjuvant to mitigate ALI. Importantly, TAB's ingredients have been used for centuries as part of the diet with limited or no toxic effects.
Collapse
|
24
|
A review of mechanisms underlying the protective effects of natural compounds against arsenic-induced neurotoxicity. Biometals 2022:10.1007/s10534-022-00482-6. [PMID: 36564665 DOI: 10.1007/s10534-022-00482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
Arsenic (As) is a toxic metalloid that is widely distributed in the earth's crust. People are continuously exposed to this toxicant in their food and drinking water. Inorganic arsenic occurs in two oxidation states, arsenite 3+ (iAs3+) and arsenate 5+ (iAs5+). The most toxic form is its trivalent form which interferes with the electron transfer cycle and induces overproduction of reactive oxygen species, leading to depletion of the antioxidant defense system, as well as altering fatty acid levels and mitochondrial action. Since arsenic crosses the blood-brain barrier, it can damage cells in different regions of the brain, causing neurological disorders through the induction of oxidative stress, inflammation, DNA damage, and cell death. Hydroxytyrosol, taurine, alpha-lipoic acid, ellagic acid, and thymoquinone have been shown to effectively alleviate arsenic-induced neurotoxicity. The protective effects are the result of the anti-oxidative and anti-inflammatory properties of the phytochemicals and in particular their anti-apoptotic function via the Nrf2 and PI3/Akt/SIRT1 signaling pathways.
Collapse
|
25
|
Jangra A, Verma M, Kumar D, Chandrika C, Rachamalla M, Dey A, Dua K, Jha SK, Ojha S, Alexiou A, Kumar D, Jha NK. Targeting Endoplasmic Reticulum Stress using Natural Products in Neurological Disorders. Neurosci Biobehav Rev 2022; 141:104818. [DOI: 10.1016/j.neubiorev.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
26
|
Src Family Kinases: A Potential Therapeutic Target for Acute Kidney Injury. Biomolecules 2022; 12:biom12070984. [PMID: 35883540 PMCID: PMC9312434 DOI: 10.3390/biom12070984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and play a key role in regulating signal transduction. The mechanism of SFKs in various tumors has been widely studied, and there are more and more studies on its role in the kidney. Acute kidney injury (AKI) is a disease with complex pathogenesis, including oxidative stress (OS), inflammation, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. In addition, fibrosis has a significant impact on the progression of AKI to developing chronic kidney disease (CKD). The mortality rate of this disease is very high, and there is no effective treatment drug at present. In recent years, some studies have found that SFKs, especially Src, Fyn, and Lyn, are involved in the pathogenesis of AKI. In this paper, the structure, function, and role of SFKs in AKI are discussed. SFKs play a crucial role in the occurrence and development of AKI, making them promising molecular targets for the treatment of AKI.
Collapse
|
27
|
Wang L, Zhu S, Zou C, Kou H, Xu M, Li J. Preparation and evaluation of the anti-cancer properties of RGD-modified curcumin-loaded chitosan/perfluorohexane nanocapsules in vitro. Heliyon 2022; 8:e09931. [PMID: 35865990 PMCID: PMC9294197 DOI: 10.1016/j.heliyon.2022.e09931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Curcumin (Cur) encapsulation in nanocapsules (NCs) could improve its availability and therapeutic antitumor efficacy. Cur-loaded chitosan/perfluorohexane (CS/PFH) nanocapsules (CS/PFH-Cur-NCs) were thus synthesized via a nanoemulsion process. To further enhance the selective tumor targeting ability of Cur-loaded NCs, a novel CS/PFH-Cur-NCs with conjugation of Arg-Gly-Asp (RGD) peptide (RGD-CS/PFH-Cur-NCs) were prepared in this study. The properties of these NCs were then explored through in vitro release experiments and confocal laser scanning microscopy-based analyses of the ability of these NCs to target MDA-MB-231 breast cancer cells. In addition, an MTT assay-based approach was used to compare the relative cytotoxic impact of CS/PFH-Cur-NCs and RGD-CS/PFH-Cur-NCs on these breast cancer cells. It was found that both CS/PFH-Cur-NCs and RGD-CS/PFH-Cur-NCs were smooth, relatively uniform, spheroid particles, with the latter being 531.20 ± 68.97 nm in size. These RGD-CS/PFH-Cur-NCs can be ideal for contrast imaging studies, and were better able to target breast cancer cells in comparison to CS/PFH-Cur-NCs. In addition, RGD-CS/PFH-Cur-NCs were observed to induce cytotoxic MDA-MB-231 cell death more swiftly in comparison to CS/PFH-Cur-NCs. These findings suggest that NC encapsulation and RGD surface modification can remarkably improve the anti-tumor efficacy of Cur. These novel NCs may thus manifest a significant potential value in the realm of image-guided cancer therapy, underscoring an important direction for future research.
Collapse
Affiliation(s)
- Liang Wang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shixia Zhu
- Department of Ultrasound, Wenzhou Seventh People's Hospital, Wenzhou 325005, China
| | - Chunpeng Zou
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hongju Kou
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Maosheng Xu
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
28
|
Xiao Y, Ren Q, Zheng Y, Zhang S, Ouyang J, Jiao L, Tang C, Li L, Shi W, Wang M, Zhang S, Zhang D, Zhong B, Peng F, Chen Z, Wu L. Geniposide ameliorated dexamethasone-induced endoplasmic reticulum stress and mitochondrial apoptosis in osteoblasts. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115154. [PMID: 35240241 DOI: 10.1016/j.jep.2022.115154] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eucommia ulmoides Oliver has been traditionally used for treatment of various diseases, including osteoporosis, knee pain, and paralysis. The extract of Eucommia ulmoides has been reported to stimulate the bone formation and suppress the bone resorption, leading to protection against osteoporosis (OP). Geniposide (GEN) has been considered as one of the effective compounds responsible for the therapeutic efficacy of Eucommia ulmoides against OP. AIM OF THE STUDY To explore whether GEN protected against dexamethasone (DEX)-induced osteoporosis (OP) by activating NRF2 expression and inhibiting endoplasmic reticulum (ER) stress. MATERIALS AND METHODS The DEX-induced rat OP models were duplicated. The pathological changes were examined by histological/immunohistochemical evaluation and micro-computed tomography (micro-CT) assessment. Apoptosis was detected by a flow cytometer. Mitochondrial Ca2+ concentrations and mitochondrial membrane potential were detected. Western blot assays were used to detect the protein expression. RESULTS GEN effectively reversed DEX-induced pathological changes of trabecular bone in rats. In addition, the DEX-increased expression of ATF4/CHOP was also ameliorated. In MC3T3-E1 cells, DEX promoted endoplasmic reticulum (ER) stress and mitochondrial apoptosis. Inhibition of ER stress abolished the induction of apoptosis by DEX. Similarly, GEN significantly ameliorated DEX-induced mitochondrial apoptosis. The possible underlying mechanism might be associated with the pharmacological effects of GEN on activating the expression of NRF2 and alleviating ER stress in DEX-treated MC3T3-E1 cells. CONCLUSION GEN ameliorated DEX-induced ER stress and mitochondrial apoptosis in osteoblasts.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yizhou Zheng
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Shanshan Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Jing Ouyang
- College of Rehabilitation, Gannan Medical University, Ganzhou, 341000, China
| | - Linhui Jiao
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Chunfang Tang
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Linfu Li
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Weimei Shi
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Miaofei Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Sainan Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Di Zhang
- Department of Medical Imaging, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Bin Zhong
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Fang Peng
- Department of Pathology, Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
29
|
Khodaei M, Mehri S, Pour SR, Mahdavi S, Yarmohammadi F, Hayes AW, Karimi G. The protective effect of chemical and natural compounds against vincristine-induced peripheral neuropathy (VIPN). Naunyn Schmiedebergs Arch Pharmacol 2022; 395:907-919. [PMID: 35562512 DOI: 10.1007/s00210-022-02254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
Vincristine, an alkaloid extracted from Catharanthus rosea, is a class of chemotherapy drugs that act by altering the function of the microtubules and by inhibiting mitosis. Despite its widespread application, a major adverse effect of vincristine that limits treatment duration is the occurrence of peripheral neuropathy (PN). PN presents with several symptoms including numbness, painful sensation, tingling, and muscle weakness. Vincristine-induced PN involves impaired calcium homeostasis, an increase of reactive oxygen species (ROS), and the upregulation of tumor necrosis factor-alpha (TNF-α), and interleukin 1 beta (IL-1β) expression. Several potential approaches to attenuate the vincristine-induced PN including the concomitant administration of chemicals with vincristine have been reported. These chemicals have a variety of pharmaceutical properties including anti-inflammation, antioxidant, and inhibition of calcium channels and calcineurin signaling pathways and increased expression of nerve growth factor (NGF). This review summarized several of these compounds and the mechanisms of action that could lead to effective options in improving vincristine-induced peripheral neuropathy (VIPN).
Collapse
Affiliation(s)
- Mitra Khodaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Soroush Rashid Pour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Mahdavi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Autophagy as a molecular target of quercetin underlying its protective effects in human diseases. Arch Physiol Biochem 2022; 128:200-208. [PMID: 31564166 DOI: 10.1080/13813455.2019.1671458] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy, known as a "self-eating" process, is associated with degradation of aged or damaged components and organelles. Generally, autophagy is a survival mechanism that provides energy during nutritional deprivation. This mechanism plays a remarkable role during the physiological condition by maintaining homeostasis and energy balance and several pathological conditions, particularly neurological disorders. Due to the critical role of autophagy in cancer, much attention has been made in the regulation of autophagy using both naturally occurring and synthetic drugs. Quercetin is a plant-derived chemical belonging to the family of flavonoids. Quercetin has valuable biological and therapeutic effects such as anti-tumor, antioxidant, anti-inflammatory, anti-diabetic, hepatoprotective, and cardioprotective. At the present review, we first provide an introduction about quercetin and autophagy with its related molecular pathways. We also describe how quercetin modulates autophagy mechanism to exert its therapeutic effects.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of basic science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Science, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
31
|
Goel Y, Fouda R, Gupta K. Endoplasmic Reticulum Stress in Chemotherapy-Induced Peripheral Neuropathy: Emerging Role of Phytochemicals. Antioxidants (Basel) 2022; 11:antiox11020265. [PMID: 35204148 PMCID: PMC8868275 DOI: 10.3390/antiox11020265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a significant dose-limiting long-term sequela in cancer patients undergoing treatment, often leading to discontinuation of treatment. No established therapy exists to prevent and/or ameliorate CIPN. Reactive oxygen species (ROS) and mitochondrial dysregulation have been proposed to underlie the pathobiology of CIPN. However, interventions to prevent and treat CIPN are largely ineffective. Additional factors and mechanism-based targets need to be identified to develop novel strategies to target CIPN. The role of oxidative stress appears to be central, but the contribution of endoplasmic reticulum (ER) stress remains under-examined in the pathobiology of CIPN. This review describes the significance of ER stress and its contribution to CIPN, the protective role of herbal agents in countering ER stress in nervous system-associated disorders, and their possible repurposing for preventing CIPN.
Collapse
Affiliation(s)
- Yugal Goel
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (R.F.)
| | - Raghda Fouda
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (R.F.)
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (R.F.)
- VA Medical Center, Southern California Institute for Research and Education, Long Beach, CA 90822, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence:
| |
Collapse
|
32
|
Mukherjee S, Mishra AK, Peer GDG, Bagabir SA, Haque S, Pandey RP, Raj VS, Jain N, Pandey A, Kar SK. The Interplay of the Unfolded Protein Response in Neurodegenerative Diseases: A Therapeutic Role of Curcumin. Front Aging Neurosci 2021; 13:767493. [PMID: 34867295 PMCID: PMC8640216 DOI: 10.3389/fnagi.2021.767493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Abnormal accumulation of misfolded proteins in the endoplasmic reticulum and their aggregation causes inflammation and endoplasmic reticulum stress. This promotes accumulation of toxic proteins in the body tissues especially brain leading to manifestation of neurodegenerative diseases. The studies suggest that deregulation of proteostasis, particularly aberrant unfolded protein response (UPR) signaling, may be a common morbific process in the development of neurodegeneration. Curcumin, the mixture of low molecular weight polyphenolic compounds from turmeric, Curcuma longa has shown promising response to prevents many diseases including current global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and neurodegenerative disorders. The UPR which correlates positively with neurodegenerative disorders were found affected by curcumin. In this review, we examine the evidence from many model systems illustrating how curcumin interacts with UPR and slows down the development of various neurodegenerative disorders (ND), e.g., Alzheimer's and Parkinson's diseases. The recent global increase in ND patients indicates that researchers and practitioners will need to develop a new pharmacological drug or treatment to manage and cure these neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - G D Ghouse Peer
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonepat, India
| | - Sali Abubaker Bagabir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.,Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Ramendra Pati Pandey
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonepat, India
| | - V Samuel Raj
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonepat, India
| | - Neeraj Jain
- Division of Cancer Biology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Atul Pandey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States.,Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Santosh Kumar Kar
- Nano Herb Research Laboratory, Kalinga Institute of Industrial Technology (KIIT) Technology Business Incubator, KIIT University, Bhubaneswar, India
| |
Collapse
|
33
|
Yixuan L, Qaria MA, Sivasamy S, Jianzhong S, Daochen Z. Curcumin production and bioavailability: A comprehensive review of curcumin extraction, synthesis, biotransformation and delivery systems. INDUSTRIAL CROPS AND PRODUCTS 2021; 172:114050. [DOI: 10.1016/j.indcrop.2021.114050] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
34
|
Eisvand F, Tajbakhsh A, Seidel V, Zirak MR, Tabeshpour J, Shakeri A. Quercetin and its role in modulating endoplasmic reticulum stress: A review. Phytother Res 2021; 36:73-84. [PMID: 34528309 DOI: 10.1002/ptr.7283] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022]
Abstract
The endoplasmic reticulum (ER) is the place where proteins and lipids are biosynthesized and where transmembrane proteins are folded. Both pathological and physiological situations may disturb the function of the ER, resulting in ER stress. Under stress conditions, the cells initiate a defensive procedure known as the unfolded protein response (UPR). Cases of severe stress lead to autophagy and/or the induction of cell apoptosis. Many studies implicate ER stress as a major factor contributing to many diseases. Therefore, the modulation of ER stress pathways has become an attractive therapeutic target. Quercetin is a plant-derived metabolite belonging to the flavonoids class which presents a range of beneficial effects including anti-inflammatory, cardioprotective, anti-oxidant, anti-obesity, anti-carcinogenic, anti-atherosclerotic, anti-diabetic, anti-hypercholesterolemic, and anti-apoptotic activities. Quercetin also has anti-cancer activity, and can be used as an adjuvant to decrease resistance to cancer chemotherapy. Furthermore, the effect of quercetin can be increased with the help of nanotechnology. This review discusses the role of quercetin in the modulation of ER stress (and related diseases) and provides novel evidence for the beneficial use of quercetin in therapy.
Collapse
Affiliation(s)
- Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Tabeshpour
- Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Yarmohammadi F, Hayes AW, Karimi G. The cardioprotective effects of hydrogen sulfide by targeting endoplasmic reticulum stress and the Nrf2 signaling pathway: A review. Biofactors 2021; 47:701-712. [PMID: 34161646 DOI: 10.1002/biof.1763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Cardiac diseases are emerging due to lifestyle, urbanization, and the accelerated aging process. Oxidative stress has been associated with cardiac injury progression through interference with antioxidant strategies and endoplasmic reticulum (ER) function. Hydrogen sulfide (H2 S) is generated endogenously from l-cysteine in various tissues including heart tissue. Pharmacological evaluation of H2 S has suggested a potential role for H2 S against diabetic cardiomyopathy, ischemia/reperfusion injury, myocardial infarction, and cardiotoxicity. Nuclear factor E2-related factor 2 (Nrf2) activity is crucial for cell survival in response to oxidative stress. H2 S up-regulates Nrf2 expression and its related signaling pathway in myocytes. H2 S also suppresses the expression and activity of ER stress-related proteins. H2 S has been reported to improve various cardiac conditions through antioxidant and anti-ER stress-related activities.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Yarmohammadi F, Hayes AW, Karimi G. Protective effects of curcumin on chemical and drug-induced cardiotoxicity: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1341-1353. [PMID: 33666716 DOI: 10.1007/s00210-021-02072-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Cardiotoxicity is a major adverse effect that can be induced by both therapeutic agents and industrial chemicals. The pathogenesis of such cardiac damage is multifactorial, often injuring the cardiac tissue by generating free radicals, oxidative stress, and/or inflammation. Curcumin (CUR) is a bright yellow chemical produced by Curcuma longa plants. It is the principal curcuminoid of turmeric (Curcuma longa), a member of the ginger family, Zingiberaceae. Administration of CUR has been reported to ameliorate the chemical and drug-induced cardiac injury in several studies. CUR has been suggested to act as an effective candidate against oxidative stress and inflammation in heart tissue via regulation of Nrf2 and suppression of p38 MAPK/NF-κB and NLRP3 inflammasomes. The anti-apoptotic properties of CUR have also been reported to modulate the AMPK, Akt, JNK, and ERK signaling pathways. This review explores the potential protective effects of CUR regarding the detrimental effects often observed in cardiac tissue following exposure to several chemicals including drugs.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, 33617, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Ahmadi A, Hayes AW, Karimi G. Resveratrol and endoplasmic reticulum stress: A review of the potential protective mechanisms of the polyphenol. Phytother Res 2021; 35:5564-5583. [PMID: 34114705 DOI: 10.1002/ptr.7192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that performs a set of essential functions in cellular biology. These include synthesis of lipids, homeostasis of calcium, and controlling the folding of proteins. Inflammation and oxidative stress are two important reasons behind the accumulation of misfolded or unfolded proteins in the ER. In such circumstances, a series of measures are undertaken in the cell which are collectively called unfolded protein response (UPR). The aim of UPR is to reduce the burden of protein aggregates and promote survival. However, extended and unrestricted ER stress (ERS) can induce further inflammation and apoptosis. ERS and the UPR are involved in different diseases such as neurodegenerative and cardiovascular diseases. Resveratrol (RSV), a natural polyphenol, has well-documented evidence supporting its numerous biological properties including antioxidant, antiinflammatory, antiobesity, antidiabetic, and antiischemic activities. The compound is also known for its potential beneficial effects on cognitive function and liver, kidney, and lung health. In this review, the role of ERS in several pathological conditions and the potential protective effects of RSV are discussed. However, the scarcity of clinical data means that more research needs to be conducted to gain a lucid understanding of RSV's effects on endoplasmic reticulum stress (ERS) in humans.
Collapse
Affiliation(s)
- Ali Ahmadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida, Tampa, FL USA and Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury. Curr Mol Med 2021; 20:116-133. [PMID: 31622191 DOI: 10.2174/1566524019666191016150757] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenol that is isolated from the rhizome of Curcuma longa (turmeric). This medicinal compound has different biological activities, including antioxidant, antibacterial, antineoplastic, and anti-inflammatory. It also has therapeutic effects on neurodegenerative disorders, renal disorders, and diabetes mellitus. Curcumin is safe and well-tolerated at high concentrations without inducing toxicity. It seems that curcumin is capable of targeting the Nrf2 signaling pathway in protecting the cells against oxidative damage. Besides, this strategy is advantageous in cancer therapy. Accumulating data demonstrates that curcumin applies four distinct ways to stimulate the Nrf2 signaling pathway, including inhibition of Keap1, affecting the upstream mediators of Nrf2, influencing the expression of Nrf2 and target genes, and finally, improving the nuclear translocation of Nrf2. In the present review, the effects of curcumin on the Nrf2 signaling pathway to exert its therapeutic and biological activities has been discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Veterinary Medicine Faculty, Shushtar University, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
39
|
Ashrafizadeh M, Yaribeygi H, Sahebkar A. Therapeutic Effects of Curcumin against Bladder Cancer: A Review of Possible Molecular Pathways. Anticancer Agents Med Chem 2021; 20:667-677. [PMID: 32013836 DOI: 10.2174/1871520620666200203143803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/22/2022]
Abstract
There are concerns about the increased incidence of cancer both in developing and developed countries. In spite of recent progress in cancer therapy, this disease is still one of the leading causes of death worldwide. Consequently, there have been rigorous attempts to improve cancer therapy by looking at nature as a rich source of naturally occurring anti-tumor drugs. Curcumin is a well-known plant-derived polyphenol found in turmeric. This compound has numerous pharmacological effects such as antioxidant, anti-inflammatory, antidiabetic and anti-tumor properties. Curcumin is capable of suppressing the growth of a variety of cancer cells including those of bladder cancer. Given the involvement of various signaling pathways such as PI3K, Akt, mTOR and VEGF in the progression and malignancy of bladder cancer, and considering the potential of curcumin in targeting signaling pathways, it seems that curcumin can be considered as a promising candidate in bladder cancer therapy. In the present review, we describe the molecular signaling pathways through which curcumin inhibits invasion and metastasis of bladder cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Dietary Polyphenols in Metabolic and Neurodegenerative Diseases: Molecular Targets in Autophagy and Biological Effects. Antioxidants (Basel) 2021; 10:antiox10020142. [PMID: 33498216 PMCID: PMC7908992 DOI: 10.3390/antiox10020142] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Polyphenols represent a group of secondary metabolites of plants which have been analyzed as potent regulators of multiple biological processes, including cell proliferation, apoptosis, and autophagy, among others. These natural compounds exhibit beneficial effects and protection against inflammation, oxidative stress, and related injuries including metabolic diseases, such as cardiovascular damage, obesity and diabetes, and neurodegeneration. This review aims to summarize the mechanisms of action of polyphenols in relation to the activation of autophagy, stimulation of mitochondrial function and antioxidant defenses, attenuation of oxidative stress, and reduction in cell apoptosis, which may be responsible of the health promoting properties of these compounds.
Collapse
|
41
|
Yarmohammadi F, Rezaee R, Haye AW, Karimi G. Endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity may be therapeutically targeted by natural and chemical compounds: A review. Pharmacol Res 2020; 164:105383. [PMID: 33348022 DOI: 10.1016/j.phrs.2020.105383] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent with marked, dose-dependent cardiotoxicity that leads to tachycardia, atrial and ventricular arrhythmia, and irreversible heart failure. Induction of the endoplasmic reticulum (ER) which plays a major role in protein folding and calcium homeostasis was reported as a key contributor to cardiac complications of DOX. This article reviews several chemical compounds that have been shown to regulate DOX-induced inflammation, apoptosis, and autophagy via inhibition of ER stress signaling pathways, such as the IRE1α/ASK1/JNK, IRE1α/JNK/Beclin-1, and CHOP pathways.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Haye
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Marques M, Cordeiro M, Marinho M, Vian C, Vaz G, Alves B, Jardim R, Hort M, Dora C, Horn A. Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery in wistar rats. Brain Res 2020; 1746:147007. [DOI: 10.1016/j.brainres.2020.147007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
|
43
|
Gao LJ, Li P, Ma T, Zhong ZQ, Xu SJ. Ligustilide alleviates neurotoxicity in SH-SY5Y cells induced by Aβ 25-35 via regulating endoplasmic reticulum stress and autophagy. Phytother Res 2020; 35:1572-1584. [PMID: 33111362 DOI: 10.1002/ptr.6925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 11/11/2022]
Abstract
Ligustilide is a phenolic compound isolated from Asian plants of Umbelliferae family. This study was aimed at exploring the neuroprotective effects of Ligustilide from the perspective of endoplasmic reticulum stress (ERS) and autophagy. The Alzheimer's disease (AD) cell models were constructed by SH-SY5Y cell line, which was exposed to 20 μM Aβ25-35 . CCK-8 was used to evaluate the cell viability of Ligustilide on AD cell model. Hoechst staining and LysoTracker Red were used to test the cell apoptosis and Lysosome function, respectively. ERS in living cells were detected by Thioflavin T. The expression of autophagy-related proteins (LC3B-II/I, P62/SQSTM1, Beclin1, and Atg5), ERS marker proteins (PERK, GRP78, and CHOH), and apoptosis proteins (Bax, Bcl-2, and Caspase-12) were analyzed by Western blot analyses. Aβ25-35 could induce ERS and autophagy in a time-dependent manner in SH-SY5Y cells. We demonstrated that Ligustilide significantly decreased the rate of apoptosis, and improved the viability of cells. Simultaneously, Ligustilide effectively modulated ERS via inhibiting the over-activation of GRP78/PERK/CHOP signaling pathway. In addition, Ligustilide alleviated the accumulation of autophagy vacuoles, reduced the ratio of LC3B-II/I and the level of P62/SQSTM1. Ligustilide significantly up-regulated lysosomal acidity and the expression of Cathepsin D (CTSD). Ligustilide could rescue lysosomal function to promote autophagy flux and inhibit the over-activation of ERS. This finding may contribute to the development of new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Li-Juan Gao
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Li
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tengyun Ma
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhan-Qiong Zhong
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi-Jun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
44
|
Yu N, Yang L, Ling L, Liu Y, Yu Y, Wu Q, Gu Y, Niu J. Curcumin attenuates angiotensin II-induced podocyte injury and apoptosis by inhibiting endoplasmic reticulum stress. FEBS Open Bio 2020; 10:1957-1966. [PMID: 32770719 PMCID: PMC7530386 DOI: 10.1002/2211-5463.12946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Podocytes are an important component of the glomerular filtration barrier in the kidneys. The dysfunction and apoptosis of podocytes are important factors that can lead to the progression of chronic kidney disease (CKD). In CKD, angiotensin II is continuously elevated in circulation and is considered to have key roles in inducing podocyte injury and apoptosis. Curcumin is a hydrophobic polyphenolic compound extracted from turmeric. Increasing evidence demonstrates that curcumin has a protective effect on the kidneys in CKD. However, the mechanisms mediating this protective effect remain unclear. The aim of this study was to explore whether curcumin could protect against angiotensin II‐induced injury and apoptosis of podocytes. We performed western blotting, immunofluorescence, phalloidin staining, and terminal deoxynucleotidyl transferase nick‐end labeling staining to observe the expression level of podocyte‐specific proteins, apoptosis‐related proteins, and the arrangement of F‐actin. We found that curcumin could reverse angiotensin II‐induced podocyte injury and apoptosis in a dose‐dependent manner. In addition, curcumin dose‐dependently attenuated a pro‐apoptotic pathway, activated by angiotensin II‐induced endoplasmic reticulum stress. Conversely, the protective effects of curcumin were impaired upon addition of tunicamycin, an activator of endoplasmic reticulum stress. Thus, we speculate that curcumin protects against angiotensin II‐induced podocyte injury and apoptosis, at least partly by inhibiting endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Nan Yu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Lin Yang
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Lilu Ling
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuan Liu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ying Yu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qing Wu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yong Gu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianying Niu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Yarmohammadi F, Wallace Hayes A, Najafi N, Karimi G. The protective effect of natural compounds against rotenone‐induced neurotoxicity. J Biochem Mol Toxicol 2020; 34:e22605. [DOI: 10.1002/jbt.22605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - A. Wallace Hayes
- Institute for Integrative Toxicology University of South Florida Tampa Florida
- Institute for Integrative Toxicology Michigan State University East Lansing Michigan
| | - Nahid Najafi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
46
|
Huang J, Bao D, Lei CT, Tang H, Zhang CY, Su H, Zhang C. Selenoprotein T protects against cisplatin-induced acute kidney injury through suppression of oxidative stress and apoptosis. FASEB J 2020; 34:11983-11996. [PMID: 32686857 DOI: 10.1096/fj.202000180rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023]
Abstract
Previously, selenoprotein T (SelT) expression was shown to be induced in nervous, endocrine, and metabolic tissues during ontogenetic and regenerative processes. However, whether SelT plays a critical role in renal diseases remains unclear. Here, we explored the role of SelT in cisplatin-induced acute kidney injury (AKI). Results revealed that SelT was highly expressed in renal tubules, but its expression was significantly reduced in cisplatin-induced AKI. Importantly, knocking down of SelT expression in kidney cells in vitro resulted in cisplatin-induced cell apoptosis, as indicated by the elevation of cleaved-PARP and Bax expression, Caspase-3 activity, and number of TUNEL-positive cells. Moreover, SelT silencing-induced reactive oxygen species (ROS) production, accompanied by a decrease in intracellular superoxide dismutase (SOD) and catalase (CAT) activity and increase in malondialdehyde (MDA) content. Notably, the protein and mRNA levels of Nox4 were increased in response to SelT downregulation. Furthermore, suppression of Nox4 expression by GKT137831 partially alleviated SelT knockdown-induced ROS generation and cell apoptosis in cisplatin-treated kidney cells. Taken together, our findings provide the first evidence that SelT protects against cisplatin-induced AKI by suppression of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Jing Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dian Bao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Tao Lei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Yun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Ashrafizadeh M, Zarrabi A, Najafi M, Samarghandian S, Mohammadinejad R, Ahn KS. Resveratrol targeting tau proteins, amyloid-beta aggregations, and their adverse effects: An updated review. Phytother Res 2020; 34:2867-2888. [PMID: 32491273 DOI: 10.1002/ptr.6732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Resveratrol (Res) is a non-flavonoid compound with pharmacological actions such as antioxidant, antiinflammatory, hepatoprotective, antidiabetes, and antitumor. This plant-derived chemical has a long history usage in treatment of diseases. The excellent therapeutic impacts of Res and its capability in penetration into blood-brain barrier have made it an appropriate candidate in the treatment of neurological disorders (NDs). Tau protein aggregations and amyloid-beta (Aβ) deposits are responsible for the induction of NDs. A variety of studies have elucidated the role of these aggregations in NDs and the underlying molecular pathways in their development. In the present review, based on the recently published articles, we describe that how Res administration could inhibit amyloidogenic pathway and stimulate processes such as autophagy to degrade Aβ aggregations. Besides, we demonstrate that Res supplementation is beneficial in dephosphorylation of tau proteins and suppressing their aggregations. Then, we discuss molecular pathways and relate them to the treatment of NDs.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Eghbaliferiz S, Farhadi F, Barreto GE, Majeed M, Sahebkar A. Effects of curcumin on neurological diseases: focus on astrocytes. Pharmacol Rep 2020; 72:769-782. [PMID: 32458309 DOI: 10.1007/s43440-020-00112-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are the most abundant glial cells in the central nervous system, and are important players in both brain injury and neurodegenerative disease. Curcumin (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione), the major active component of turmeric, belongs to the curcuminoid family that was originally isolated from the plant Curcuma longa. Several studies suggest that curcumin may have a beneficial impact on the brain pathology and aging. These effects are due to curcumin's antioxidant, free-radical scavenging, and anti-inflammatory activity. In light of this, our current review aims to discuss the role of astrocytes as essential players in neurodegenerative diseases and suggest that curcumin is capable of direct inhibition of astrocyte activity with a particular focus on its effects in Alexander disease, Alzheimer's disease, ischemia stroke, spinal cord injury, Multiple sclerosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Samira Eghbaliferiz
- Department of Pharmacognosy, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Faegheh Farhadi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Fu Z, Mui D, Zhu H, Zhang Y. Exenatide inhibits NF-κB and attenuates ER stress in diabetic cardiomyocyte models. Aging (Albany NY) 2020; 12:8640-8651. [PMID: 32392536 PMCID: PMC7244034 DOI: 10.18632/aging.103181] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Exenatide is used to treat patients with type-2 diabetes and it also exerts cardioprotective effects. Here, we tested whether Exenatide attenuates hyperglycemia-related cardiomyocyte damage by inhibiting endoplasmic reticulum (ER) stress and the NF-κB signaling pathway. Our results demonstrated that hyperglycemia activates the NF-κB signaling pathway, eliciting ER stress. We also observed cardiomyocyte contractile dysfunction, inflammation, and cell apoptosis induced by hyperglycemia. Exenatide treatment inhibited inflammation, improved cardiomyocyte contractile function, and rescued cardiomyocyte viability. Notably, re-activation of the NF-κB signaling pathway abolished Exenatide's protective effects on hyperglycemic cardiomyocytes. Taken together, our results demonstrate that Exenatide directly reduces hyperglycemia-induced cardiomyocyte damage by inhibiting ER stress and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhenhong Fu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - David Mui
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hang Zhu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
50
|
Liu C, Yan DY, Wang C, Ma Z, Deng Y, Liu W, Xu B. IRE1 signaling pathway mediates protective autophagic response against manganese-induced neuronal apoptosis in vivo and in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136480. [PMID: 31931206 DOI: 10.1016/j.scitotenv.2019.136480] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Overexposure to manganese (Mn) can result in neurotoxicity and is associated with manganism, a Parkinson's-like neurological disorder. In addition, Mn can induce endoplasmic reticulum (ER) stress and autophagy. In this study, we used C57BL/6 mice to establish a model of manganism and found that Mn could induce cell injury. Our results also showed that Mn could initiate the unfolded protein response (UPR) signaling and autophagy, via initiation of the UPR signaling occurring earlier than autophagy. We further investigated the intrinsic relationship between the endoplasmic reticulum to nucleus 1(ERN1, also known as inositol requiring enzyme 1, IRE1) signaling pathway and autophagy induction in SH-SY5Y cells exposed to Mn. Our results revealed that autophagy activation was a protective response in Mn-induced toxicity. Additionally, we found that Jun N-terminal kinase (JNK) inhibition downregulated autophagy and interaction of c-Jun with the Beclin1 promoter. In addition, knockdown of IRE1 with the LV-IRE1 shRNA suppressed the expression of IRE1, TRAF2, p-ASK1, and p-JNK in Mn-treated SH-SY5Y cells. Furthermore, the expression of proteins associated with ASK1-TRAF2 complex formation and autophagy activation were reversed by the LV-IRE1 shRNA. These findings suggest that IRE1 was involved in the activation of JNK through the formation of the ASK1-TRAF2 complex, and JNK activation led to the induction of autophagy, which required Beclin1 transcription by c-Jun. In this study, we demonstrated that the IRE1 signaling pathway mediated the activation of JNK signaling via the formation of the ASK1-TRAF2 complex which could initiate autophagy and the protein c-Jun which regulates Beclin1 transcription in Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Chang Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Dong-Ying Yan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Can Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| |
Collapse
|